Technical Data -

Embed Size (px)

Citation preview

  • 8/6/2019 Technical Data - www.mahamulti.com

    1/25

    All the technical data you need to know is here for your reference.We have gleaned this information over the past 25 years fromvarious sources I publications for your convenienceDisclaimer:Our company accepts no liability for the content of thispublication, or for the consequences of any actions taken on thebasis of the information provided, unless that information issubsequently confirmed in writing. It is notified that disclosing,copying, distributing or taking any action in reliance on thecontents ofthis information isstrictly prohibited

    LlQ UIF IED PETRO LEUM G AS (LPG)The term LPG applies to a mixture of light hydrocarbons derivedfrom petroleum which are gaseous at ambient temperature andatmospheric pressure, however can be condensed to l iquid stateat ambient temperature by application of moderate pressure. LPGavailable in India is normally a mixture of commercial butane andpropane, with composition as perthe following.COMPOSITION (%volume)Propane 27.5%ISO butane 14.7%N. Butane 55.7%CS 20%Liquid Density @ 15C 0.562Vapour Pressure @ 100C 83 kg/cm'CALORIFIC VALUES OF VARIOUS SOLID AND LIQUIDFUELSWood (dry)LigniteCoalCokeDieselLight Fuel OilHeavy Fuel OilPetrolKeroseneLPGBtu/lbBtu/kgBtu/ft'Btu/litreMax. Temp. in AirMax. Temp. in OxygenIgnition Temperature

    KCal/kg440049003800660010300950010000114001055021,30046,8003,2001222000C2800C461C

    Btu/lb8,000-9,0009,000-13,00012,000-13,00012,000-12,75019,30017,80018,75021,30019,700Kcai/ibKcal/kgKcal/ft3Kcai/litreKcal/mt'

    5,36811,40080630830,600

    ~TM

    Technical DataTE CH NIC AL D AT ACalorific Value Kcal I Kg (Btu I Lb)

    Kcal I Litre of Vapour (Btu I Cft of Vapour)Liquid (Water =1)Vapour (Air=1)Litres of Vapour I Kg of LiquidCft of Vapour I Lb of Liquid

    Specific GravitySpecific Volume

    C ON VER SIO N FACTO RS FO R DIFFER EN T UN ITSHeat Unit: 1 KcalPressure: 1 kg I cm'

    1 Atmosphere

    =3.97 BTU. (Brit ish Thermal Unit)=14.22 Pounds/Sq.lnch=760 mm of Mercury=29.92 Inches of Mercury=30 gm I cm'=11.81 Inches Water Column=0.43 I Sq. Inch

    300 mmWaterColumn

    TECHNICAL INFORMATION ABOUT CONNECTIONSThe valves in the LPG installations playa vital part in the systemsince the material is handled under high pressure conditions.Decades ago, the oil companies used a hand wheel operated valveon their cylinders. The valve used to have left male threads at theoutlet where the regulator used to be connected. When LPG cameto be drawn under high pressure, a flexible high pressureconnection with a suitable coupling arrangement used to bescrewed on to the outlet. This developed into a standardconnection and came to be termed as 'Male Cylinder Valve'(MECV) connection.

    ABBREVIATIONS:The following abbreviations are used inthis catalogue.Cu- Copper or Compression fittingB.S.PTM. British Standard PipeTaper MaleB.S.PTF.B.S.PPM.B.S.PPF.M.E.CVF.E.CV

    British Standard Pipe Taper FemaleBritish Standard Pipe Parallel MaleBritish Standard Pipe Parallel FemaleMale European Cylinder Valve (Left hand)Female European Cylinder Valve (Left hand)

    With the advancement in technology, the MECV valves with lefthand threads were replaced by the Self Closing (SC) 'Click on type'valve. Yet several installations continue to use the left handthreaded connection where high pressure LPG is involved.The threads in these valves conform to the British Standard Pipe(B.S.P) threads. These are oftwo types :1) Taperthreads used for direct pressure tight joints on lines.2) Parallel threads or fastening threads (B.S.P-F) generally used

    for fastening. There are also the compression type threadswhere flexible connections are to be provided

    LE FT HAND PARALLE L THREADSpecifications for the LPG burners, fittings, accessories and alliedequipment are given in the imperial system with their equivalence,where possible inthe metric system.

  • 8/6/2019 Technical Data - www.mahamulti.com

    2/25

    PHYSICAL PROPERTIES OF LPGBOILING POINT AND VAPOUR PRESSURENormal boiling points of pure propane and butane are:

    Propane-42C n-Butane-OSC Isobutane-12 CFrom the user's point of view, a high vapour pressure is anadvantage and therefore LPG should contain as much propane aspossible. IS : 4576 specifies the maximum permissible vapourpressure of LPG at 65C to be 1687kg/cm2 gauge (17.6 barabsolute). Assuming that butane is entirely n-butane, the upperlimit of propane in LPG is 60% by weight Usually, LPG contains27.5% propane and the balance is largely butane with smallquantities of ethane, ethylene, pentane and pentene.

    VAPORISATIONIn one of the most common methods of storage and handling, LPGis held under pressure at near ambient temperature. At 30C, thispressure would be in the region of 4.7 to 6.4 bar gauge dependingupon compositions. If there is a leak, the escaping liquid would beexposed to atmospheric pressure and maximum temperaturewhich the liquid can have at this pressure is its normal boil ing point,e.q -42C in the case of propane and -0.5 "C in the case of butane.Therefore, the escaping liquid will undergo a large drop intemperature. If propane at 30C leaks to atmosphere, thetemperature of the liquid will drop to -42C.Heat available from within the liquid as a result of this cooling isused up in instantaneously vaporising a part of the liquid. Thisphenomenon of instantaneous vaporisation of a part of the liquid isknown as flashing of the liquid. When pressurised LPG is releasedto atmosphere, the proportion of liquid, which vaporises due toflashing amounts to 20% to 40% depending upon the compositionof the liquid.The vapour generated due to flashing and the remaining liquid willbe at the normal boiling point temperature of the liquid. This lowtemperature will cause cooling of the ambient temperature andcondensation of moisture in the air. The resultant walling aroundleakage source indicates that a leakage istaking place.In a second method of storing LPG, Refregerated Storage, lesscommon though, the pressure in the storage tank is practicallyatmospheric. Under refrigeration, at a temperature at which thevapour pressure of the liquid is nearly equal to the atmosphericpressure. Any leakage in this case does not cause any flashvaporisation because the liquid is already at its normal boilingpoint If the spillage occur on the ground, the liquid will spreadunder gravity and vaporisation will occur by supply of heat from theground. Ifthe spillage occurs on water, water underneath the LPGlayer will freeze and the latent heat of freezing of the water willsupply the heat requirement for LPG vaporisation.Thus contrary to flashing, vaporisation in the case of a refrigeratedliquid spillage will occur at a rate determined by the rate of heatsupply to spill from the underlying ground orwater.

    ~TM

    Technical DataDENSITYLiquid LPG is immiscible with water and its density is 535 kg/m3 at30 DC.Therefore, any water present in a pressurised LPG tank atroom temperature settles as a bottom layer. This water can bedrained by opening the outlet at the bottom of the tank providedthe valve isclosed before the interface reaches the valve.The density of LPG vapour is 1.7 times that of air. Therefore, anyLPG vapour released to atmosphere will form a heavy cloud atground level. This is an important property to be borne in mind inmodeling the dispersion of LPGvapour.M ELTING O R FREEZ ING PO INTLPG can exist as a liquid over a wide range of temperatures. Thelowest temperature in the range at which liquid assumes the solidstate is known as the melting point It is such a low temperature thatit is not encountered in normal operations / handling and, thereforedoes not have any practical significance.BOIL ING POIN TA The temperature at which the vapour pressure of a liquid

    becomes equal to the external pressure is its boiling point Thistemperature differs for the same liquid under differentpressures. The normal boiling point is the temperature atwhich the vapour pressure reaches 760 mm of Mercury or oneatmosphere.

    B The boiling point of LPG presently marketed isvery nearly 0 DC.At temperatures near 0 DC or at sub-zero temperatures, thepressure inside the container will be almost the same asatmospheric pressure. Therefore, this product cannot be usedat places where the ambient temperature isnear or sub-zero.

    SENSIB LE PROPERTIESColour (Sight) : Like air LP gases are colourless, therefore, theycannot be seen. However, when liquid LPG is released from acontainer or a pipe it vapourises almost immediately Thisproduces a cooling of the surrounding air and may cause watervapour in the air to condense, freeze and become visible. In thisway, LPG leak may be detected even though the gas itself isinvisible.Odour (Smell) : LPG is distinctively odourised to give warning incase of leakage. LPG is generally odourised by addingmercaptans. Its smell isdetectable inair at concentrations down to1/5th ofthe lower limit of flammabil ity Inother words, it can be smeltsufficiently before itbecomes dangerous enough to catch fire.Ignition Temperature: For the combustion process or burning ofLPG to occur it is necessary that an ignition source is applied. Theflammable mixture of LPG vapour and air will not ignite or explodeunless the ignition source is present The source may be a spark,flame or heated material possessing sufficient heat to equal orexceed the required ignition temperature, which is in the range of41ODCto 580 DC.Calorific Value: Calorific value is defined as the amount of heatproduced by complete combustion of unit mass of the fuel. It isexpressed in kcal / kg The calorific value of LPG is very high anduniform which makes itan ideal fuel.

  • 8/6/2019 Technical Data - www.mahamulti.com

    3/25

    M OLEC ULA R W EIG HT, ATM OS PH ER IC B OILIN GPO INT , CR IT ICAL COND IT IONProperty ---o le c u la r We ig h tB oi li ng P oi nt , 1 a tm ,' C ""==!~=""'!!"=~Critica l Tem p . 'C 96 .67 152 .0 3 134 .9944 .0 97 58 .1 24 58 .124 44 58-9 5 15 0C ri ti c al P re s s ur e , a tm .C r it i ca l Vo lume ,1 U. / Mo le

    CALORIFIC VALUE AND W OBBE NUMBER---a lo r i f ic Va lueK ca l/ K g. 1 1945 11740 11715 11900 11800K ca l/ m 'W ob b e N um b e r 1 9100 21290 21180 19200 21000M ATE RIAL ID ENTIFIC ATIO N AN D US E(This is as per normal LPG suppl ied by the oi l companies)Chemical Name : Commercial Mixture Butane and

    Propane.UN No. : 1075

    : Hydrocarbons C3H8 and C4H10(Mixture).Use of Product : Multi faceted energy use

    Hazardous Ingredients of : EAC (HAZCHEM) 2 WEMaterial Physical State : Liquid & Gas (When Pressurised )Odour and appearance : Odourless I Colour lessSpecific Gravity : 0.525 to 0.58 at 15C

    Chemical Identity

    Vapour PressureVapour Density

    : 1687 Kg I ern' at65C: Butane 2.703 Kg/NM3Propane 2099 Kg/NM3

    : - 2C Temp. in deg C for 95% byVolume at 760 mm-kg

    Evaporation Rate

    Boiling Point : Butane- 0.5C: - 137C

    Propane- 42.1C- 187Creezing Point (CD)

    SolubilityDensity ( g Im l )

    : Insoluble in water at 20e.: 0.565 @ 15C

    Coefficient of water I Oil : 0.565 @ 15CdistributionCONVERSION FROM VARIOUS FUELS TO LPGE q u iv ale nt L PG r eq u ir ement in K g sL P G K g s. U nit.

    FO 9500 60 600 kg - 1000Urs FO6 50 k g - 1 00 0Urs . LSHS

    LOO 9500 60 6 00 kg - 10 00Urs . LOO1 75 k g - 1 OOOK g s.o f w o od

    COAL 3800 40 1 50 k g - 1 OOOK g s.o f Co al

    ~TM

    Technical DataFIREAND EXPLOSION HAZARD OF LPGFlammability : Gas at 1.8% to 9% mixture with

    air is inflammable.: Dry Chemical Powder typeFire Extinguishers,Carbon dioxide, Water spray.: 1.8% (%byvolume): 90% (%byvolume): 461C:2

    Means of Extinction

    Lower Explosive LimitUpper I Higher Explosive LimitAuto Ignition TemperatureFlamability ClassificationHazardous product of Combustion: Carbon Monoxide,

    Carbon Dioxide.:High:Inhalation acute

    Sensitivity to static dischargeRoutes of entryEffects :GiddinessCOMMON PROPERTIES OF COMMERCIAL LPG(Vapour at 1 atmosphere, 155C) as per oil company records

    DensityIb/ft3kg/m3 0.1152.0 0.1552.6 0.1422.26Specific Volumeft3/1b 8.6 6.5 7.10mt'/kg 0.5 0.38 0.45Specific Gravity(Air=1) 1.5 2.0 1.7Specific HeatBtu/Lb (kcal/kg)CP 0.38 0.39 0.39CV 0.34 0.35 0.35Calorific Value, NettBtu I ft3Kcal/mt' 2,30022,600 3,00029,000 3,20030,600

    IM PORTANT CONVERS ION F AC TORSPressure 1 Ib/in ABS =27.68 in We. =2.307 FT We.=0.070306 kg/cm'

    Energy 1Btu1 kcal =

    2.93 x 10.4 kwh =0.251996 Kcal.=1.1628 x 10.3 kwh =3.9683 Btu

    Withdrawal rate of LPG from 19 kg cylinder should not exceed0.5 kg/hr as it may cause drop inpressure of LPG inside cylinder.

