41
277 16. c j Basic 300 400 0 0 0 Variables Quantity x 1 x 2 s 1 s 2 s 3 0 s 1 18 3 2 1 0 0 0 s 2 20 2 4 0 1 0 0 s 3 4 0 1 0 0 1 z j 0 0 0 0 0 0 c j z j 300 400 0 0 0 c j Basic 300 400 0 0 0 Variables Quantity x 1 x 2 s 1 s 2 s 3 0 s 1 10 3 0 1 0 –2 0 s 2 4 2 0 0 1 –4 400 x 2 4 0 1 0 0 1 z j 1,600 0 400 0 0 400 c j z j 300 0 0 0 –400 c j Basic 300 400 0 0 0 Variables Quantity x 1 x 2 s 1 s 2 s 3 0 s 1 4 0 0 1 –3/2 4 300 x 1 2 1 0 0 1/2 –2 400 x 2 4 0 1 0 0 1 z j 2,200 300 400 0 150 –200 c j z j 0 0 0 –150 200 c j Basic 300 400 0 0 0 Variables Quantity x 1 x 2 s 1 s 2 s 3 0 s 3 1 0 0 1/4 –3/8 1 300 x 1 4 1 0 1/2 1/4 0 400 x 2 3 0 1 –1/4 3/8 0 z j 2,400 300 400 50 75 0 c j z j 0 0 –50 –75 0 Optimal TaylMod-Aff.qxd 4/21/06 8:50 PM Page 277

Taylmod aff

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Taylmod aff

277

16.

cj Basic 300 400 0 0 0

Variables Quantity x1 x2 s1 s2 s3

0 s1 18 3 2 1 0 0

0 s2 20 2 4 0 1 0

0 s3 4 0 1 0 0 1

zj 0 0 0 0 0 0

cj – zj 300 400 0 0 0

cj Basic 300 400 0 0 0

Variables Quantity x1 x2 s1 s2 s3

0 s1 10 3 0 1 0 –2

0 s2 4 2 0 0 1 –4

400 x2 4 0 1 0 0 1

zj 1,600 0 400 0 0 400

cj – zj 300 0 0 0 –400

cj Basic 300 400 0 0 0

Variables Quantity x1 x2 s1 s2 s3

0 s1 4 0 0 1 –3/2 4

300 x1 2 1 0 0 1/2 –2

400 x2 4 0 1 0 0 1

zj 2,200 300 400 0 150 –200

cj – zj 0 0 0 –150 200

cj Basic 300 400 0 0 0

Variables Quantity x1 x2 s1 s2 s3

0 s3 1 0 0 1/4 –3/8 1

300 x1 4 1 0 1/2 –1/4 0

400 x2 3 0 1 –1/4 3/8 0

zj 2,400 300 400 50 75 0

cj – zj 0 0 –50 –75 0

Optimal

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 277

Page 2: Taylmod aff

278

17.

cj Basic 5 4 0 0

Variables Quantity x1 x2 s1 s2

0 s1 150 3/10 1/2 1 0

0 s2 2,000 10 4 0 1

zj 0 0 0 0 0

cj – zj 5 4 0 0

cj Basic 5 4 0 0

Variables Quantity x1 x2 s1 s2

0 s1 90 0 19/50 1 –3/100

5 x1 200 1 2/5 0 1/10

zj 1,000 5 2 0 1/2

cj – zj 0 2 0 –1/2

cj Basic 5 4 0 0

Variables Quantity x1 x2 s1 s2

4 x2 4,500/19 0 1 50/19 –3/38

5 x1 2,000/19 1 0 –20/19 5/38

zj 28,000/19 5 4 100/19 13/28

cj – zj 0 0 –100/19 –13/38

Optimal

18.

cj Basic 100 150 0 0 0

Variables Quantity x1 x2 s1 s2 s3

0 s1 160 10 4 1 0 0

0 s2 20 1 1 0 1 0

0 s3 300 10 20 0 0 1

zj 0 0 0 0 0 0

cj – zj 100 150 0 0 0

(continued)

