8
PCSI, Lycée de l’Essouriau, 2016/2017 TD : Diagrammes E-pH Exercice 1 : Diagramme E-pH du zinc On donne le diagramme E-pH du zinc, tracé pour une concentration totale en zinc c=1,0.10 -3 mol.L -1 . Le zinc peut se trouver sous différentes formes : Zn(s), ) ( 2 aq Zn , ) ( 2 s OH Zn et ) ( 2 4 aq OH Zn 1) Attribuer en justifiant les domaines de prédominance à chacune de ces espèces. 2) Déterminer l’ordonnée à l’origine de la droite (1) puis déterminer le coefficient directeur des pentes (2) et (3). Vérifier que les ruptures de pente sont cohérentes avec le diagramme. 3) Justifier la position des frontières verticales. Calculer leurs positions. Le cas échéant, on veillera à écrire les équations de réactions en milieu basique. Données : V s Zn aq Zn E o 76 , 0 ) ( / ) ( 2 ) ( 2 s OH Zn 16 s pK ) ( 2 4 aq OH Zn , 16 log (constante de formation)

TD : Diagrammes E-pH - pcsipsiauxulis.compcsipsiauxulis.com/IMG/pdf/TD_E-pH.pdf · PCSI, Lycée de l’Essouriau, 2016/2017 TD : Diagrammes E-pH Exercice 1 : Diagramme E-pH du zinc

Embed Size (px)

Citation preview

Page 1: TD : Diagrammes E-pH - pcsipsiauxulis.compcsipsiauxulis.com/IMG/pdf/TD_E-pH.pdf · PCSI, Lycée de l’Essouriau, 2016/2017 TD : Diagrammes E-pH Exercice 1 : Diagramme E-pH du zinc

PCSI, Lycée de l’Essouriau, 2016/2017

TD : Diagrammes E-pH

Exercice 1 : Diagramme E-pH du zinc

On donne le diagramme E-pH du zinc, tracé pour une concentration totale en zinc c=1,0.10-3 mol.L-1.

Le zinc peut se trouver sous différentes formes : Zn(s), )(2 aqZn , )(2 sOHZn et )(2

4 aqOHZn

1) Attribuer en justifiant les domaines de prédominance à chacune de ces espèces.

2) Déterminer l’ordonnée à l’origine de la droite (1) puis déterminer le coefficient directeur des

pentes (2) et (3). Vérifier que les ruptures de pente sont cohérentes avec le diagramme.

3) Justifier la position des frontières verticales. Calculer leurs positions. Le cas échéant, on

veillera à écrire les équations de réactions en milieu basique.

Données :

VsZnaqZnEo 76,0)(/)(2

)(2 sOHZn 16spK

)(2

4 aqOHZn

, 16log (constante de formation)

Page 2: TD : Diagrammes E-pH - pcsipsiauxulis.compcsipsiauxulis.com/IMG/pdf/TD_E-pH.pdf · PCSI, Lycée de l’Essouriau, 2016/2017 TD : Diagrammes E-pH Exercice 1 : Diagramme E-pH du zinc

PCSI, Lycée de l’Essouriau, 2016/2017

Exercice 2 : Diagramme potentiel-pH du cadmium

On donne le diagramme E-pH suivant, tracé pour une concentration de cadmium dissous égale à 10-2

mol.L-1.

a) Déterminer E°(Cd2+/Cd(s)) en utilisant à bon escient le diagramme. Réponse : E°(Cd2+/Cd(s))=-0,40 V.

b) Calculer le produit de solubilité de Cd(OH)2(s) et la constante de formation de HCdO2- à partir de

Cd(OH)2(s) et HO-. Réponse : pKs=13,8 et Kf=100,7

c) Donner l’équation de la droite séparant le domaine de Cd(OH)2(s) du domaine de Cd(s). Réponse :

E=0,026-0,06 pH (V).

d) Que se passe-t-il en principe si on met du cadmium dans l’eau désaérée (i.e. sans dioxygène) ?

Discuter selon les valeurs du pH. On pourra utiliser une méthode graphique, le diagramme E-pH

étant réalisé à l’échelle.

Page 3: TD : Diagrammes E-pH - pcsipsiauxulis.compcsipsiauxulis.com/IMG/pdf/TD_E-pH.pdf · PCSI, Lycée de l’Essouriau, 2016/2017 TD : Diagrammes E-pH Exercice 1 : Diagramme E-pH du zinc

PCSI, Lycée de l’Essouriau, 2016/2017

Exercice 3 : Synthèse du chromate de plomb On se propose d’interpréter un protocole expérimental relatif à la fabrication du chromate de plomb,

pigment jaune utilisé dans les peintures.

