5
Page 1 of 5 Rivers Instructional Case: A series of student-centered science lessons Teacher Background Erosion and Deposition Erosion is a process that involves the physical removal and transport of material by mobile agents at the Earth’s surface. The three common agents of erosion on Earth are water, wind, and ice. Water is the most efficient and effective agent for erosion (through processes such as erosion by streams and rivers and coastal erosion). Erosion results in the deposition of sediments in a different location. Deposition occurs when the forces responsible for erosion are no longer sufficient to overcome the weight of the particles or friction. For example, consider sediment that is carried by a swift river. If the water velocity drops (due to widening of the channel or change in the slope of the terrain), the larger (heavier) particles may drop out and be deposited in the river channel. However, the water velocity may be sufficient to continue to carry smaller particles. In this way, sediments may be sorted by size due to changes in the energy of the depositional environment. Mass wasting (commonly referred to as landslides) is similar to erosion in that it involves the movement of rock and soil at the Earth’s surface. However, mass wasting is a distinctly different process than erosion in that it involves the downslope movement of surface materials under the influence of gravity. Erosion, in contrast, requires an agent (such as water, wind or ice) that is physically involved in the movement of the sediment. In mass wasting, gravity is the controlling factor and does not involve an erosional agent. Although scientists consider mass wasting and erosion as separate processes, they commonly work together in processes such as coastal erosion and the widening of river valleys. For example, the formation and widening of the Grand Canyon (Fig. 1) is accomplished by erosion and mass wasting working together. Mass wasting (landslides) transfers material to the canyon floor (widening the canyon) where the material is then transported downstream (erosion) by the river. Most river valleys are much wider than they are deep and wider than the streams that helped to form them. This is evidence of mass wasting processes in supplying material to the stream in forming large valleys and canyons. Figure 1. Grand Canyon. Source: NPS.

Teacher Background River - Earth Science · 2019-01-11 · Page 1 of 5 Rivers Instructional Case: A series of student-centered science lessons Teacher Background Erosion and Deposition

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Teacher Background River - Earth Science · 2019-01-11 · Page 1 of 5 Rivers Instructional Case: A series of student-centered science lessons Teacher Background Erosion and Deposition

Page1of5

R ivers Instruct iona l Case : A ser ies o f s tudent-centered sc ience lessons

TeacherBackgroundErosionandDepositionErosionisaprocessthatinvolvesthephysicalremovalandtransportofmaterialbymobileagentsattheEarth’ssurface.ThethreecommonagentsoferosiononEartharewater,wind,andice.Wateristhemostefficientandeffectiveagentforerosion(throughprocessessuchaserosionbystreamsandriversandcoastalerosion).Erosionresultsinthedepositionofsedimentsinadifferentlocation.Depositionoccurswhentheforcesresponsibleforerosionarenolongersufficienttoovercometheweightoftheparticlesorfriction.Forexample,considersedimentthatiscarriedbyaswiftriver.Ifthewatervelocitydrops(duetowideningofthechannelorchangeintheslopeoftheterrain),thelarger(heavier)particlesmaydropoutandbedepositedintheriverchannel.However,thewatervelocitymaybesufficienttocontinuetocarrysmallerparticles.Inthisway,sedimentsmaybesortedbysizeduetochangesintheenergyofthedepositionalenvironment.Masswasting(commonlyreferredtoaslandslides)issimilartoerosioninthatitinvolvesthemovementofrockandsoilattheEarth’ssurface.However,masswastingisadistinctlydifferentprocessthanerosioninthatitinvolvesthedownslopemovementofsurfacematerialsundertheinfluenceofgravity.Erosion,incontrast,requiresanagent(suchaswater,windorice)thatisphysicallyinvolvedinthemovementofthesediment.Inmasswasting,gravityisthecontrollingfactoranddoesnotinvolveanerosionalagent.Althoughscientistsconsidermasswastinganderosionasseparateprocesses,theycommonlyworktogetherinprocessessuchascoastalerosionandthewideningofrivervalleys.Forexample,theformationandwideningoftheGrandCanyon(Fig.1)isaccomplishedbyerosionandmasswastingworkingtogether.Masswasting(landslides)transfersmaterialtothecanyonfloor(wideningthecanyon)wherethematerialisthentransporteddownstream(erosion)bytheriver.Mostrivervalleysaremuchwiderthantheyaredeepandwiderthanthestreamsthathelpedtoformthem.Thisisevidenceofmasswastingprocessesinsupplyingmaterialtothestreaminforminglargevalleysandcanyons.

Figure1.GrandCanyon.Source:NPS.