    Books Used For Reference While Preparing This Catalogue1 lSI - 6044 Part 1 - 20002 lSI - 6044 Part 2 - 20013 01SD-162 -19954 Handbook on Industrial & Commercial LPG5 Technical Ref. Matheson Gas Data Book6 Gas Engineers Handbook.7 Gas cylinder rules 20048 Safety in the Installation & use of gas system & appliances9 Industrial & Commercial gas installation practice

  • 8/6/2019 Technical Data - www.mahamulti.com

    4/25

    ~TM

    Technical DataCOMPARISON OF LPG AND ELECTRICAL ENERGY1 KW =8 6 0 K Ca l1 K g o f LPG =1 1 , 40 0 k ca l1 KW E le c tr ic it y =R s. 8 .0 01 KW o f LPG =a s u nd era ) a t d om es t ic ra te o f LPG =Rs . 3 5 0 /1 4 .2 k g =

    Rs . 1 .8 5 p s . (Rs . 2 4 6 4 / K g )b ) a t c o m me rc ia l ra te o f LPG =Rs . 1 ,2 0 0 /1 9 kg .

    Rs . 4 .7 6 p s . (Rs . 6 3 1 5 / K g )A fte r a s s e s s in g th e re qu ire m en t o f LPG w e c a n o ffe r s u p p ly o f LPGe ith e r in 1 9 kg / 3 3 k g /4 7 .5 k g o r in b u lk . Th e m in im um a re are qu ire d fo r b ulk in sta lla tio n is g ive n b elo w:AREA REQUIREM ENT FOR BULK INSTALLATIONIIa te r C a p ac ity o f v es s el( In l it e rs ) M in im u m d is ta nc e f ro m lin e o f a djo in in g p r o p er ty o r g r o u po f b u ild in g n o t a s s o c ia te d w it h s t o ra g e a nd o p e r at io n M in im u m dis tance between v es se ls

    Un de rg ro u n d o r a b o ve g ro u n d Ab o ve Und e rg ro u n d o r a b o veAboveground Vessel ve s se l c o ve re d w ith e a rth g ro u n d g ro u n d ve s s e l c o ve re d w ith(m o u n d ) ve s se l e a r th (m o u n d ) Not above 2000 5 meters 3 meters meters 1 m e te r

    Above 2000 but 10 meters 3 meters meters 1 m e te rnot above 7500Above 7500 but

    10 meters 5 meters meters 1 m e te rnot above 10000Above 10,000 but 15 meters 7.5 meters 1.5 meters 1 m e te rnot above 20,000About 20,000 but 20 meters 10 meters 2 meters 1 m e te rnot above 40,000About 40,000 but 30 meters 15 meters 1 m e te rnot above 3,50,000 2 m ete rs o r % ,h o f th eAbove 3,50,000 but 40 meters 15 meters s um o f d ia m e te r o f 1 m e te rnot above 4,50,000Above 4,50,000 but 60 meters 15 meters a dja ce nt ve ss el o r h a lf 1 m e te rnot above 7,50,000Above 7,50,000 but t he d ia m e t e r ( ' ) f t h e t w (' )90 meters 15 meters 1 m e te rnot above 38,00,000 adjacent v a sa a ls ,Above 38,00,000 120 meters 15 meters w h ic h e ve r i s g re a te r 1 m e te r

    Th e g ro u nd s ho u ld b e fa ir ly le ve le d . Th e lic e nce d a re a m en tio n ed sh ou ld b e c le ar ly m e a s ure d. Ap p ro ach ro a d fo r tru ck s h ou ld b e a va ila ble . No o p e n fire s u c h a s fu rn a c e s h o u ld b e n e xt to th e ya rd . E le ctr ic o r T ele ph on e c ab le s s h ou ld n ot p as s o ve r th e a llo ca te d a re a. W ate r o f 5 0 ,0 00 ltrs . Sh o uld b e a va ila ble fo r f ire f ig ht in g p um ps . Pow er re qu ire m en t o f m in im um 2 5 K W sh o u ld b e a va ila b le .

  • 8/6/2019 Technical Data - www.mahamulti.com

    5/25

    L P GAS: AN E XC E PTIONAL E NE RG YFor many years, LP Gas has played a valuable role in meeting theworld's energy needs. In the future, LP Gas has the opportunity toenhance this role because of its obvious benefits as an efficient andcleaner fuel aswell as its immediate contributions to delivering realgreenhouse gas emissions reductions.Global awareness about rising energy costs, the reliability ofenergy supplies, health and climate change are encouragingnations to make choices and LP Gas can be the solution in manyapplications and regions of the world. LP Gas istherefore a healthyfuel option compared to some traditional fuels used in both thedeveloping world, where negative health consequences caused byindoor air pollution is a grave problem, and inthe developed worldin congested, built-up cities. The World LP Gas Association(WLPGA) demonstrates these clear benefits of LP Gas, a cleanerand modern energy through its activities and interaction with itsstakeholders every dayLPGas unique properties allow itto be used everywhere:PORTABLELPGas can be transported, stored, and used virtually anywhere inthe world. Itdoes not require a fixed network and will not deteriorateovertime.C L E A NLP Gas is very clean burning and has lower greenhouse gasemissions than any other fossil fuel when measured on a total fuelcycle. Originating mainly from natural gas production, itis also non-toxic and wil l not contaminate soil oraquifers inthe event of a leak.ACCESS IBLELP Gas can be accessible to everyone everywhere today withoutmajor infrastructure investment Nothing needs to be invented andthere are enough reserves to last many decades.EFF IC IENTLP Gas is cost-effective, since a high proportion of its energycontent is converted into heat LP Gas can be up to five times moreefficient than traditional fuels, resulting in less energy wastage andbetter use of our planet's resources.CONVEN I ENTLPGas is a multi-purpose energy There are more than a thousandapplications, from cooking, heating, air conditioning andtransportation, to cigarette lighters and even the Olympic torch.LP Gas is a derivative of two large energy industries: natural gasprocessing and crude oil refining.When natural gas is drawn from the earth, it is a mixture of severalgases and liquids. Methane, which is sold by gas utilities as"natural gas" constitutes about 90 percent of this mixture. Of theremaining 10 percent, 5 percent is propane and 5 percent is othergases such as butane and ethane. Before natural gas can betransported or used, the LPGases (which are slightly heavier thanmethane, the major component of natural gas) are separated outDepending on the "wetness" of a producing gas field, gas liquidsgenerally contain 1%-3% of the unprocessed gas stream. Some LPGases are also trapped in crude oil. In order to stabilise the crudeoil for pipeline or tanker distribution, these "associated" or "natural

    ~TM

    Technical Datagases" are further processed into LP Gas. Worldwide, gasprocessing isa source of approximately60% of LPGas produced.Incrude oil refining the LPGases are the first products produced onthe way to making the heavier fuels such as diesel, jet fuel, fuel oil,and gasoline. Roughly 3% of a typical barrel of crude oil is refinedinto LP Gas although as much as 40% of a barrel could beconverted into LP Gas. Worldwide, crude oil refining is the sourcefor the other roughly 40% of LP Gas supplies although the ratiobetween gas processing and refining varies among regions.LPGas production from these sources is a natural derivative. Thatmeans production of LP Gas is assured since the primary motivefor gas processors and refiners is to produce fuels other than LPGas but first the LP Gases are produced. Although tied to theproduction of natural gas and crude oil, LPGas has its own distinctmarketing advantages and can perform nearly every fuel functionof the primary fuels from which itis derived.LPGas plays a valuable role in meeting the world's energy needs.Inthe future LPGas has the opportunity to enhance this role byalsohelping to combat climate change.The clean burning nature of LPGas makes itan ideal substitute forsolid fuels in domestic cooking and heating applications.Household solid fuel use, overwhelmingly concentrated indeveloping countries, accounts for up to 30% of black carbonemissions worldwide according to some statistics. Switching to LPGas could lower global greenhouse gas emissions as well as helpto diminish deforestation thus preserving the trees needed tomaintain a global climatic equilibrium and combat climate change.LPGas used in combination with renewable sources can improveenergy reliability while reducing the overall life-cycle costs. LPGasis portable, making it a perfect complement to distributedrenewable energy sources such as solar, wind and wave energy(and soon fuel cells), thereby reducing our reliance on centrallyproduced electricity.LP Gas produces lower greenhouse gas emissions compared toconventional energy supplies in every application it is used, fromstationary applications such as water heating, space heating,cooking and industrial boilers to transportation applications. Anyindustry can switch to clean-burning LP Gas as a means to meetgreenhouse gas targets.LPGas can claim to be ahead of its time, for its clean-burning, low-carbon advantage is available at once, so that even using today'stechnology, most industries can exceed Kyoto greenhouse gasreduction targets by switching to LP Gas. In most cases LP Gascan make major and immediate contributions to delivering realgreenhouse gasses emissions reductions.

  • 8/6/2019 Technical Data - www.mahamulti.com

    6/25

    PRESSURE BUILDING INFORMATION FOR CO 2The following information is based on liquid withdrawn from thetank being pressurised with saturated liquid at 285-295 psig. Foreverypound of liquid CO2 drawn, 0.0536 pounds of gas will need tobe put back intothetank tomaintain the tank pressure.

    7 00 Ib s. O f liqu id w ith dra wn 3 7.5 2 Ib s . Pre ss u re re qu ire d1 00 0 Ib s .O f liqu id w ith d ra wn 5 3 Ib s . Pre ss u re re qu ire d5 00 0 Ib s .O f liqu id w ith d ra wn 2 68 Ib s. Pre s s u re re qu ire dBTU p e r lb . o f p re s s u re b u ilt 1 2 0 BTU

    NOTE: If the customer isusing gas off the top ofthe tank, the pressure bui ldunit will have to deliver the same number of pounds of gas being used. Astraight 1to 1 ratio isrequired.

    ~TM

    Technical DataTRIM HEATER INFORMATION FOR CO 2BTUrequired to heat1Lb. Of CO2 gas at1degree =0.2040445Example: 500 Ibs of gas per hour heated at60 degrees 500 x 60x0.2040445 = 6121.33 BTUor 1.79kilowattsENGINEERING DATA FOR CO 2BTU per kilowatt : 3412BTU per pound of steam : 1000BTU per pound of water per degree : 1BTU required to vaporise 1 pound of CO2 : 120BTU required to vaporise 1 pound of water: 960Note: One pound of steam =one pound of water. Average heat required tovaporise one pound of CO2 to 70 degrees farenheit =135 BTUThe steam pressure does not affect these numbers. The steampressure affects the sizing of the steam train and the condensatereturn system. Lower pressure steam will require a larger steamtrain and condensate system.