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 278

Page 3: Taylmod aff

279

cj Basic 100 150 0 0 0

Variables Quantity x1 x2 s1 s2 s3

0 s1 20 0 0 1 –16 3/5

100 x1 10 1 0 0 2 –1/10

150 x2 10 0 1 0 –1 1/10

zj 2,500 100 150 0 50 5

cj – zj 0 0 0 –50 –5

Optimal

19.

cj Basic 100 20 60 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3

0 s1 60 3 5 0 1 0 0

0 s2 100 2 2 2 0 1 0

0 s3 40 0 0 1 0 0 1

zj 0 0 0 0 0 0 0

cj – zj 100 20 60 0 0 0

cj Basic 100 20 60 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3

100 x1 20 1 5/3 0 1/3 0 0

0 s2 60 0 –4/3 2 –2/3 1 0

0 s3 40 0 0 1 0 0 1

zj 2,000 100 500/3 0 100/3 0 0

cj – zj 0 –440/3 60 –100/3 0 0

(continued)

cj Basic 100 150 0 0 0

Variables Quantity x1 x2 s1 s2 s3

0 s1 100 8 0 1 0 –1/5

0 s2 5 1/2 0 0 1 –1/20

150 x2 15 1/2 1 0 0 1/20

zj 2,250 75 150 0 0 15/2

cj – zj 25 0 0 0 –15/2

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 279

Page 4: Taylmod aff

21.

cj Basic 120 40 240 0 0 M M

Variables Quantity x1 x2 x3 s1 s2 A1 A2

M A1 27 4 1 3 –1 0 1 0

M A2 30 2 6 3 0 –1 0 1

zj 54M 6M 7M 6M –M –M M M

zj – cj 6M – 120 7M – 40 6M – 240 –M –M 0 0

cj Basic 120 40 240 0 0 M

Variables Quantity x1 x2 x3 s1 s2 A1

M A1 22 11/3 0 5/2 –1 1/6 1

40 x2 5 1/3 1 1/2 0 –1/6 0

zj 19M + 200 11M/3 + 40/3 40 5M/2 + 20 –M M/6 – 20/3 M

zj – cj 11M/3 – 320/3 0 5M/2 – 220 –M M/6 – 20/3 0

cj Basic 120 40 240 0 0

Variables Quantity x1 x2 x3 s1 s2

120 x1 6 1 0 15/22 –3/11 1/22

40 x2 3 0 1 6/22 1/11 –2/11

zj 840 120 40 1,020/11 –320/11 –20/11

cj – zj 0 0 –1,620/11 –320/11 –20/11

Optimal

20. a. maximization, because cj – zjb. x2 = 10, s2 = 20, x1 = 10, Z = 30c. maximize Z = x1 + 2x2 – x3d. 3e. No, because there are three constraints and

three “slack” variablesf. s1 = 0g. yes, because cj – zj = 0 for s1h. x2 = 3 1/3, s2 = 26 2/3, x1 = 23 1/3, Z = 30

280

cj Basic 100 20 60 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3

100 x1 20 1 5/3 0 1/3 0 0

60 x3 30 0 –2/3 1 –1/3 1/2 0

0 s3 10 0 2/3 0 1/3 –1/2 1

zj 3,800 100 380/3 60 40/3 30 0

cj – zj 0 –320/3 0 –40/3 –30 0

Optimal

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 280

Page 5: Taylmod aff

281

22.