Un diagramme potentiel-pH simplifié du chrome est proposé. Sa lecture peut rendre l’interprétation

du protocole plus facile. Pour répondre aux questions, on utilisera seulement les données

thermodynamiques fournies dans le tableau de données joint.

Données :

1.

2.

3.

4.

Page 4: TD : Diagrammes E-pH - pcsipsiauxulis.compcsipsiauxulis.com/IMG/pdf/TD_E-pH.pdf · PCSI, Lycée de l’Essouriau, 2016/2017 TD : Diagrammes E-pH Exercice 1 : Diagramme E-pH du zinc

PCSI, Lycée de l’Essouriau, 2016/2017

Page 5: TD : Diagrammes E-pH - pcsipsiauxulis.compcsipsiauxulis.com/IMG/pdf/TD_E-pH.pdf · PCSI, Lycée de l’Essouriau, 2016/2017 TD : Diagrammes E-pH Exercice 1 : Diagramme E-pH du zinc

PCSI, Lycée de l’Essouriau, 2016/2017

Exercice 4 : Béton armé (d’après oral de Centrale-Supélec)

Le caractère fortement basique du ciment offre la possibilité d’y inclure du fer pour former du béton armé permettant d’édifier des structures plus solides.

1. Afin de prévoir le comportement du fer dans le ciment hydraté, le diagramme potentiel-pH de l’eau et celui du fer correspondant aux espèces Fe(s), Fe2+, Fe3+, Fe2O3(s), tracé pour des concentrations égales à c = 10−6 mol · L−1, sont données dans le fichier ci-dessous.

a. Identifier parmi les espèces précédentes de l’élément fer celle qui prédomine ou existe dans les différentes zones A, B, C et D. Retrouver à partir du diagramme les valeurs des potentiels standard des couples Fe3+/Fe2+ et Fe2+/Fe.

b. Ecrire les demi-équations des couples correspondant aux deux droites de l’eau.

c. En déduire la réaction thermodynamiquement possible entre le fer et la solution au contact d’un ciment à un pH voisin de 13 et ne contenant pas de dioxygène dissous.

2. On parle de corrosion lorsque l’oxydation du métal conduit à des espèces solubles, sinon on parle de passivation (formation d’une couche solide du métal oxydé). Au cours du temps, diverses réactions provoquent une diminution progressive du pH du ciment. À partir de quel pH la corrosion du fer emprisonné dans le ciment va-t-elle se produire ? Expliquer les transformations observées et préciser le produit de la corrosion.

Page 6: TD : Diagrammes E-pH - pcsipsiauxulis.compcsipsiauxulis.com/IMG/pdf/TD_E-pH.pdf · PCSI, Lycée de l’Essouriau, 2016/2017 TD : Diagrammes E-pH Exercice 1 : Diagramme E-pH du zinc

2015-12-08 20:21:16 Page 7/14

II.B – Analyse chimique de l’alliageLa composition chimique de l’alliage aluminium-cuivre peut être déter-minée par titrage selon le protocole suivant.II.B.1) Première phase : Séparation du cuivre et de l’alumi-

niumAprès avoir réduit l’alliage à l’état de poudre, une masse 𝑚 = 1,0 gest introduite dans un ballon de 250 mL. 100 mL d’une solution d’hy-droxyde de sodium (Na+, HO−) à environ 8 mol⋅L-1 sont versés sur l’al-liage. Quand le dégagement gazeux de dihydrogène tend à diminuer,le contenu du ballon est porté à ébullition pendant 15 minutes. Aprèsrefroidissement, le contenu du ballon est filtré. Les particules solidesrestées sur le filtre sont rincées, puis placées dans un bécher de 200 mL.a) Pourquoi utilise-t-on l’alliage sous forme de poudre ?Les diagrammes potentiel-pH des éléments aluminium et cuivre ont été tracés pour une concentration en espècesdissoutes égale à 1,0×10−2 mol⋅L-1 sur chaque frontière (figures 14 et 15). Les frontières associées aux couplesde l’eau ont été ajoutées en traits plus fins.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15pH

−3

−2

−1

0

1

𝐸(V

)

A B

C

D

Figure 14 Diagrammes potentiel-pH superposés de l’aluminium et de l’eau

b) Attribuer un domaine à chacune des espèces suivantes : Al(s), AlO−2 (aq), Al3+

(aq) et Al(OH)3 (s).

c) Retrouver le pH d’apparition du solide Al(OH)3 (s) dans une solution contenant les ions Al3+(aq) à la concen-

tration 𝐶 = 1,0 × 10−2 mol⋅L.d) Déterminer la valeur théorique de la pente de la frontière séparant les domaines de stabilité des espècesCu2+

(aq) et Cu2O(s).

e) Au moyen des deux diagrammes potentiel-pH, justifier l’utilisation du traitement par la soude pour séparerles éléments aluminium et cuivre. Écrire l’équation de la (ou des) réaction(s) qui ont lieu au cours de cettephase.