    LOW TEMPERATURE PHYSICAL PROPERTIES OF GASESNormal Boiling Point Critical Point Triple Point Specif ic G asHeat .Latent (or Melting Point) (ep at 6 0 F . Dens i tyLiquid Heat 1 4.7 P SIA ) a t 6 0 0 FMolecular Temp. Density BTU1 Temp. Pressure Temp. Pressure = BTUIlb 14.7 PSIAName Formula Weight of Ib11f t .3 Ib-mole F PSIA F PSIA mo le F Ib Ijft 3

    Acetylene C2H2 26.04 -119.2t 38.7t 9180t 96.0 906 -114.6 17.4 10.4 0.0692Air ( 1 ) 28.97 -317.9 54.6 2556 6.86 0.0763Ammonia NH3 17.03 -28.1 42.6 10037 270.3 1639 -108.0 8.81x10-1 8.44 0.0454Argon Ar 39.94 -302.6 87.5 2804 -187.6 705 -308.9 9.99 4.90 0.1054Carbon Dioxide CO2 44.01 -109.3t 97.5t 10854t 87.9 1071 -69.9 75.1 8.78 0.1165Carbon Monoxide CO 28.01 -311.9 49.3 2597 220.4 508 -337.1 2.23 6.84 0.0738Carbonyl Sulphide COS 60.07 -58.3 73.0 7961 221.0 896 (-271.8) 9.74 0.1550Chlorine CI2 70.91 -29.3 97.4 8780 291.2 1118 -149.8 2.02x10-1 8.05 0.1888Deuterium O2 4.03 -417.3 10.7 540 -390.8 239 -426.0 2.48 6.84 0.0106Ethane C2HS 30.07 -127.6 33.8 6315 90.1 708 -297.9 1.20x10-4 12.37 0.0797Ethylene C2H4 28.05 -154.8 35.2 5826 49.1 735 -272.5 1.70x10-2 10.2 0.0742Fluorine F2 38.00 -306.6 93.8 2815 -200.2 808 (-363.3) 7.35 0.1010Freon-12 CCI2F2 120.92 -21.6 92.9 8592 233.6 597 (-252.4) 17.34 0.324Freon-13 CCIF3 104.47 -114.6 95.0 6670 83.9 561 (-294.0) 15.75 0.278Freon-14 CF4 88.01 -198.4 122.4 5160 -49.9 542 -299.2 1.70x10-2 14.32 0.232Freon-22 CHCIF2 86.48 -41.4 88.2 8704 204.8 716 (-256.0) 13.11 0.233Helium He 4.00 -452.1 7.80 396 -450.2 33 -455.8* 7.35x10-11 4.89 0.0105Hydroch 10 ric Acid HCI 36.46 -120.9 74.3 6948 124.5 1199 (-173.7) 6.77 0.0968Hydrogen H2 2.02 -423.0 4.43 389 -399.8 188 -434.5 1.044 6.76 0.0053Hydrogen Sulphide+l.S 34.08 -75.4 60.0 8033 212.7 1307 -122.0 3.36 8.05 0.0908Krypton Kr 83.70 -244.0 135.0 3884 -82.8 796 -250.9 10.62 4.89 0.2190Methane CH4 16.04 -258.6 26.5 3519 -116.6 670 -296.5 1.69 8.44 0.0424Methyl Chloride CH3CI 50.49 -11.5 62.2 9293 289.6 967 -144.0 1.27 9.79 0.1352Neon Ne 20.18 -410.7 74.9 748 -379.7 395 -415.4 6.27 4.89 0.0532Nitric Oxide NO 30.01 -241.0 79.3 5953 -137.2 945 -263.6 3.16 6.96 0.0791Nitrogen N2 28.02 -320.5 50.4 2405 -232.6 491 -345.9 1.82 6.85 0.0739Nitrogen Trifluoride NF2 71.01 -199.2 96.0 4984 -38.7 657 (-343.3) 1.77x10_50.1901Nitrous Oxide Np 44.02 -127.2 76.8 7110 97.7 1054 -131.6 12.74 9.02 0.1168Oxygen 2 32.00 -297.3 71.2 2932 -181.1 737 -361.8 2.1 Ox10-2 6.89 0.0844Ozone 03 48.00 -169.4 101.8 6174 10.2 791 (-314.5) - 0.1262Propane C3HS 44.09 -43.7 36.2 8076 206.2 617 -305.8 8.39x10-11 17.08 0.1175Propylene C3HS 42.08 -53.8 37.5 7925 197.4 667 -301.0 2.44x10-s 15.01 0.1089Sulphur Dioxide S02 64.06 13.9 89.3 10728 315.0 1142 -103.8 2.43x15-1 9.42 0.1715Xenon Xe 131.30 -163.0 191.0 5436 61.9 847 -169.2 11.82 4.89 0.3451

    (1) Approximate Composition of Dry Air (in Mole Percent)78.09 N2, 20.95 02, 0.93 A, 0.03 CO2t Denotes sublimation and solid density *(Lambda) Point

  • 8/6/2019 Technical Data - www.mahamulti.com

    7/25

    ~TM

    Technical DataSPECIFICATIONS OF GASES

    Molecular Critical Critical Boilling Heatof Mealting Vapor Heatof Liquid Gas Specific Specific SpecificProduct Formula weight Temp Critical Density point Vaporization p..int P r e s s u r e VaporizationDensity Density Volume Gravi ty Heat,CpP r o s s u r e atBP (btullb(Ibllbmol) (F) (Ibllr') 1atm( F) (Btu/lb) ( F) (psig) (Btunb) (Ib/ft') (lbllC) (ft4/Ib) (Air=1.0) mol "F)

    Acetyience 26.04 95.97 906.0 14.39 -118.4 352.5 -113.35 640.0 126.2 24.9 0.068 14.76 0.905 10.60AirAmmoniaArgonArsineBoron TrichlorideBoron TrifluorideBromine TrifluorideButaneCarbon DioxideCarbon MonoxideChlorineChlorine TrifluorideDeuteriumDiboraneDichlorosilaneDisttaneEthaneEthyl chlorideEthyleneFluorineHalocarbon-23Halocarbon-116HeliumHydrogenHydrogen ChlorideHydrogen FluorideHydrogen SulfideIodine PentafluorideKryptonMethaneMethyl ChlorideNeonNitrogenNitrogen TrifluorideNitrous OxideOctafluoropaneOxygenPhosphinePhosphorus PentafluoridePropanePropyleneSilaneSilicon TetrachorideSilicon TetrafluorideSulfur DioxideSulfur HexaflurideSulfur TetrafluorideTetrafluoromethaneTungsten HexafluorideXenon Xe 131.30 61.88 847.08 -162.6 41.4 -169.37 2.93 4.558 5.02

  • 8/6/2019 Technical Data - www.mahamulti.com

    8/25

    ~TM

    Technical DataCARBON DIOXIDE-pound 1.0 0.0005 0.4536 8.741 0.2294 0.11806 0.4469 0.0102461 ton1kilogram 2.205 0.0011023 1.0 19.253 0.5058 0.2603 0.9860 0.2261 sef gas1nm3 of gas 4.359 0.00218 1.9772 38.04 1.0 0.5146 1.948 0.044681 gal lon l iquid1 litre liquid1 eu.ft solid

    Note: Scf (Standard Cubic Feet) of gas measured at one atmosphere and lOaF. Nm3 (Normal Cubic Metre) of gas measured at one atmosphere and zerodegrees centigrade. Liquid ismeasured at21.42 atmosphere and 1.lOF.Solid measured at -109.25F. All values rounded ofto nearest significant numbers.

    W EIGHT AND VOLUME EQUIVALENT TABLES FOR INDUSTRIAL GASESWeight

    OXYGENVolume of Liquid t Volume of Gas' Weight HELIUMVolume of Liquid t Volume of Gas'

    Pound Kilo Cu. Ft. Litres Imp. Cu. Ft. Cubic Pounds Kilo Cu. Ft. Litres Imp. Cu. Ft. Cubicgrams Gallons Metres grams Gallons Metres

    1.0000 0.45400.01400 0.397 0.08743 11.850 0.3356 1.0000 0.4540 0.12810 3.625 0.79730 94.870 2.68702.2050 1.0000 0.03090 0.873 0.19230 26.060 0.7380 2.2050 1.0000 0.28300 8.015 1.77200 192.100 5.440071.140032.30001.0000028.320 6.23200 842.900 23.8700 7.7910 3.5320 1.00000 28.320 6.23200 739.200 20.93002.5120 1.14000.03530 1.000 0.22010 29.770 0.8431 0.2751 0.1251 0.03530 1.000 0.22010 26.100 0.739211.4200 5.18500.16050 4.544 1.00000 135.300 3.8320 1.2510 0.5680 0.16050 4.544 1.00000 118.700 3.36908.4400 3.8320 0.11860 3.359 0.73900 100.000 2.8320 1.0540 0.4746 0.13430 3.802 0.83700 100.000 2.83202.9800 1.35200.04188 1.186 0.26090 35.310 1.0000 0.3722 0.1693 0.04790 1.359 0.29910 35.310 1.0000

    WeightNITROGEN

    Volume of Liquid t Volume of Gas' WeightARGON

    Volume of Liquid t Volume of Gas'Pound Kilo Cu. Ft. Litres Imp. Cu. Ft. Cubic Pounds Kilo Cu. Ft. Litres Imp. Cu. Ft. Cubic

    grams Gallons Metres grams Gallons Metres1.0000 0.45400.01980 0.561 0.12320 13.540 0.3834 1.0000 0.4540 0.01140 0.324 0.06890 9.491 0.26862.2050 1.0000 0.04370 1.238 0.27230 29.850 0.8454 2.2050 1.0000 0.02520 0.713 0.15180 20.900 0.592450.4500 22.9100 1.0000028.320 6.23200 683.000 19.3400 87.0900 39.5400 1.00000 28.320 6.23200 826.500 23.46001.7820 0.8090 0.03530 1.000 0.22010 24.120 0.6825 3.0760 1.3970 0.03530 1.000 0.22010 29.190 0.82678.0990 3.6770 0.16050 4.544 1.00000 109.700 3.0940 13.9800 6.3470 0.16050 4.544 1.00000 132.700 3.75807.3900 3.3540 0.14660 4.143 0.91120 100.000 2.8320 10.5400 4.7460 0.12060 3.413 0.75200 100.000 2.83202.6080 1.1830 0.05181 1.467 0.32170 35.310 1.0000 3.7220 1.6900 0.04240 1.242 0.27360 35.310 1.0000

    WeightAIR

    Volume of Liquid t Volume of Gas' WeightHYDROGEN

    Volume of Liquid t Volume of Gas'Pound Kilo Cu. Ft. Litres Imp. Cu. Ft. Cubic Pounds Kilo Cu. Ft. Litres Imp. Cu. Ft. Cubicgrams Gallons Metres grams Gallons Metres

    1.0000 0.45400.01830 0.518 0.11400 13.100 0.3718 1.0000 0.4540 0.22610 6.400 1.40900 188.400 5.34102.2050 1.0000 0.04040 1.144 0.25180 28.880 0.8178 2.2050 1.0000 0.49820 14.107 3.10900 416.200 11.780054.560024.2100 1.0000028.320 6.23200 714.600 20.2400 4.4320 2.0430 1.00000 28.320 6.23200 834.500 23.61001.9270 0.8749 0.03530 1.000 0.22010 25.240 0.7115 0.1565 0.0711 0.03530 1.000 0.22010 29.480 0.83508.7600 3.9770 0.16050 4.544 1.00000 114.700 3.2480 0.7116 0.3230 0.16050 4.544 1.00000 134.000 3.79207.6300 3.4640 0.13960 3.952 0.86980 100.000 2.8320 0.5308 0.2411 0.13850 3.921 0.86300 100.000 2.83202.6940 1.2230 0.04931 1.396 0.30690 35.310 1.0000 0.1874 0.0852 0.04240 1.201 0.26440 35.310 1.0000+Liqu id volumes are calcu la ted for normal boi li ng point a t a tmospher ic pressure *Gas volumes are calcu la ted for s tandard condi ti ons of GooF and pres su re o f 14.7 psi

  • 8/6/2019 Technical Data - www.mahamulti.com

    9/25

    M ETR IC M EAS URE SLENGTH1 millimetre (mm) ~0.0394 in1 centimetre (cm) ~ 10mm ~0.3937 in1metre (m) ~ 100 cm ~ 1.0936 yd1 kilometre (km) ~ 1,000 m ~ 0.6214 mileAREA1 sq cm (ern") ~ 100 mm' ~ 0.1550 in'1 sq metre (m') ~ 10,000 ern" ~ 1.1960 yd "1 hectare (ha) ~ 10,000 rn" ~ 2.4 711 acres1sq km (km') ~ 100 hectares ~ 0.3861 mile'V olu m e / Ca pa city1 cu cm (ern') ~ 0.0610 in'1 cu decimetre (drr.') ~ 1,000 ern" ~ 0.0353 ft'1 cu metre (m') ~ 1,00 drn' ~ 1.3080 yd "1 l it re ( I) ~ 1 d rn" ~ 1.76 pt

    ~2.113USpt1 hectolitre (hi) ~ 100 I ~ 22 gal~ 26 418 US galMASS (\ 1'e ig h t)1 milligram (mg) ~ 0.0154 grain1 gram (g) ~ 1,000 mg ~ 0.0353 oz1 metric carat ~ 0.2g ~ 3.0865 grains1 kilogram (kg) ~ 1,000 g ~ 2.2046 Ib1 tonne (t) ~ 1,000 kg ~ 0.9842 ton~ 1.1023 short ton