cj Basic .05 .10 0 0 M M

Variables Quantity x1 x2 s1 s2 A1 A2

M A1 36 6 2 –1 0 1 0

M A2 50 5 5 0 –1 0 1

zj 86M 11M 7M –M –M M M

zj – cj 11M – .05 7M – .10 –M –M 0 0

cj Basic .05 .10 0 0 M

Variables Quantity x1 x2 s1 s2 A2

.05 x1 6 1 1/3 –1/6 0 0

M A2 20 0 10/3 5/6 –1 1

zj 20M + .3 .05 10M/3 + .02 5M/6 – .01 –M M

zj – cj 0 10M/3 – .08 5M/6 – .01 –M 0

cj Basic .05 .10 0 0

Variables Quantity x1 x2 s1 s2

.05 x1 4 1 0 –1/4 1/10

.10 x2 6 0 1 1/4 –3/10

zj .80 .05 .10 .0125 –.025

zj – cj 0 0 .0125 –.025

cj Basic .05 .10 0 0

Variables Quantity x1 x2 s1 s2

.05 x1 10 1 1 0 –1/5

0 s1 24 0 4 1 –6/5

zj .50 .05 .05 0 –.01

zj – cj 0 –.05 0 –.01

Optimal

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 281

Page 6: Taylmod aff

282

23.

0 4 8 12 16 20 24 28 32x

x

1

4

8

12

16

20

24

2

Firsttableau

Thirdtableau

Second tableauFourth tableau

24.

cj Basic 10 12 7 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3

0 s1 300 20 15 10 1 0 0

0 s2 120 10 5 0 0 1 0

0 s3 40 1 0 2 0 0 1

zj 0 0 0 0 0 0 0

cj – zj 10 12 7 0 0 0

cj Basic 10 12 7 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3

12 x2 20 4/3 1 2/3 1/15 0 0

0 s2 20 10/3 0 –10/3 –1/3 1 0

0 s3 40 1 0 2 0 0 1

zj 240 16 12 8 4/5 0 0

cj – zj –6 0 –1 –4/5 0 0

Optimal

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 282

Page 7: Taylmod aff

283

25.

cj Basic 6 2 12 0 0

Variables Quantity x1 x2 x3 s1 s2

0 s1 24 4 1 3 1 0

0 s2 30 2 6 3 0 1

zj 0 0 0 0 0 0

cj – zj 6 2 12 0 0

cj Basic 6 2 12 0 0

Variables Quantity x1 x2 x3 s1 s2

12 x3 8 4/3 1/3 1 1/3 0

0 s2 6 –2 5 0 –1 1

zj 96 16 4 12 4 0

cj – zj –10 –2 0 –4 0

Optimal

26.

cj Basic 100 75 90 95 0 0 0 0

Variables Quantity x1 x2 x3 x4 s1 s2 s3 s4

0 s1 40 3 2 0 0 1 0 0 0

0 s2 25 0 0 4 1 0 1 0 0

0 s3 2,000 200 0 250 0 0 0 1 0

0 s4 2,200 100 0 0 200 0 0 0 1

zj 0 0 0 0 0 0 0 0 0

cj – zj 100 75 90 95 0 0 0 0

cj Basic 100 75 90 95 0 0 0 0

Variables Quantity x1 x2 x3 x4 s1 s2 s3 s4

0 s1 10 0 2 –3.75 0 1 0 –.015 0

0 s2 25 0 0 4 1 0 1 0 0

100 x1 10 1 0 1.25 0 0 0 .005 0

0 s4 1,200 0 0 –1.25 200 0 0 –.50 1

zj 1,000 100 0 1.25 0 0 0 .50 0

cj – zj 0 75 –35 95 0 0 –.50 0

(continued)