Page 2: Teacher Background River - Earth Science · 2019-01-11 · Page 1 of 5 Rivers Instructional Case: A series of student-centered science lessons Teacher Background Erosion and Deposition

Page2of5

WeatheringisthephysicalbreakdownandchemicalalterationofrocksandmineralsatorneartheEarth'ssurfaceduetointeractionswithlivingorganisms,waterandtheatmosphere.Weatheringisdistinctlydifferentfromerosioninthatweatheringoccursinplaceanddoesnotinvolvethemovementortransportofsediment.Theweatheringofrocksresultsintwotypesofproducts:

1.solidparticles(sandgrains,clayminerals,etc.)2.dissolvedconstituentsinwater

Theproductsofweathering(sediment)providethematerialsthatareinvolvedinerosionanddeposition.Theweatheringofrockscommonlyresultsintheproductiondifferentsizesofsedimentsbeingproducedrangingfrommicroscopic(clays)tosand-andgravel-sizedparticles.Thereare3typesofsedimentcarriedbyariver:

1. dissolvedload-transportofionsandchemicalsinsolution–partiallyresponsibleforthesaltinessofthesea.

2. suspendedload-typicallythelargestloadandiscomposedclays,siltandfinesand.Thismaterialsettlesoutwhentheriverslowsusuallyinanoceanorlake.

3. bedload-thematerialthatistransportedalongtheriverbedbyrolling,slidingandsaltation(wheretheparticlesbounceorskipalongtheriverbed).

Thesedimentthatiscarriedbyariverisdeterminedbythelandscapethatitflowsthrough.Mostofthesedimentloadofriversissuspendedload.Asanexample,thesedimentloadoftheMississippiRiveriscomposedof26%dissolvedload,67%suspendedloadand7%bedload.Duringerosionanddepositionofsediment,thesizesoftheparticlescanprovideusefulinformationabouttheenvironmentofdeposition.Lowenergyenvironmentstendtoinvolvesmallersedimentaryparticleswhereashighenergyenvironmentscommonlydepositlargersediments(suchasgravelandboulders).

• Graveldepositsarefoundinhighenergyenvironmentssuchasmountainstreamsandsomebeaches.

• Sandsarefoundinintermediateenergyenvironmentssuchasbeachesandriverdeposits.• Claysarefoundinquietenvironmentssuchaslakesandthedeepocean.

Becauseofchangesinenvironmentalenergy(suchaswatervelocity),differentsizesofsedimentsmaydepositandoccurinassociationwithoneanother.Forexample,thesatelliteimageoftheMississippiRiverdelta(Fig.2)showsthetransportanddepositionofsedimentswheretheriveremptiesintotheGulfofMexico.Sincenearshoreenvironmentshavehigherenergy(duetocurrentsandwaves),onlycoarsersediments(suchassand)aredepositedalongtheshoreandinshallowwater.However,finesedimentsaresuspendedinthewatercolumnandaredepositedinquieteroffshoreenvironmentssuchasinthedeeperocean.

Figure2.SatelliteimageoftheMississippiRiverdelta.Source:NASA.

Page 3: Teacher Background River - Earth Science · 2019-01-11 · Page 1 of 5 Rivers Instructional Case: A series of student-centered science lessons Teacher Background Erosion and Deposition

Page3of5

Thus,differentsedimentaryenvironmentsoccuroverabroadareaatthesametimeandsedimentsmaybesortedbysize.Thetermfaciesisusedtodescribesetsofsedimentaryrocksthatgradeintooneanotherduetothissortofsortingofsedimentsbysize.

Inadepositionalenvironment(suchasariver),theenvironmentalenergymayexperiencelargechangesovertime.Gradedbeddingofsedimentsischaracterizedbyachangeingrainsizewithcoarsersedimentsatthebasethatgradeupwardintoprogressivelyfinerones.Gradedbeds(Fig.3)representdepositionalenvironmentsthatdecreaseinenergyastimepasses.Gradedbeddingiscommoninstreamdeposits(commonlyassociatedwithstormsurges)andotherdepositionalenvironmentssuchasturbidites(submarinelandslidedeposits).

RiversAstreamisageneraltermforanychannelizedbodyofrunningwater.Streamsmayrangeissizebutthereisnoestablishednomenclaturefornamingastreambaseduponitssize.Althoughthetermriverisgenerallyusedforlargerstreams,othertermsforsmallstreamsincludecreek,brook,orrill.

Mostwaterinstreamsistheresultofsurfacerunoffinthewater(hydrologic)cycle.Othersourcesofstreamwaterincludegroundwaterandthemeltingofglacialice.Themajorityofstreamsemptyintotheocean,alakeoranotherbodyofwater.Somestreamsmayterminatewheretheyemptyintoaclosedinteriorbasinonlandwithoutanoutlet(suchasattheGreatSaltLakeorDeadSea).Ariverbeginsatasource(commonlyinamountainousregion)andendsatitsmouth(Fig.4).Theriverisconfinedtoflowinachannelthatevolves(insizeandshape)alongthelengthoftheriver.Thepointwheretworiversmergeiscalledaconfluence.Atributaryisthetermforariverthatmergesintoalargerriver.

Figure3.Gradedsedimentarybeds.

Profileofariverfromitssourcetomouth.