    IMP E RIAL AND U S ME ASU RE SLENGTH1 inch ( in) ~ 2.54 cm1 foot ( ft ) ~ 12 in ~ 0.3048m1 yard (yd) ~3ft ~ 0.9144 m1 furlong ~ 201 m1 mile ~ 1,760 yd ~ 1.6093 km1 int nautical mile ~ 2,0254 yd ~ 1 852 kmAREA1 sq inch (in') ~ 6.4516 ern"1 sq foot (ft') ~144in' ~ 0.0929 rn"1 sq yard (yd") ~ 9ft' ~ 0.8361 rn"1 acre ~ 4,840 yd " ~ 4046.9 rn"1 sq mile (mile') ~ 640 acres ~ 2.590 krn"V OLU ME / C AP AC IT Y1 cu inch (in') ~ 16.387 ern"1 cu foot (ft') ~ 1,728 in' ~ 0.0283 m'1 cu yard (yd") ~ 27 ft3 ~ 0.7647 rn"1 f luid ounce (fl oz) ~ 28.413 ml1 pint (pt ) ~ 20 fl oz ~ 0.5683 Itr1 gallon (gal) ~ 8 pt ~ 4.546 Itr1 f luid ounce (fl oz) ~ 2.957 cl1 l iqu id pint (pt) ~ 16 fl oz ~ 0.4732 I1 l iqu id quart (qt ) ~ 2 pt ~ 0.946 I1 gallon (gal) ~ 4 qt ~ 3.7853 I1 dry p int ~ 0.5506 I1 bushel (bu) ~ 64 dry pt ~ 35.238 I

    ~TM

    Technical DataIMP E RIAL AND U S ME ASU RE SM AS S (W e ig h t)1 ounce (oz)1 pound (Ib)1 stone1 hundred weight (cwt)1 ton

    ~ 437.5 grains~ 16 oz~ 141b~ 1121b~ 20 cwt

    ~ 28.35 g~ 0.4536 kg~ 6.3503 kg~ 50.802 kg~ 1 0 16t

    FORCE11bf ~ 4.45 Newton1tonf ~ 9.96 Kilonewton

    ~ 9.89 kilopascal~ 101 kilopascal~ 15.4 mega pascal~ 33.9 mega pascal

    ME TR IC C O N V E RS IO N10 ccnvertto me t r ic , m l l~ i p lyby1 l1 e fac 1 i :l rs hOMl , 1 0 coove r ll ll romme l J ic , d ivi d e b y 1I1elac1i: l r.

    1,60930.91440.304825.4254AREA

    2.59258.9994046.860.40470.83610.0929929.03645.166.4516

    VOLUME0.76460.028328.316816.3871

    0.5680.14228.413128.413.7851.1370.5680.14228.413128.41

    Pound:force Ibf'Ion.torce tonfPRESSURE1psig1 atmosphere1 ton/sq.inch1 inch of Hg

    LENGTHmiles: kilometresyards: metresfeet: metresinches: millimetresinches' centimetres

    square miles: square kilometressquare miles: hectaresacres: square metresacres: hectaressquare yards: square metressquare feet: square metressquare feet: square centimetressquare inches: square millimetressquare inches: square centimetres

    cubic yards: cubic metrescubic feet: cubic metrescubic feet: cubic decimetrescubic inches: cubic centimetresCAPACITYbushels: cubic metresgills: litresfluid ounces: cubic centimetresfluid ounces: millimetresUS gallons: l itresquarts: litrespints: litresgills: litresfluid ounces: cubic centimetresfluid ounces: millilitres

  • 8/6/2019 Technical Data - www.mahamulti.com

    10/25

    METR IC CONVERSIONT o c o n ve rt to m 8 lr lc , m u ~ lp ly ~ !h e I8 c to r ShOWfl , To OO!1 l J S r i fr om m e tr ic , d M de ~ !h e f a c t o r .VELOCITYmiles per hour: k ilometres per hourfeet per second: metres per secondfeet per minute: metres per secondfeet per minute: metres per minuteinches per second: millimetresper secondinches per minute: mill imetres per secondInches per minute' centimetres per minute

    1.60930.30480.00510.30485.40.4233254

    IMASStons: kilogrammestons: tonneshundred weights: kilogrammescentals: kilogrammesquarters: kilogrammesstones: kilogrammespounds: kilogrammesounces: grammes

    1016.051.016050.802345.359212.70066.35030.453628.3495

    ENERGY & POWER1 BTU1 Therm1 kilowatt1 Hp

    ~ 1.06 kilojoules~ 106 meqajoules~ 3.6 meqajoules~ 0 746 ki lowat tMASS PER UNIT AREAtons per square mi le: k ilogrammes per hectarepounds per square foot: ki logrammes per square metreounces per square foot : grammes per square metreFuel consumption gallons per mile: l itres per kilometremiles per gallon: kilometres per litre

    3.9234.882305.1522.8250.354US MEASURES1 US dry pint1 US l iquid pint1 US gallon1 short cwt1 short ton

    ~ 33.60 in3~ 0.8327 imp pt~ 0.8327 imp gal~ 100 Ib~ 2,000 Ib

    ~ 0.5506 I~ 0.4732 I~ 3.785 I~ 45.359 kg~ 907 19 kgDENSITYtons per cubic yard: kilogrammes per cubic metre 1328.94pounds per cubic foot: kilogrammes per cubic metre 16.0185pounds per cubic inch: grammes per cubic centimetre 27.6799L~J)er gallon: kilogrammes RC'Ce"Jr..ll'."itrse ..:0"-'."-09'?:9~8"_ __I

    W EIG HTS AND M EASU RESUK (imperiahunits"LENGTH12 inches 1 foot3 feet 1 yard22 yards 1 chain10 chains 1 furlong5,280 feet 1 mile1,760 yards 1 mile8 furlongs 1 mileNautical6 feet 1 fathom100 fathoms 1 cable length6,080 feet 1 nautical mileSPEED15 mph 22 feet per second1 knot 1 nautical m hAREA144 sq. inches 1 sq. foot9 sq. feet 1 sq. yard4.840 sq. yards 1 acre640 acres 1 sq mileVOLUME1.728 cu. inches 1 cu. foot27 cu. feet 1 cu. yard5.8 cu. feet 1 bulk barrel shipping1 register ton 100 cubic feet

    ~TM

    Technical DataW EIG HTS AND M EASU RESUK (imperialjunits"CAPACITY8 fluid drachms5 fluid ounces4 gills2 pints4 quarts2 gallons4 packs8 bushels36 gallons

    1 fluid ounce1 gill1 pint1 quart1 gallon1 pack1 bushel1 quarter1 bulk barrel

    1 ounce1 ounce1 pound1 stone1 quarter1 hundred weightton

    437 '1 2 grains16 drams16 ounces14 pounds28 pounds4 quarters2,240 pounds20 hundredweights 1 ton*A g radual change to the metr ic s ystem is t a king p la ce i n t he Un ited Ki ngdom

    W EIG HTS AND M EASU RESMetnc UnitsLENGTH10 angstrom1.000 nanometres1.000 micro metres10 millimetres10 centimetres1.000 millimetres100 centimetres10 decimetres10 metres10 dekametres10 hectometres1.000 kilometresNautical1 852 metres

    1 nanometre1 micro metre1 millimetre1 centimetre1 decimetre1 metre1 metre1 metre1 dekametre1 hectometre1 kilometre1 megametre1 international nautical mile

    100 sq. millimetres100 sq. centimetres100 sq. decimetres100 sq. metres10,000 sq. metres100 acres100 hectares

    1 sq. centimetre1 sq. decimetre1 sq. metre1 are1 hectare1 hectare1 sq. kilometreVOLUME1.000 cu. millimetres1.000 cu. centimetres1.000 cu. decimetres1.000 cu. metres1 000 cu dekametres

    1 cu. centimetre1 cu. decimetre1 cu. metre1 cu. dekametre1 cu hectometreCAPACITY10 millilitres10 centilitres10 decilitres1 litre10 litres10 dekalitres10 hectolitres1.000 litres1 kilolitre

    1 centilitre1 decilitre1 litre1 cu. decimetre1 dekalitre1 hectolitre1 kilolitre1 kilolitre1 cu. metreW EIG HT (M as s)1.000 milligrams10 grams10 dekagrams10 hectograms100 kilograms1000 kilograms

    1 gram1 dekagram1 hectogram1 kilogram1 quintal1 tonne

  • 8/6/2019 Technical Data - www.mahamulti.com

    11/25

    1 BTU 0.252 kcal PSI Kg/cm2 Atmo- Bar mmWC Pascal Pieze1 BTU 107.7 kgm sphere1 BTU/sec. 1.055 kW1 BTU/lb 0.5556 kcal/kg.1 BTU/cu It 8.900 kcal/m'1 BTU/sq.lt. h 2.71 kcal / m'h1 BTU/sq.lt.h of 4.886 kcal/m'h C K g l c m 2 14 .223 0 .9678 0 .981 10000 98087 98 .081 BTU/It h of 1.49 kcal/m h C1 BTU in/sq. It. hr. of 0.124 kcal/m h C1 BTU/lb of 1.001 kcal/kg C1 BTUcu.lt of 16.2 kcal/rn' C1 kcal 3.968 BTU1 kgm 0.00930 BTU B a r 14 .5 1 .019 0 .986 10200 100000 1001kW 0.948 BTU/sec.1 kcal/kg 1.80 BTU/lb1 kcal/rn' 0.112 BTU/cu.lt1 kcal/rn" h 0.369 BTU/sq.lt.h.1 kcal/rn 'h C 0.205 BTU/sq It. h of Pascal 14 5x 1 06 10 .1 9x10 6 9 .869x106 105 0 .1019 0 .0011 kcal/m h C 0.67 BTU/it h of1 kcalm/h C m2 8.07 BTU in/sq It 9 of1 kcal/kg C 0.999 BTU/lb of1 kcal/m3oC 0.0624 BTU/cu It of

    COMM ON UNITS OF HEAT

    ~TM

    Technical DataCONVERS ION OF PRESSURE UNIT S

    PRESSURE CONVERS ION TABLETo Mbar psi In H2O In Hg MmHg Pa(Nm-2 ) AtmFrom

    Mbar 1.00 0.015 0.40 0.03 0.75 100 9.87 x 10-4psi 68.93 1.00 27.66 2.04 51.70 6892.86 0.07in H2O 2.49 0.036 1.00 0.074 1.87 249.38 2.46 x 10-3in Hg 33.78 0.49 13.59 1.00 25.40 3386.53 0.03mm Hg 1.33 0.019 0.54 0.39 1.00 133.32 1.32 x 10-3Pa(Nm-2 ) 1 x 10-2 1.45 x 10-4 4.01 X 10-3 2.95 X 10-4 7.5x 10-3 1.00 9.87 X 10-6atm 1013.25 14.70 406.64 29.92 760 10132.5 1.00METHOD TESTING CHART

    Soap Bubbles Air Pressure Air Flow Tracer Gas Pressurised WaterDoes method locate YES NO NO YES YESleaks?Is method NO YES YES YES NOquantitative?Is test cycle fast? NO YES YES YES YESIs the result operator YES NO NO NO YESdependant?Any size restrict ion on NO YES NO NO NOtest component?Does test affect YES NO NO NO YESsample?Can method be NO YES YES YES NOautomated?Is statistical analysis NO YES YES YES NOpossible?

  • 8/6/2019 Technical Data - www.mahamulti.com

    12/25

    CHARCTERISTICS OF FUEL OILSFuel OilsPROPERTIES

    Density (Approx., kg/ l it at 15oC)Flash Poi nt, (0c) 66 9 3 66Pour Point ( 0C )G.C.V. (kcal.kg) 9 ,5 0 0 1 0 ,3 0 0 9 ,5 0 0Sediment, % WI. Max.Sulphur Total, %WI. Max. 4 .0 0 1 .0 0 1 .8 0Water Content, % Vol Max.Ash, % WI. Max 0 .1 0 0 .1 0 0 .0 2

    TYPICAL COMPOSITIONS OF FUELP e rc en ta g e C omb u s ti o n NCV

    A S H K C A U K GFUELS c s N

    Husk 36.14 3.70 0.08 0.46 29.34 8.92 19.40 3100

    L.S.H.S. 86.70 11.80 1.00 0.50 10300

    N.GAS$NOTE1. The above compositions can very widely depending on the mine,location, source etc.2. Sol id fuels in air dried condition.# L.PG. is assumed to be composed of (by volume) 10-40% of Propaneand 70-60% of Butane. Density - 2.32 KG/NM3$ Natural Gas is assumed to be composed of (by volume) 76% ofMethane, 10% of Ethane, 2% of Propane, 6% of C02and 4% of N2Denisity - 0.83kg/NM3

    66.00 23.00 1.50 6300

    CONVERSION OF ENERGY UNITSkg KW/Hou r HP/Hou rcal Joule

    kca l 427 4179 0 .00 1161 0 .00 1556

    ~TM

    Technical DataCONVERSION OF TEMPERATURES

    0 C _ CF-32)5- 9The number inthe centre of the 3 columns can be converted from Finto by reading to the left and from C into F by reading to the rightFor a difference of temperature, use the following formulae directly,without making use of thetable.