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 283

Page 8: Taylmod aff

284

cj Basic 100 75 90 95 0 0 0 0

Variables Quantity x1 x2 x3 x4 s1 s2 s3 s4

0 s1 10 0 2 –3.75 0 1 0 –.015 0

0 s2 19 0 0 4.6 0 0 1 .002 –.005

100 x1 10 1 0 1.25 0 0 0 .005 0

95 x4 6 0 0 –.625 1 0 0 –.002 .005

zj 1,570 100 0 65.6 95 0 0 .26 .475

cj – zj 0 75 24.4 0 0 0 –.26 –.475

cj Basic 100 75 90 95 0 0 0 0

Variables Quantity x1 x2 x3 x4 s1 s2 s3 s4

75 x2 5 0 1 –1.875 0 .50 0 –.007 0

0 s2 19 0 0 4.6 0 0 1 .002 –.005

100 x1 10 1 0 1.25 0 0 0 .005 0

95 x4 6 0 0 –.625 1 0 0 –.002 .005

zj 1,945 100 75 –75 95 37.5 0 –.30 .475

cj – zj 0 0 165 0 –37.5 0 .30 –.475

cj Basic 100 75 90 95 0 0 0 0

Variables Quantity x1 x2 x3 x4 s1 s2 s3 s4

75 x2 12.7 0 1 0 0 .5 .405 –.006 –.002

90 x3 4.1 0 0 1 0 0 .216 .001 –.001

100 x1 4.9 1 0 0 0 0 –.270 .004 .001

95 x4 8.6 0 0 0 1 0 .135 –.002 .004

zj 2,623 100 75 90 95 37.5 35.7 –.211 .297

cj – zj 0 0 0 0 –37.5 –35.7 .211 –.297

cj Basic 100 75 90 95 0 0 0 0

Variables Quantity x1 x2 x3 x4 s1 s2 s3 s4

75 x2 20 1.5 1 0 0 .50 0 0 0

90 x3 3.5 –.125 0 1 0 0 .25 0 –.001

0 s3 1,125 231.25 0 0 0 0 –62.5 1 .313

95 x4 11 .50 0 0 1 0 0 0 .005

zj 2,860 148.75 75 90 95 37.5 22.5 0 .36

cj – zj –48.75 0 0 0 –37.5 –22.5 0 –.36

Optimal

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 284

Page 9: Taylmod aff

285

27.

cj Basic 20 16 0 0 0 M M M

Variables Quantity x1 x2 s1 s2 s3 A1 A2 A3

M A1 6 3 1 –1 0 0 1 0 0

M A2 4 1 1 0 –1 0 0 1 0

M A3 12 2 6 0 0 –1 0 0 1

zj 22M 6M 8M –M –M –M M M M

zj – cj 6M – 20 8M – 16 –M –M –M 0 0 0

cj Basic 20 16 0 0 0 M M

Variables Quantity x1 x2 s1 s2 s3 A1 A2

M A1 4 8/3 0 –1 0 1/6 1 0

M A2 2 2/3 0 0 –1 1/6 0 1

16 x2 2 1/3 1 0 0 –1/6 0 0

zj 32 + 6M 10M/3 + 16/3 16 –M –M M/3 – 8/3 M M

zj – cj 10M/3 – 44/3 0 –M –M M/3 – 8/3 0 0

cj Basic 20 16 0 0 0 M

Variables Quantity x1 x2 s1 s2 s3 A2

20 x1 3/2 1 0 –3/8 0 1/16 0

M A2 1 0 0 1/4 –1 1/8 1

16 x2 3/2 0 1 1/8 0 –3/16 0

zj M + 27 20 16 M/4 – 53/6 –M + 16/3 M/8 – 25/12 M

zj – cj 0 0 M/4 – 53/6 –M + 16/3 M/8 – 25/12 0

(continued)

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 285

Page 10: Taylmod aff

28.

0 2 4 6 8 10 12 14 16x

x

1

2

4

6

8

10

12

2

First tableau

Second tableau

Fourth tableau

Fifth tableau

Third tableau

286

cj Basic 20 16 0 0 0

Variables Quantity x1 x2 s1 s2 s3

20 x1 3 1 0 0 –3/2 1/4

0 s1 4 0 0 1 –4 1/2

16 x2 1 0 1 0 1/2 –1/4

zj 76 20 16 0 –22 1

zj – cj 0 0 0 –22 1

cj Basic 20 16 0 0 0

Variables Quantity x1 x2 s1 s2 s3

20 x1 1 1 0 –1/2 1/2 0

0 s3 8 0 0 2 –8 1

16 x2 3 0 1 1/2 –3/2 0

zj 68 20 16 –2 –14 0

zj – cj 0 0 –2 –14 0

Optimal

29. Minimize Z = 8x1 + 2x2 + 7x3 + 0s1 + 0s2 + 0s3– MA1 – MA2 – MA3

subject to

2x1 + 6x2 + x3 + A1 = 303x2 + 4x3 – s1 + A2 = 604x1 + x2 + 2x3 + s2 = 50x1 + 2x2 – s3 + A3 = 20