EXERCICE 5: Analyse chimique d'un alliage aluminium-cuivre (Centrale MP 2015)

Un alliage est constitué de l'assemblage de plusieurs éléments chimiques. L'alliage 2024, utilisé notamment dans de nombreuses pièces métalliques entrant dans la fabrication des avions, est constitué d'aluminium et de cuivre à hauteur de 4% en masse. On souhaite vérifier cette valeur par une analyse chimique.

Page 7: TD : Diagrammes E-pH - pcsipsiauxulis.compcsipsiauxulis.com/IMG/pdf/TD_E-pH.pdf · PCSI, Lycée de l’Essouriau, 2016/2017 TD : Diagrammes E-pH Exercice 1 : Diagramme E-pH du zinc

2015-12-08 20:21:16 Page 8/14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15pH

−1

−0,5

0

0,5

1

1,5

𝐸(V

)

Cu2+(s)

Cu(s)

Cu2O(s)

Cu(OH)2 (s)

Figure 15 Diagrammes potentiel-pH superposés du cuivre et de l’eau

f) Pourquoi est-il judicieux de travailler en milieu très basique plutôt que neutre ?g) Quel peut être l’intérêt de porter le mélange à ébullition quand le dégagement gazeux faiblit ?II.B.2) Deuxième phase : Dissolution du cuivreLe cuivre solide récupéré à l’issue de la première phase est totalement dissout au moyen de 10 mL d’une solutiond’acide nitrique concentrée (H+

(aq) + NO−3 (aq)). Un dégagement gazeux de monoxyde d’azote NO est observé.

Écrire l’équation (R1) de la réaction de dissolution du cuivre Cu(s) en présence d’acide nitrique.II.B.3) Troisième phase : Dosage du cuivre dans l’alliageAprès addition d’une quantité excédentaire d’iodure de potassium (K+, I−), la solution prend une colorationbrune attribuable à la formation de diiode I2. Ce dernier est ensuite dosé par une solution aqueuse de thiosulfatede sodium (2Na+, S2O2−

3 ) à 𝐶 = 5,0×10−2mol⋅L−1. L’équivalence est détectée pour un volume versé 𝑉 = 12,5mL.Les équations des réactions supposées totales qui ont lieu pendant cette phase sont :

2 Cu2+(aq) + 4 I−

(aq) ⟶ 2 CuI(s) + I2 (aq)

2 S2O2−3 (aq) + I2 (aq) ⟶ S4O2−

6 (aq) + 2 I−(aq)

(R2)(R3)

a) Justifier, par un calcul, le caractère total de la réaction (R3).b) Déduire des résultats du dosage le pourcentage massique de cuivre dans l’alliage dosé.

Page 8: TD : Diagrammes E-pH - pcsipsiauxulis.compcsipsiauxulis.com/IMG/pdf/TD_E-pH.pdf · PCSI, Lycée de l’Essouriau, 2016/2017 TD : Diagrammes E-pH Exercice 1 : Diagramme E-pH du zinc

2015-12-08 20:21:16 Page 14/14

Annexe 4 : Valeurs numériques

Données à 298 K.

O Al CuNuméro atomique 8 13 29Masse molaire (g⋅mol-1) 16,0 27,0 63,5Rayon métallique (pm) 143 128

Densité de l’alumine Al2O3 : 𝑑 = 4.

ConstantesConstante d’Avogadro 𝑁u� = 6,02 × 1023 mol−1

Constante de Faraday 𝐹 = 96,5 × 103 C⋅mol−1

Constante des gaz parfaits 𝑅 = 8,31 J⋅K−1⋅mol−1

Potentiels standard d’oxydoréductionCouple Al3+/Al H+/H2 (g) Fe2+/Fe Cu2+/Cu S4O2−

6 /S2O2−3 I2/I− NO−

3 /NO(g) O2 (g)/H2O𝐸 ∘ (V) −1,66 0,00 −0,44 0,34 0,080 0,62 0,96 1,23

Produit de solubilité de l’hydroxyde d’aluminium(III) Al(OH)3

Al(OH)3 (s) = Al3+(aq) + 3 HO−

(aq) 𝑝𝐾u� = 32

Produit ionique de l’eau

H2O(l) = H+(aq) + HO−

(aq) 𝑝𝐾u� = 14

• • • FIN • • •