    L 1 F = L 1 0cJL5-9 0 -1 3 0 -2 02 -37 .8 -3 6 -3 2 .8 - 2 1 .11 -6 21 .2-8 7 .2 -1 2 5 -1 93 -37 .2 -3 5 -3 1 -2 0 .5 6 -5 23- 8 4 .4 -1 2 0 -1 84-8 1 .7 -1 1 5 -1 75-7 8 .9 -1 1 0 -1 66- 7 6 .1 -1 0 5 -1 57- 7 3 .3 -1 0 0 -1 48- 7 0 .6 95 -1 39- 6 7 .8 90 -1 30-6 5 85 -1 21- 6 2 .2 80 -1 12

    - 36 .7 - 34- 36 .1 - 33- 35 .6 - 32- 35 - 3 1- 34 .4 - 30- 33 .9 - 29- 33 .3 - 28- 32 .8 - 27- 32 .2 - 26

    - 2 9 .2 - 2 0 - 4- 27 .4 - 1 9 .44 - 3- 25 .6 - 1 8 .89 - 2- 23 .8 - 1 8 .33 -1-2 2 -1 7 .7 8 0- 2 0.2 - 1 7 .22-1 8 .4 - 16 .67 2-1 6 .6 -1 6 .1 1 3-1 4 .8 - 1 5 .56 4

    24 .826 .628 .430 .23 233 .835 .637 .439 .24 142 .844 .646 .448 .2

    - 5 9 .4- 5 6 .7- 5 3 .9- 5 1 .1- 4 8 .3

    75 -1 0370 9465 8560 7655 67

    -31 .7 -2 5 -1 3 -1 5-31 .1 -2 4 -11 .2 -1 4 .4 4- 30 .6 - 2 3 - 9 .4 - 13 .89-30 -2 2 - 7 .6 -1 3 .3 3- 29 .4 - 2 1 - 5 .8 - 12 .78

    56789

    - 4 5 .6 50 58 - 28 .9 - 2 0 - 4 - 1 2 .22 10 50-4 5 49 -5 6 .2 -28 .3 -1 9 -2 .2 -1 1 .6 7 11 51 .8-4 4 .4 48 - 5 4 .4 -27 .8 -1 8 - 0 .4 -1 1 .1 1 12 53 .6- 4 3 .9- 4 3 .3- 4 2 .8- 4 2 .2- 4 1 .7- 4 1 .1- 4 0 .6- 4 0- 3 9 .4- 3 8 .9

    47 - 52 .6 - 27 .2 -1 746 - 50 .8 - 26 .7 -1 645 - 49 - 26 .1 - 1 544 - 47 .2 - 25 .56 -1 443 - 4 5 .4 - 25 - 1 342 - 43 .6 - 24 .44 -1 241 - 41 .8 - 23 .8 9 - 1 140 - 40 - 23 .3 3 - 1039 - 38 .2 - 22 .7 8 - 938 - 36 .4 - 22 .2 2 - 8

    1 .4 - 10 .56 13 55 .43 .2 -1 0 14 57 .25 9 .4 4 15 596 .8 8 .8 9 16 60 .88 .6 8 .3 3 17 62 .6

    10 .4 7 .7 8 18 64 .41 2 .2 7 .2 2 19 66 .21 4 6 .6 7 20 6815 .8 6 .1 1 21 69 .81 7 .6 5 .5 6 22 71 .61 9 .4 5 23 73 .43 8 .3 37 - 34 .6 - 21 .6 7 - 7

    k g I s e c k c a l/s e c K ilo w a ttCONVERSION OF POWER UNITS

    ChP

    kca l / s ec 427 5.67.17 5.59

    HP 0.178 1.014.7466

  • 8/6/2019 Technical Data - www.mahamulti.com

    13/25

    860 x Efficiency x kWLagged container 0.9 to 0.95Unlagged container 0.8 to 0.85

    Example. 22 gallons, 91Y'Frise, 0.8 Efficiency22 x 10 x90kWh = 3413xO.8 =7.26

    Example 100 litres, 50oe . rise, 0.8 EfficiencykWh = 100x50 =7.26860 xO.8CON VERS IO N F AC TO RS1 Calorie 4.186 Joules1 Btu 252 Calories = 1055 Joules1 Btu 778 ft Ibf.1 kWh 3.6 Megajoules1 kWh = 3415 Btu 2.6552 x 106 f t Ibf.1 Joule M 0.73ft Ibf.

    lEC HNICAL D ATA1 Btu1 kilowat t hour1 kilowat t hourkWh

    Gals/hour

    Time in hours1 ki logram calor ie1 litre1 kilowat t hourkWh

    Litres/hr.

    Time in hoursApproximate efficiencies:

    1 Radian 1800

    --n-W ATER DATA1 gallon1 gallon of fresh water1 cubic foot1 galon1 litre1 litre of fresh water1 ern- of fresh water1 ft head of water1 lbf/in"

    W ATE R-H EA TIN G D ATA

    heat required to raise 1 Ib of water 10F3413 Btu860 kcal/hr

    Gals. X Temp. Rise 0F3413 x Efficiency

    Gals. X Temp. Rise 0F3413 x Efficiency x Time in hours

    kW x 3413 x Ef ficiencyTemperature Rise in 0F x 10Gals. x 10 x Temp. Rise 0F3413 x Efficiency x kW

    heat required to raise 1 litre of water 10C1000 em-860 kilogram calorie/hr

    Litres x Temp. Rise C860 x Efficiency x Time in hours

    kW x 860 x Eff ic iencyTemperature Rise in CLitres x Temp. Rise C

    , Or 2n radians = 1 revo lut ion277 cubic inches10lb6.231b4.54litres0.22 gallons1kg1 g0.433 Ibf/in2 = 2985 N/m227.71 inches head of water

    Water expands approximately 4 per cent when heated from cold to boiling.VOL UME H EA T R EQ UIR EMEN Trn'x Specif ic heat x difference in temperature = mass x cp x Dt = kwhkwh x 860 = kcal /hr.

    LPG will ignite at 2% air, NG will ignite at 15% airFlow calculation for vapour

    Q= 1 1 4 (a2>VdPx1.7 (sp. gr. of LPG)2

    Q = m' / hr = volumea = area = ~ = 785 x dia' in cm4 .dP = d iff er en c e in p re s su re kg/em'Normal flow 1" pipe at 1 kg/cm' = 300 Kg

    2" pipe at 1 kg/cm' = 1200 Kg

    ~TM

    Technical DataCO NVERSIO N TABLES

    L in e a r A r e aIn c h e s C e n t im e t r e s S q . I n c h e s S q . C e n t im e t r e s

    .3 9 3 7 0 0 1 2 .5 4 0 0 0 .1 5 5 0 0 1 6 .4 5 1 6 0

    .7 8 7 4 0 2 2 5 .0 8 0 0 0 .3 1 0 0 0 2 1 2 .9 0 3 2 01 . 1 8 1 1 0 2 3 7 .6 2 0 0 0 .4 6 5 0 0 3 1 9 . 3 5 4 8 01 .5 7 4 8 0 3 4 1 0 .1 6 0 0 0 .6 2 0 0 0 4 2 5 .8 0 6 4 01 . 9 6 8 5 0 4 5 1 2 .7 0 0 0 0 .7 7 5 0 0 5 32 . 258002 . 362205 6 1 5 .2 4 0 0 0 .9 3 0 0 0 6 38 . 709602 .7 5 5 9 0 6 7 1 7 .7 8 0 0 0 1 .0 8 5 0 0 7 4 5 .1 6 1 2 03 . 149606 8 2 0 .3 2 0 0 0 1 .2 4 0 0 0 8 51 . 612803 . 543307 9 2 2 .8 6 0 0 0 1 .3 9 5 0 0 9 58 . 06440

    Y a r d s M e t r e s S q . F e e t S q . M e t r e s1 .0 9 3 6 1 3 1 .9 1 4 4 0 1 0 .7 6 3 9 1 1 .0 9 2 9 02 .1 8 7 2 2 6 2 1 .8 2 8 8 0 2 1 .5 2 7 8 2 2 .1 8 5 8 03 . 280839 3 2 .7 4 3 2 0 3 2 .2 9 1 7 3 3 . 278704 .3 7 4 4 5 2 4 3 .6 5 7 6 0 4 3 .0 5 5 6 4 4 .3 7 1 6 05 . 468065 5 4 .5 7 2 0 0 5 3 .8 1 9 5 5 5 . 464506 . 561678 6 5 .4 8 6 4 0 6 4 .5 8 3 4 6 6 . 557407 .6 5 5 2 9 1 7 6 .4 0 0 8 0 7 5 .3 4 7 3 7 7 .6 5 0 3 08 . 748904 8 7 .3 1 5 2 0 8 6 .1 1 1 2 8 8 . 743209 8 4 2 5 1 7 9 8 2 2 9 6 0 9 6 8 7 5 1 9 9 8 3 6 1 0

    M ile s K i l o m e t r e s S q . Y a r d s S q . M e t r e s.6 2 1 3 7 1 1 1 .6 0 9 3 4 1 .1 9 5 9 9 1 .8 3 6 1 3

    1 .2 4 2 7 4 2 2 3 .2 1 8 6 9 2 .3 9 1 9 8 2 1 .6 7 2 2 61 . 8 6 4 1 1 3 3 4 .8 2 8 0 3 3 .5 8 7 9 7 3 2 . 5 0 8 3 92 .4 8 5 4 8 4 4 6 .4 3 7 3 8 4 .7 8 3 9 6 4 3 .3 4 4 5 23 . 106855 5 8 .0 4 6 7 2 5 .9 7 9 9 5 5 4 . 1 8 0 6 53 . 728226 6 9 .6 5 6 0 6 7 .1 7 5 9 4 6 5 . 0 1 6 7 84 .3 4 9 5 9 7 7 1 1 .2 6 5 4 1 8 .3 7 1 9 3 7 5 .8 5 2 9 14 . 970968 8 1 2 .8 7 4 7 5 9 .5 6 7 9 2 8 6 . 6 8 9 0 45 . 592339 9 1 4 .4 8 4 1 0 1 0 .7 6 3 9 1 9 7 . 5 2 5 1 7P o w e rH o r s e p o w e r K i lo w a t t s A c r e s H e c t a r e s

    1 .3 4 1 0 2 2 1 .7 4 5 7 2 .4 7 1 0 5 1 .4 0 4 6 92 .6 8 2 0 4 4 2 1 .4 9 1 4 4 .9 4 2 1 0 2 .8 0 9 3 84 . 023066 3 2 .2 3 7 1 7 .4 1 3 1 5 3 1 . 214075 .3 6 4 0 8 8 4 2 .9 8 2 8 9 .8 8 4 2 0 4 1 .6 1 8 7 66 . 7 0 5 1 1 0 5 3 .7 2 8 5 1 2 .3 5 5 2 5 5 2 . 0 2 3 4 58 . 046132 6 4 .4 7 4 2 1 4 .8 2 6 3 0 6 2 . 4 2 8 1 49 .3 8 7 1 5 4 7 5 .2 1 9 9 1 7 .2 9 7 3 5 7 2 .8 3 2 8 3

    1 0 . 7 2 8 1 7 6 8 5 .9 6 5 6 1 9 .7 6 8 4 0 8 3 . 2 3 7 5 21 2 . 0 6 9 1 9 8 9 6 .7 1 1 3 2 2 .2 3 9 4 5 9 3 . 6 4 2 2 1

    METRIC MULT IP LE S AND SUBMU LT IP LE SP r e f ix n a m e P r e f ix F a c to r b y w h ic h th e D e s c r ip t io n

    s y m bo l u n i t s m ult i p l ie dp i c o p 0 0 0 0 0 0 0 0 0 0 0 0 1 o n e U K b il l i o n th * U S t r i l l i o n thn a n o n 0 0 0 0 0 0 0 0 0 1 o n e U K m i l l ia rd th , U S b il l i o n t hm i c r o u 0 0 0 0 0 0 1 o n e m i ll io n thm i l l i m 0 0 0 1 o n e t h o us a n dt hc e n t i c 0 0 1 o n e h u n dr ed thd e c i d 0 1 o n e t en thd e c a ( o r d e k a ) d a 1 0 te nh e c t o h 1 0 0 o n e h u nd re dk i l o k 1 0 0 0 o n e t h o u sa n dm y r ia m y 1 0 0 0 0 t e n t h o u sa n dm e g a M 1 0 0 0 0 0 0 o n e m i l l io ng i g a G 1 0 0 0 0 0 0 0 0 0 o n e U K m i l l ia rd , U S b il l i o nt e r a T 1 0 0 0 0 0 0 0 0 0 0 0 0 o n e U K b il l i o n *, U S t r il l io n*The definit ion of one bil lion as a thousand million is becoming increasingly commoninthe United Kingdom and continental Europe.