Page 4: Teacher Background River - Earth Science · 2019-01-11 · Page 1 of 5 Rivers Instructional Case: A series of student-centered science lessons Teacher Background Erosion and Deposition

Page4of5

Thevelocityofwaterflowingthroughthechannelisafunctionofthesize(cross-section)ofthechannelandthesteepnessoftheterrain.Inmountainousregions,theterrainissteeperandhasahigherstreamgradient(ratioofthedropinelevationperdistanceperdistancetheriverflows).Forexample,astreamwithagradientof1m/kmmeansthattheelevationofthesurfaceoftheriverdecreasesonemeterforeverykilometerthattheriverflows.Inmountainousregions,atypicalstreamgradientmaybegreaterthanseveralmetersperkilometer.Sincewaterflowsundertheinfluenceofgravity,watervelocityinaregionwithasteepgradientisgreaterandcancarrylargersedimentparticles.Inregionsthatthelandscapeisrelativelyflat,thestreamwillhaveasmallgradientandlowerwatervelocity;itscapacitytotransportlargersedimentaryparticlesisreduced.ForexamplethegradientneartheendoftheMississippiriverisonly~7cm/km.AsindicatedinFig.5,waterinthemiddleofastreamchannelhasthehighestvelocity.Thelowestflowvelocityoccursalongthestreambankandalongthestreambedduetofriction.Whenthereisabendinthestream,thewaterwiththehighestvelocitymovesforwardinastraightlinewhereitencountersthebankon

theoutsideofthebend;thisresultsinazonealongthebankofthestreamthatispronetoerosion.Ontheoppositebank,thewatervelocityislowest.Thelowestvelocityislocatedontheinsidebankwheredepositionofsedimentoccurs.Pointbarsaredepositsthatformontheinsidecurveofmeanders,wherethewatervelocityislowest.Overtime,pointbarsaccumulateontheinsideanderosionoccursontheoutsideofriverbends,causingthechanneltomigrateandchangeshape.Theconcurrenterosionanddepositionthatoccursonoppositebankscausesthestreamchannelbecomesmorecurvedinshapecalledameander.Asthechanneloftheriverbecomesmoresinuousandcurved,theendsofthemeandermaymeetandcutoffaportionofthechannelforminganoxbowlake.Fig.6showsthedevelopmentofameanderandhowitmayevolvetoformanoxbowlake(bottomdiagram).Riversareshort-livedfeatures(ingeologictime)andcanchangeontimescalesof10’sto100’sofyears.Fig.7showsasatelliteimageofamatureriverwithmanyabandonedmeandersandoxbowlakesasithascontinuedtoevolveovertime.

Figure5.Schematicdiagramshowingwatervelocityinastreamchannelwhenitencountersabend.Thelongerthearrow,thehigherthewatervelocity.

Figure6.Schematicdiagramshowingtheevolutionofmeandersandtheformationofanoxbowlake.Source:WikipediaUser:maksim

Page 5: Teacher Background River - Earth Science · 2019-01-11 · Page 1 of 5 Rivers Instructional Case: A series of student-centered science lessons Teacher Background Erosion and Deposition

Page5of5

Atypicalstreamhasaprofilewhereitssourceislocatedinamoremountainousregionwithsteepgradients.Asastreamflowsawayfromitssource,itgenerallymovesintoaregionwithlowgradients(flatplains)andthereisthedevelopmentofextensivemeanders.Streamsneartheirsourceinaregionwithahighgradientarecommonlyreferredtoas“young”or“immature.”Streamsinregionswithlowgradientsandextensivemeandersarecalled"old"or"mature."Matureandimmaturestreamsevolvedifferently.Immaturestreamswithasteepgradientputmostoftheirerosionintodownwardcuttingmakingtherivervalleydeeperwithtimeandthechannelsthatdonotshiftmuchlaterally.Inmaturestreamsystems,thereislessdown-cuttingoftheriverchannelbecauseofthelowgradient.Thus,maturestreamsputmoreoftheirerosiveactionintosidetosideerosionleadingtothedevelopmentofmeanders.

DeltasandAlluvialFansAtitsmouth,ariverwilldropitssedimentduetoadecreaseinthevelocityofthewater.Alluvialfansanddeltasformfromthedepositionofthesedimentcarriedbytheriver.Theyaresimilarstructuresanddiffermainlybybeingdepositedeitheraboveorbelowwater.Deltasformbythedepositionofsedimentbelowwaterwhenthemouthofariverentersanoceanoralake.Deltaformationisacontinuousprocessaslongastheriverifflowingtoitsoutlet.Alluvialfansforminaridregionsinaterrestrialsettingfromthedepositionofthesedimentcarriedbytheriverastheflowentersacanyonorflatterplain.Theformationofalluvialfansiscommonlyandepisodicprocesswheremajordepositionofsedimentsmayoccurduringstorms.Generally,riversmergetogetherwheretributariesjoinwithariver.Itiscommonindeltasandalluvialfansforastreamtobranchoffintomultiplesmallerchannelsknownasdistributarychannelsthatflowawayfromthemainchannel.DistributarychannelscanbeseeninFigs.8and9.

Figure8.SatelliteimageoftheMississippiRiverdelta.Source:NASA

Figure9.AerialphotographoftheHanaupahalluvialfaninDeathValley.Source:USGS

Figure7.SatelliteimageshowingtheRioNegroRiver(SouthAmerica).Theimageshowsthecurrentriverchannelandmanyabandonedmeandersandoxbowlakesastheriverhasevolved.Source:NASA.