  • 8/6/2019 Technical Data - www.mahamulti.com

    14/25

    CO NVER SIO N TABLESArea Capacity

    Sq. Miles Sq. Kilometres Gallons Litres.38610 1 2.58999 .21997 4.54609.77220 2 5.17998 .43994 2 9.092181.15830 3 7.76997 .65991 3 13.638271.54440 4 10.35996 .87988 4 18.184361.93050 5 12.94995 1.09985 5 22.730452.31660 6 15.53994 1.31982 6 27.276542.70270 7 18.12993 1.53979 7 31.822633.08880 8 20.71992 1.75976 8 36.36872347490 9 2330991 1 97973 9 4091481

    Volume WeightsCu. Feet Cu. Metres Ounces Grams35.31467 1 .02832 .035274 1 28.34952370.62934 2 .05664 .070548 2 56.699046105.94401 3 .08496 .105822 3 85.048569141.25868 4 .11328 .141096 4 113.398092176.57335 5 .14160 .176370 5 141.747615211.88802 6 .16992 .211644 6 170.097138247.20269 7 .19824 .246918 7 198.446661282.51736 8 .22656 .282192 8 226.796184317.83203 9 .25488 .317466 9 255.145707Cu. Yards Cu. Metres Pounds Kilograms1.30795 .76455 2.204622 .4535922.61590 2 1.52910 4.409244 2 .9071843.92385 3 2.29365 6.613866 3 1.3607765.23180 4 3.05820 8.818488 4 1.8143686.53975 5 3.82275 11.023110 5 2.2679607.84770 6 4.58730 13.227732 6 2.7215529.15565 7 5.35185 15.432354 7 3.17514410.46360 8 6.11640 17.636976 8 3.6287361177155 9 688095 19841598 9 4082328

    CapacityPints Litres Tons* Kilograms

    1.75976 1 .56826 .000984 1 1016.04693.51952 2 1.13652 .001968 2 2032.09385.27928 3 1.70478 .002952 3 3048.14077.03904 4 2.27305 .003936 4 4064.18768.79880 5 2.84131 .004920 5 5080.234510.55856 6 3.40957 .005904 6 6096.281412.31832 7 3.97783 .006888 7 7112.328314.7808 8 4.54609 .007872 8 8128.375215.83784 9 5.11435 .008856 9 9144.4221*1 metric ton ~ 1 .000 kg.

    C AP AC IT IE S O F C ON TA IN ER SRectangularoobtain MultiplyLengthBreadthHeightallininches)and inch3capacityngallons divideby277. 227Capacitynlitres MultiplyLengthBreadthHeightallincm)and!:=======:!!:::di=vid=e:::by=10=00=.=======::::!!:=====:!MultiplyHeightxDiameterDiameterallininches) inch3anddivideby350. 350;-====-=-;C Idri I t I t MultiplyHeightxDiameterxDiameter(al lincm)y In ricacapaciy InIres xO.7854nddivideby1000.

    Cylindricaloobtaincapacityngallons

    ~TM

    Technical DataPROPERTIES OF W ATER BETW EEN OC AND 2 20 C

    Steam Pressure Specific SpecificTempC Absolute Weight Volumekg/cm' kg/m3x 103 m3/kgx1030 0 0 0 .0 0 6 2 2 8 0 .9 9 9 8 1 .0 0 0 20 1 0 0 .0 1 2 5 1 3 0 .9 9 9 6 1 .0 0 0 40 2 0 0 .0 2 3 8 3 0 0 .9 9 8 2 1 .0 0 1 80 3 0 0 .0 4 3 2 5 0 0 .9 9 5 6 1 .0 0 4 40 4 0 0 .0 7 5 2 0 0 0 .9 9 2 2 1 .0 0 7 90 5 0 0 .1 2 5 7 8 0 0 .9 8 8 0 1 .0 1 2 10 6 0 0 . 2 0 3 1 0 0 0 .9 8 3 2 1 .0 1 7 10 7 0 0 . 3 1 7 7 0 0 0 .9 7 7 7 1 .0 2 2 60 8 0 0 . 4 8 2 9 0 0 0 .9 7 1 8 1 .0 2 9 00 9 0 0 .1 7 4 9 0 0 0 .9 6 5 3 1 .0 3 5 91 0 0 1 .0 3 3 2 0 0 0 .9 5 8 3 1 .0 4 3 51 1 0 1 .4 6 0 9 0 0 0 .9 5 1 0 1 .0 5 1 51 2 0 2 . 0 2 4 5 0 0 0 .9 4 3 1 1 .0 6 0 31 3 0 2 . 7 5 4 4 0 0 0 .9 3 4 8 1 .0 6 9 71 4 0 3 .6 8 5 0 0 0 0 .9 2 6 1 1 .0 7 9 81 5 0 4 . 8 5 4 0 0 0 0 .9 1 6 9 1 .0 9 0 61 6 0 6 . 3 0 2 0 0 0 0 .9 0 7 4 1 .1 0 2 11 7 0 8 .0 7 6 0 0 0 0 8 9 7 3 1 1 1 4 41 8 0 1 0 2 2 5 0 0 0 0 8 8 6 9 1 - 1 2 7 51 9 0 1 2 . 8 0 0 0 0 0 0 .8 7 6 0 1 .1 4 1 52 0 0 1 5 . 8 5 7 0 0 0 0 .8 6 4 7 1 .1 5 6 52 1 0 1 9 . 4 5 6 0 0 0 0 .8 5 2 8 1 .1 7 2 62 2 0 2 3 .6 5 9 0 0 0 0 . 8 4 0 3 1 .1 9 0 0

    CALO RIFIC VALUE O F FU ELS*Fuel (In Btu / Ib ) ( in K. Cal / Kg. )

    C o m m e rc ia l P ro p an e 2 2 , 3 0 0 1 1 , 9 0 0C o m m e rc ia l B u ta n e 2 1 , 9 0 0 1 1 , 7 0 0Ace t y l e n e 2 2 ' 4 0 0 1 1 ' 9 5 0H y d r o g e n 6 3 , 5 0 0 3 4 ,0 0 0N a t u ra l G a s 1 1 , 8 0 0 6 ,3 0 0F u rn ac e O i l 1 7 , 8 0 0 9 , 5 0 0L ig h t D i es el O i l 1 7 , 8 0 0 9 , 5 0 0H ig h s pe ed D i es el 1 7 , 8 0 0 1 0 , 3 0 0Ke r o s ene 1 9 , 7 0 0 1 0 , 5 5 0Pe t r o l 2 1 , 3 0 0 1 1 , 4 0 0C h a r c o a l 1 3 ,0 0 0 6 , 9 5 0C o a l 7 ,1 0 0 3 , 8 0 0C o k e 1 2 , 3 0 0 6 ,6 6 0F ire W o od 8 , 2 0 0 4 , 4 0 0L ign i t e 9 , 2 0 0 4 9 0 0L PG 2 1 , 3 0 0 1 1 , 4 0 0*Depends on quality

  • 8/6/2019 Technical Data - www.mahamulti.com

    15/25

    TAB LE O F IN TER NATIO NA L G AUG ES

    ~TM

    Technical DataATOM IC W EIGHTS OF ELEM ENTS

    Br i t i s h U. S. .. . -.~ Q) aN o . o f B .G . B .S .G . E L EMENT g ' E ' E E L E M E N TG a u g e S .w .G . B .w .G . S H E E T S B . S . G . S .w .G . S H E E T S . . . . : : : J >,< t Z C flA c t in ium M e re u I) 'A lum in iu m M o lyb d e n um

    4 / 0 1 0 . 1 6 0 1 1 . 5 3 2 1 3 . 7 5 7 1 1 . 6 8 4 1 0 . 0 0 0 1 1 . 6 8 4 A n tim o n y N e o d ym iu mS ilv e r N e o nA rg o n N ic ke l

    2 / 0 1 1 . 3 0 8 9 . 2 6 6 8 . 4 0 7 9 . 2 6 6 A rs e n ic N ito n o r R a d o nN it ro g e n G o ld

    7 . 6 2 0 7 . 6 2 8 . 9 7 1 7 . 3 4 8 7 . 3 4 8 B a rium O sm iumB ism u th O x y g e nB o r o n

    6 . 5 7 9 5 . 8 2 9 6 . 1 9 5 . 8 2 7 B r om i n eC a dm ium P la t in um

    5 . 3 8 5 5 . 6 5 2 4 . 6 2 1 5 . 2 5 8 4 . 6 2 C a lc ium L e a dC a rb o n P o ta ss iumC e lt ium P ra s e o a ym ium

    4 . 4 7 0 4 . 5 7 2 4 . 4 9 6 C e r iu m P ro to - a c t in iumC e s ium R a d iumC h lo r in e R h e n ium

    9 3 . 7 5 9 3 . 5 5 2 . 9 0 6 3 . 7 6 7 2 . 0 9 6 C h rom ium R h o d iumC o b a lt R u b id ium

    1 1 2 . 9 4 6 3 . 0 4 8 2 . 8 2 7 2 . 3 0 3 3 . 0 6 1 2 . 3 0 4 C o lom b ium R u th e n iumC o p p e r S am a r iumD y sp ro s ium S c a n d ium1 3 2 . 3 3 7 2 . 4 1 3 2 . 2 4 1 . 8 2 8 2 . 3 2 4 1 . 8 2 9 E rb ium S e le n iumT in S ilic ium

    1 5 1 . 8 2 9 1 . 8 2 9 1 . 7 7 5 1 . 4 5 1 . 8 2 9 1 . 4 5 E u ro p ium S o d iumIro n S u lp h u rF lu o r in e S tro n t ium1 7 1 . 4 2 2 1 . 4 7 3 1 . 4 1 2 1 . 1 5 1 1 . 3 7 2 1 . 1 5 1 G a d o lin ium T a n ta lumG a ll ium T e llu r ium

    1 9 1 . 0 1 6 0 . 9 1 2 1 . 0 4 1 0 . 9 1 2 G e rm a n ium T e rb iu mG lu c in ium (1 ) T h a lliumH e lium T h o r iu m

    2 1 0 . 8 1 4 0 . 8 1 4 0 . 8 8 6 0 . 7 2 3 0 . 7 2 4 H o lm ium T h u lliumH y d ro g e n 1 ita n lum

    2 3 0 . 7 0 7 0 . 5 7 3 0 . 5 7 4 In d ium T u n g s te nIo d in e U ra n iumIr id ium V a n a d iu m

    2 5 0 . 5 0 8 0 . 5 0 8 0 . 4 5 5 0 . 5 1 8 0 . 4 5 5 K l) 'p to n X e n o nL a n th a n um Y tte rb iumL ith ium Y ttr iumL u te s ium Z in cM a g n e s ium Z ir c o n iumM a n g a n e s e

  • 8/6/2019 Technical Data - www.mahamulti.com

    16/25

    ~TM

    Technical DataP HYS IC AL P RO PE RTIES O F M ETA LS

    Mater ia l Sp . w I.a t 2 0 CMel t ingPo i n t

    D C

    Boi l ingPo i n t

    D C

    Sp . h ea ta t -50 CK c al/ kg C

    Th e rma lConductiv i tya t tem pe ra tu re t

    K c a l tOCm hr DCMater ia l Sp . w t.a t200C

    Mel t ingPo i n t

    O CBoi l ingPo i n t

    D C

    Sp . h ea ta t -50 CKca l /kg 'C

    Th e rma lConduc t i v i ty

    a t tem pe ra tu re IK ca l 1 0Cm h r DC

    Mild Stee l 7 .65 1 ,400 - - 0.144 39 .4 20 Manganese 7 .2 1 ,247 2,032 0.1211 - - -Alum in ium 2 .7 660 2 ,270 0 .2122 174 0 Mercu ry 13 .6 -38.83 356 .9 0 .3325 5. 4 18An tinom y 6 .7 630 .5 1 ,645 0.052 15 .9 0 Mo lybdenum 10 .22 2,625 4 ,540 0 .0647 126 0Silve r 10 .5 960 .5 1 ,927 0.0058 36 5 20 Nicke l 8 .9 1,455 2,340 0.1086 51.5 18Ba r ium 3 .59 710 1,537 - - - - - - Gold 19 .3 1 ,063 2 ,600 0 .0316 25 4 0Bismuth 9 .8 271 1 ,560 0 .03 6.82 0 Pla tinum 21 .45 1 ,773 4 ,300 0 .032 60 .2 10Bronze 8 .7 90 0 - - - - 51 20 Lead 11 .34 327 .4 1,740 0.039 30 .2 2Cadm ium 8 .64 320 .9 76 7 0.549 80.3 0 Po tass ium 0 .85 63.5 762 .2 0 .1921 85.1 0Ca lc ium 1 .55 810 1 ,439 10 .149 - - - - Silic ium 2 .326 1 ,430 2 ,355 0 .1712 72 .2 30Carbong raph ite ) 2 .227 3 ,845 3 ,927 0 .31 - - - - Sodium 0 .954 97 .8 88 0 0.297 121 0Chrom ium 7 .188 1 ,765 2,660 0.128 77 .3 100 Su lphu r 2 .07 112 .8 444 .55 0 .1751 00.181 0Cobal t 8 .9 1 ,490 2 ,900 0 .1041 - - - Stron tium 2 .577 77 0 1 ,366 0 .055 - - - -Coppe r 8 .94 1 ,083 2 ,336 0.0928 33 3 18 Tan ta lum 16 .6 3,027 >4 ,100 0 .033 48 20Wh ite Tin 7 .3 231 .85 2,260 0.0538 56.5 20 C rys ta llin eT ellu riu m 6 .2 7 449.8 989 .8 0 .0487 - - - -Iron 7 .9 1,535 Varying 0.1096 58 .1 18 Thallium 11 .85 302 1 ,457 0 .0326 33 .6 0Wrogh t I ron 7 .78 2,100 acco rd i ng to - - 45 20 Thor ium 11 .7 (1 ,827 ) (>3,000) 0.0276 - - - -Wh ite Cast Iron 7 .4 to 7 .8 1 ,100 Com pos it ion 0 .1298 - - - 1 itan ium 4 .5 1,725 >3 ,000 0 .1125 - - - -G ra y Cas t Ir on 6 .7 t07.1 1 ,225 - - 48 0 Tungsten 19 .3 3,370 (6 ,700 ) 0 .0375 14 9 99.8Brass 8 .600 90 0 - - 0.094 83.5 0 Uran ium 18 .97 1 ,090 (3 ,500 ) 0 .0619 - - - -Lith ium 0 .530 186 1 ,336 1 ,092 60.2 0 Vanad ium 6 .015 1,715 - - 0.1153 - - - -Magnes ium 1 .736 65 0 1,110 0.2469 137 50 Zinc 7 .14 419 .44 907 0 .0938 96 20

    WEIGHT OF COPPER AND ALUMINIUM STRIPS K GS/FTTh i c kne ss 1 /1 6 " 1 /8 " 3 / 1 6 " 1 /4 " 5 /1 6 " 3 / 8 " Y 2 " 5 / 8 " 3 / 4 "Wid th1 / 2 " AI 0 .0 1 6 5 0 .0 3 3 0 .0 5 0 0 .0 6 6 0 .0 8 4 0 .1 0 0 0 .1 3 2 0 .1 6 5 0 .2 0 01 / 2 " Cu 0 .0 5 8 0 .1 1 6 0 .0 1 7 4 0 .2 3 2 0 .2 9 0 0 .3 4 8 0 .4 6 4 0 .5 8 0 0 .6 9 63 / 4 " AI 0 .0 2 5 0 .0 5 0 0 .0 7 5 0 .1 0 0 0 .1 2 5 0 .1 5 0 0 .2 0 0 0 .2 5 0 0 .3 0 03 / 4 " Cu 0 .0 8 7 0 .1 7 4 0 .2 6 1 0 .3 4 8 0 .4 3 5 0 .5 2 2 0 .6 9 6 0 .8 7 0 1 .0 4 41 " AI 0 .0 3 3 0 .0 6 6 0 .0 9 9 0 .1 3 2 0 .1 6 5 0 .2 0 0 0 .2 6 5 0 .3 3 0 0 .4 0 01 " Cu 0 .1 1 6 0 .2 3 2 0 .3 4 8 0 .4 6 4 0 .5 8 0 0 .6 9 0 0 .9 2 8 1 .1 6 0 1 .3 8 01 1 /4 " AI 0 .0 4 2 0 .0 8 4 0 .1 2 6 0 .1 6 8 0 .2 1 0 0 .2 5 2 0 .3 3 6 0 .4 2 0 0 .5 0 01 1 / 4 " Cu 0 .1 4 5 0 .2 9 0 0 .4 3 5 0 .5 8 0 0 .7 2 5 0 .8 7 0 1 .1 6 0 1 .4 5 0 1 .7 4 01 1 /2 " AI 0 .0 5 0 0 .1 0 0 0 .1 5 0 0 .2 0 0 0 .2 5 0 0 .3 0 0 0 .4 0 0 0 .5 0 0 0 .6 0 01 1 / 2 " Cu 0 .1 7 4 0 .3 4 8 0 .5 2 2 0 .6 9 6 0 .8 7 0 1 .0 4 4 1 .3 9 2 1 .7 4 0 2 .0 8 82 " AI 0 .0 6 6 0 .1 3 2 0 .1 9 8 0 .2 6 4 0 .3 3 0 0 .3 9 6 0 .5 2 8 0 .6 6 0 0 .7 9 22 " Cu 0 .2 3 2 0 .4 6 4 0 .6 9 0 0 .9 2 8 1 .1 6 0 1 .3 8 0 1 .8 5 6 2 .3 2 0 2 .7 6 02 1 /2 " AI 0 .0 8 4 0 .1 6 8 0 .2 5 2 0 .3 3 6 0 .4 2 0 0 .5 0 0 0 .6 7 2 0 .8 4 0 0 .1 0 02 1 / 2 " Cu 0 .2 9 0 0 .5 8 0 0 .8 7 0 1 .1 6 0 1 .4 5 0 1 .7 4 0 2 .3 2 0 2 .9 0 0 3 .4 8 03 " AI 0 .1 0 0 0 .2 0 0 0 .3 0 0 0 .4 0 0 0 .5 0 0 0 .6 0 0 0 .8 0 0 1 .0 0 0 1 .2 0 03 " Cu 0 .3 4 8 0 .6 9 6 1 .0 4 4 1 .3 9 2 1 .7 4 0 2 .0 8 8 2 .7 8 4 3 .4 8 0 4 .1 7 64 " AI 0 .1 3 2 0 .2 6 4 0 .3 9 6 0 .5 2 8 0 .6 6 0 0 .7 9 2 1 .0 5 6 1 .3 2 0 1 .6 0 04 " Cu 0 .4 6 4 0 .9 2 8 1 .3 8 0 1 .8 5 6 2 .3 2 0 2 .7 6 0 3 .7 1 2 4 .6 4 0 5 .5 2 05 " AI 0 .1 6 8 0 .3 3 6 0 .5 0 4 0 .6 7 2 0 .8 4 0 0 .1 0 0 1 .3 4 5 1 .6 8 0 2 .0 0 05 " Cu 0 .5 8 0 1 .1 6 0 1 .7 4 0 2 .3 2 0 2 .9 0 0 3 .4 8 0 4 .6 4 0 5 .8 0 0 6 .9 6 06 " AI 0 .2 0 0 0 .4 0 0 0 .6 0 0 0 .8 0 0 1 .0 0 0 1 .2 0 0 1 .6 0 0 2 .0 0 0 2 .4 0 06 " Cu 0 .6 9 6 1 .3 9 2 2 .0 8 8 2 .7 8 4 3 .4 8 0 4 .1 7 6 5 .5 6 8 6 .9 6 0 8 .3 5 2

  • 8/6/2019 Technical Data - www.mahamulti.com

    17/25

    ~TM

    Technical DataS.W.G Inch

    WEIGHT OF ALUMINIUM SHEETMillimeters Kg/sq.ft

    3/8" II 0.375 II 9.53 II 2.4005 1 16" II 0.312 II 7.93 II 1.9951 1 4" 0.250 6.36 1.5963 1 16" 0.187 4.75 1.19710 gz 0.128 3.25 0.8161 18" 0.125 3.18 0.79818 gz 0.048 1.22 0.307199z 0.040 1.02 0.25520gz 0.036 0.914 0.23021 gz 0.032 0.813 0.20524 gz 0.022 0.559 0.141

    25x3 1.10 2.3025x5 1.80 50x5 3.8030x3 1.40 50x6 4.5035x5 2.60 75x5 5.7035x6 3.00 75x6 6.8040x3 1.80 75x8 8.9040x5 3.00 75x10 11.0040x6 3.50 100x6 9.2045x3 2.10 100x8 12.1045x5 3.40 100x10 14.90

    ----------EIGHT OF M.S PLATES

    Mm Kg/sq.mtr2 15.704 31.406 47.108 62.8010 78.5012 94.20

    WEIGHT OF M.S SHEETS

    CI;IEQUEF.lED PLATESKg/sq.mtr42.4056.1065.9079.30103.70

    WEIGHT OF S.S SHEET/PLATEThickness in mm Kg/sq.mtr

    8.00 64.005.00 44.004.00 32.003.15 26.002.00 16.001.60 12.001.25 10.001.12 9.041.00 8.000.90 7.040.63 5.04

    S.W.G Thickness in mm Kg/sq.mtr10 3.15 24.75 Size Weightinkgs (Round) Weightin kgs(Square)14 2.00 15.70 V a " 0.0190 0.024116 1.60 12.55 3/16" 0.0427 0.054518 1.25 9.80 1 1 4 " 0.078 0.096319 1.12 8.80 0/'16" 0.1185 0.151220 1.00 7.85 3/s" 0.1702 0.217021 0.90 7.05 V2" 0.3028 0.385924 0.63 4.95 ' V a " 0.4731 0.6026

    3/4" 0.6820 0.86881" 1.210 1.5421V4" 1.894 2.410

    1V2" 2.720 3.4702" 4.850 6.170

  • 8/6/2019 Technical Data - www.mahamulti.com

    18/25

    A R G O N H E L IU M H Y D R O G E N N IT R O G E N O X Y O G E N Specific Specific ThermalLIQUIDS Weight Heat Conductivitykg / rn" kcal / kg C kcal / hr. m C

    CONTENTS, 6.91 6.16 5.99 6.53 6.98 Sulphuric Acid 5%CU.M. Sul[:lhuric Acid 10%Sulphuric Acid 15%Nitric acid 10%0 132 136 136 133 132 Nitric acid 20%Ethyl Alcohol 100%

    134 138 138 135 134 Hydrochloric Acid 10%AS[:lhaltAniline8 137 140 140 138 137 BenzeneCellulose

    12 140 140 140 Vulcanised RubberDowtherm AEther144 144 WaterGasoline

    18 144 144 GelatinGlycerineCoal TarCotton OilMachine Oil

    149 149 149 149 149 Olive OilMelted Paraffin25% Solution NaCI152 152 152 152 152 25% Solution CaCICarbon TetrachlorideTurpentineNote: All the properties give above are at 30C

    38 156 156 158

    PRESSURE OF GAS AT DIFFERENT TEMPERATURE

    ~TM

    Technical DataPHYSICAL PROPERTIES OF CERTAIN LIQUIDS

  • 8/6/2019 Technical Data - www.mahamulti.com

    19/25

    MECHANICAL PROPERTIES OFSOME COMMON METALS AND ALLOYS

    MATERIAL

    Work ing Ultim a te Modu lus o fStre ss Stress elasticitykg /m m 2 kg /m m 2 kg /mmc c c o0 c oc w c w .s e0 en C o 0 en C o "0 Q) w (!! Q) w (!! Q) .C l >

    C Q. s: c Q. s: O J e n~ E (J) ~ E (J) cc c o0 0 0 Fo o _J23

    13 13 6.5 60-6560-65 33 20,000 8,000

    8.5 80-8580-85 43 22,000 8,800

    30 30 15 130 130 65 27,50011,000

    Ext ra m i ld s t ee lM ild s te e lS em i -m i ld s t ee lS em i - ha rd s te elH a rd s te e lV er y h a rd s te e lE xt ra h a rd s te e lCa s t s t e elCa s t a lum i n iumRo l led a lumin iumBronzeA lum i ni um b r on z eP ur e r o lle d c o p pe rNo n- a nn e a le d c o p pe r w i re

    ; : : : :=::: : ; ;====; ir===:;;;===;;:===;Ha rd s ta te d u ra lum i nNo rma l d u r a lum i nAnneal e d d u r a lum i n1i nW hit e c a st ir onG re y c a s t i ro nCa st b r as sRo ll ed b r a ssNo n - a n n ea le d b r as sw ir eLeadL ea d w i reZinc 1.5 1.5 1.75 5.5 3

    ~TM

    Technical DataWEIGHT OF STACKED SUBSTANCES (in Bu lk) - kg /m 3

    C l a y, g r av e l ( dr y) 1 , 8 0 0 C o a l 7 7 0 to 8 6 0C la y g ra v e l (w e t) 2 , 0 0 0 S ta c k e d B o o k s 8 5 0O a t s 3 5 0 t o 5 0 0 L im e a n d s a n d m o r ta r 1 ,7 0 0 to 1 ,8 0 0B a n a n a s 2 5 0 E g g s in c as eB e e t r o o t 5 7 0 to 6 5 0 D o m e s tic g a rb a g eW h e e t B a r l e yC o f f e e P a p e rW o o d C o a l 1 5 0 t0 2 0 0 O u a rr Y S t o ne 2 0 0 t o 2 ,7 0 0C o k e 3 6 0 to 5 3 0 P l a n k s 7 0 0 to 7 2 0P r es s e d C o t to n 3 9 0 P e a r s & P l u m s 3 5 0U n p r es s ed C o t to n 2 0 0 A p p l e s 3 0 0F l o u r 5 0 0 t o 6 00 P o t a t o e s 6 5 0 to 7 0 0P r es s e d c o tt o n t h re a d 2 0 0 S a n d , lim e ( d ry ) 1 , 6 0 0H a y a n d S t r aw 1 0 0 t 0 1 2 0 S a n d, l im e ( w et ) 2 0 0 0M a n u r e 7 5 0 t o 9 5 0 R y e 6 0 0 to 8 0 0Ic e 6 7 0 S a l t 7 4 5 to 7 8 5G r a n i t e 2 ,5 0 0 to 3 0 5 0 T o b a c c o 4 2 0B e a n s , p e a s, L e n ti ls 7 1 0 t0 8 5 0 W e t P e a r 6 0 0

    S h e e t g la s s 2 , 6 0 0

    CONDUCTIVITY OF CONSTRUCTION MATERIALS

    M A T E R I A LSpeci f icWeightkg /m 3

    C on d u c t iv it y K ca l /m h CT em p e r a tu re o f m a te ria l 1 0 C

    D r y . . E x te r n a l D a m pS ta te P a r t it io n s W a l ls W a lls0.22i gh t b r ic k

    No rma l b r ic kWa lls o f li gh t b r ic kW alls o f n o rm a l b ric kL imestoneSandstoneS la te p e rp e n di cu la r t o s tr a taS la t e p a r a lle l t o s t ra t aMo rt ar , li m e , c eme n tP la s t e r co a tP la s t e r s i a bsGr it concre teComp ac t r e in fo rc e d c o n cr e teL ig h t a g g r eg a t e co n c r e teCe l lu r Concre teI so la t e d i so re l

  • 8/6/2019 Technical Data - www.mahamulti.com

    20/25

    CONDUCTIVITY OF MATERIALSpecific Conductivity AtMATERIAL Weight (K) Ckg / rn' Kcal/hr m C

    IS-8 BricksHysil Bolcks 260

    Mineral Wool (Rock)Mineral Wool (Slag) 240-300 300Mineral wool (Glass)

    Fibre Glass 0.059 10Cork PlateAsbestos (Wools) 300 0.047 10

    Asbestos (Felt)Asbestos (Plated Goods) 0.2 10

    SandGravel 2,000 10AsphaltBitumen 10Tiles

    Cardboard 0.12Ramming Mass (70% AI)33% Alumina Fireclay 0.55 80049% Alumina Fireclay62% Alumina Fireclay 2,550 1.35 80078% Alumina Fireclay

    INSULATIONThe table below gives reccommended insulation thickness in mm,required for different pipe sizes and different operating / fluidtemperatures.

    CONDUCTIVITY OF MATERIALPipe dia(NB)mm

    25 25 25 25 25

    25 25 25 25 50 50

    100 25 25 40 40 50 65

    200 25 40 40 40 65 75

    40 40 65 75

    PLEASE NOTE: [1]lnsulation material assumed is Glass wool having thermalconductivity 0.045 kcal/hr m e@ 100C and average density aboutBO-100 kg rn"[2] The surface temperature after insulation is 55-60C. [3] Insulation upto 65 mmshould be insingle layer and above 65 mm multi layer. e.g. farBO mmtwo layerof40mm each; far 90 mm inner layer of40 mm and outer of 50 mm.

    ~TM

    Technical DataCOMBUSTION REACTIONS

    Water inVapourformWater inLiquidform

    (+69.1 ) kcal-192.5 kcal (+214.3) kcal~~iiiiiiiiiiiiiiijr.~~~~=--~~ (+341.5) kcal(+315.7) kcalEQUIVALENT LENGTH (M) FOR ADDITIONAL

    PRESSURE DROPDUE TO VALVES AND BENDS % WISE

    Pipe Dia Gate Angle Globe Bend Bend(NB) Valve Valve Valve Std. T 90 45Medium

    15 0.122 3.30 6.44 1.369 0.483 0.277

    40 0.314 7.53 14.65 2.930 1.130 0.628

    80 0.605 14.52 28.23 5.646 2.016 1.200

    125 0.975 23.39 45.48 9.097 3.249 1.950

  • 8/6/2019 Technical Data - www.mahamulti.com

    21/25

    ~TM

    Technical DataCF M10

    % WISE PRESSURE DROP DURING FLOW AT DIFFERENT CFM AND PRESSURE

    50 0.11100 7.53150 5.25200 4.02

    150 50 0.26100 0.15150 11.5 0.10200 8.8550 0.46100 0.26150 0.18200 15.6 0.1450 0.70100150 8.87200 6.72

    300 50 0.13100150 12.6200 9.6650 0.36100 5.59 0.20150 3.89 0.14200 2.98 0.1150100 8.00150 5.55200 4.26

    750 50 0.20100 0.11150200

    1000 50 0.11100150 9.8200 7.550 0.24100 0.13150 9.17200 7.0250100150 16.3200 12.5

    2500 50100150200 19.450100 6.71150 4.68200 3.5850100 11.9150 8.31200 6.36

    5000 50100 0.55150 13.0 0.38200 9.95 0.2950100150200

    2" 3" 4" 5" 6"

  • 8/6/2019 Technical Data - www.mahamulti.com

    22/25

    ~TM

    Technical DataINTENSITY OF DRAFT FOR METALLIC CHIMNEYS(Draft in mm Wg at 2rC and 760 mm of Hg.)

    Average Induced '(Useful) Height of chimney in meterTemp. Draftin chimney permC height z 3 5 7.5 10 15 20 30 40 50 60

    140 0.317 0.95 1.58 2.37 3.17 4.75 6.3 9.5 12.6 15.8 19.0

    180 0.395 1.18 1.97 2.96 3.95 5.92 7.9 11.8 15.8 19.7 23.7

    27.4

    260 0.515 1.54 2.57 3.86 5.15 7.72 10.3 15.4 20.6 25.7 30.9

    300 0.557 1.67 2.78 4.17 5.57 8.35 11.1 16.7 22.2 27.7 33.4

    340 0.599 1.80 3.00 4.49 5.99 8.98 11.9 17.9 23.9 29.9 35.9. b(1) For other barometric pressures (b), draft = Z 760

    (2) Since the loss of temperature per m height of chimney is approx 0.5C, average temperature of chimney = Foot temperature - Y . chimney height(3) Useful (*) height above the plane of earth, for instance above the grating level.

    Ternperature-C Propane Kg/em' Butane Kg/em' LPG16 6.25 1.5 425 6.75 2 532 8.5 3 640 10 3.5 747 11 4 955 13 5.5 1165 17 8 15

  • 8/6/2019 Technical Data - www.mahamulti.com

    23/25

    ~TM

    Technical DataGas Transmission & Distribution SystemAll pressures indicated are Maximum Operating Pressure ( MOP)

    (Carbon steel pipe)Pressure 38 barONGC GAIL

    Maximum Operating Pressure (MOP)

    DISTRICT REGULATINGSTATION ... Pressure 19 bar(Carbon steel pipe)CITY GATESTATION

    Inside the Consumer area

    (MOP)Pressure19 bar Pressu re 4 bar

    (P.E. Lower Pressure)(P.E. Medium Pressure)

    Pressure 100 mbar(MS Seamless Pipe)

    Pressure 21 mbar

    r (Copper Tube)

    METER CONTROL VALVE APPLIANCE VALVE

    [~ p~re~s_s_u_re_1_0_0_m_b~a_r ~j(Copper Tube) HomeAppliance

  • 8/6/2019 Technical Data - www.mahamulti.com

    24/25

    ~TM

    Technical DataNATU RAL GA S

    Daily Average Gas Analysis Test Report (MNGL)Sampling I Receipt & Testing for reference purpose only For theDay:

    06-Dec-06 07-Dec-06Time: 0600 Time: 0600

    Source URAN-TROMBAYLINES r. No, Comp#

    2 Nitrogen (N2)3 Methane (C1)4 Carbon Dioxide (CO2)5 Ethane (C2)6 Propane (C3)7 I - Butane (IC4)8 N - Butane (NC4)9 I - Pentane (IC5)10 N - Pentane (NC5)11 Total12 Gross Calorific Value (KcaI/M3)13 Net Calorific Value (KcaI/M3)14 Specific Gravity

    Location ONGC URANGas Composition (Mole %)0.023680.2992994.692420.116222.986841.206510.239320.302220.070950.06250100.0009509.2408578.5300.59459

    MERITS OF USAGE OF LPG High calorific value Perfect combustion is possible with stoichiometric ratios of gas and air and it's not necessary to provide excess air No sulphur content (only few parts approx. 0,5 ppm) System based on modern technology, hence the fuel efficiency ismore (approx. 95%) Simple equipment, achieves a homogenous mixture of air and gas, not necessary to elaborate atomizing / swirling devices as in case of

    liquid fuels, Clean and safe system, LPG issafer to use, The exclusive range of Ipg inair is between 1,8%and 9%, With leaner or richer mixtures, i tdoes not even burn, Environmental friendly-fuel and operating system Minimum running and operating cost Chances of pilferage is nil, Assured uninterrupted supply, Operational/temperature loss isnil, LPG is easy to handle and totally 'safe',

  • 8/6/2019 Technical Data - www.mahamulti.com

    25/25

    ~TM

    Technical DataSCHEMAT IC D IAGRAM TO SHOW AN IDEAL INSTAL LATION (COMMERCIA L)

    Low Pressure RegulatorMale Bullnose

    Cooking Platform

    3/8"

    Flexible--- Burner ----Pigtail

    BurnerCooking Platform

    Flexiblecylenderpigtail

    Non-returnValve

    ConnectionH.P Adaptor----1JIi!J::H

    Shown above isa schematic drawing of an ideal installation as perIndian Standard IS 6044. At the very start S.c. Valve Adapter withinbuilt non-return valve are used to fit onto the cylinder [note the 2side screw flow adjustment device is il legal as it is not an adapter &ruins cylinder valves]. The adapter is l ink to the manifold by meansof a re-inforced flexible cylinder pigtail. Manifolds come in eitherstaggered or standard formation to suit the space available wherethe cylinder are stored. At all points intime cylinders whether emptyor full must be connected to the system. This is why manifolds aresold in sets of 2 arms, 1 online & 1 in reserve. After the 2 manifoldsare connected a primary stage regulator must be used to reducethe pressure inthe line ahead to a maximum of 2kgs/cm2 [or 30psi].Choosing a regulator is important as the flow requirement of theentire system must not exceed what the regulator can deliver.Outside the cylinder storage side and in each room in which gas isused an emergency valve has to be provided. It is good practice touse second stage regulators ineach room so that pressure stability

    Click on Adaptor

    can be maintained to the burners downstream of the second stageregulators. Finally, even though an appliance might have it's owncontrols, each tapping point, from where gas is being drawn, mustbe terminated in a needle control valve on the line prior to it'sconnection with the burner or appliance. By following these fewrules together with others laid down inthe Indian Standard IS6044a safe installation can be assured.While carrying out commercial and industrial installations it isverynecessary to install excellent quali ty safety products, regulators,governors, flashback arrestors, filters, slam shut off valves andexcess flow check valves. An ideal installation will be complete inallrespects provided most points mentioned in lSI 6044 Part I 2000,Part II 2001, OISO - 162 1995, Gas Cylinder Rules 2004 and theBritish Standards pertaining toA) Safety in installation and use of gas systems and appliancesB) Industrial and commercial gas installation practice