x1, x2, x3 ≥ 0

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 286

Page 11: Taylmod aff

287

30. Minimize Z = 40x1 + 55x2 + 30x3 + 0s1 + 0s2 + 0s3 + MA1 + MA2 + MA3

subject to

x1 + 2x2 + 3x3 + s1 = 602x1 + x2 + x3 + A1 = 40

x1 + 3x2 + x3 – s2 + A2 = 505x2 –3x3 – s3 + A3 = 100

x1, x2, x3 ≥ 0

31.

cj Basic 40 60 0 0 0 0 –M –M

Variables Quantity x1 x2 s1 s2 s3 s4 A1 A2

0 s1 30 1 2 1 0 0 0 0 0

0 s2 72 4 4 0 1 0 0 0 0

–M A1 5 1 0 0 0 –1 0 1 0

–M A2 12 0 1 0 0 0 –1 0 1

zj –17M –M –M 0 0 M M –M –M

cj – zj M + 40 M + 60 0 0 –M –M 0 0

cj Basic 40 60 0 0 0 0 –M

Variables Quantity x1 x2 s1 s2 s3 s4 A1

0 s1 6 1 0 1 0 0 2 0

0 s2 24 4 0 0 1 0 4 0

–M A1 5 1 0 0 0 –1 0 1

60 x2 12 0 1 0 0 0 –1 0

zj –5M + 720 –M 60 0 0 M –60 –M

cj – zj M + 40 0 0 0 –M 60 0

cj Basic 40 60 0 0 0 0

Variables Quantity x1 x2 s1 s2 s3 s4

0 s1 1 0 0 1 0 1 2

0 s2 4 0 0 0 1 4 4

40 x1 5 1 0 0 0 –1 0

60 x2 12 0 1 0 0 0 –1

zj 920 40 60 0 0 –40 –60

cj – zj 0 0 0 0 40 60

(continued)

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 287

Page 12: Taylmod aff

cj Basic 40 60 0 0 0 0

Variables Quantity x1 x2 s1 s2 s3 s4

0 s4 0 0 0 1 –1/4 0 1

0 s3 1 0 0 –4 1/2 1 0

40 x1 6 1 0 –1 1/2 0 0

60 x2 12 0 1 1 –1/4 0 0

zj 960 40 60 20 5 0 0

cj – zj 0 0 –20 –5 0 0

Optimal

32.

cj Basic 1 5 0 0 0 –M

Variables Quantity x1 x2 s1 s2 s3 A1

–M A1 25 5 5 –1 0 0 1

0 s2 16 2 4 0 1 0 0

0 s3 5 1 0 0 0 1 0

zj –25M –5M –5M M 0 0 –M

cj – zj 5M + 1 5M + 5 –M 0 0 0

cj Basic 1 5 0 0 0 –M

Variables Quantity x1 x2 s1 s2 s3 A1

–M A1 5 5/2 0 –1 –5/4 0 1

5 x2 4 1/2 1 0 1/4 0 0

0 s3 5 1 0 0 0 1 0

zj –5M + 20 –5M/2 + 5/2 5 M –5M/4 + 5/4 0 –M

cj – zj 5M/2 – 3/2 0 –M 5M/4 – 5/4 0 0

(continued)

288

cj Basic 40 60 0 0 0 0

Variables Quantity x1 x2 s1 s2 s3 s4

0 s4 1/2 0 0 1/2 0 1/2 1Tie

0 s2 2 0 0 –2 1 2 0

40 x1 5 1 0 0 0 –1 0

60 x2 25/2 0 1 1/2 0 1/2 0

zj 950 40 60 30 0 –10 0

cj – zj 0 0 –30 0 10 0

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 288

Page 13: Taylmod aff

289

cj Basic 1 5 0 0 0

Variables Quantity x1 x2 s1 s2 s3

1 x1 2 1 0 –2/5 –1/2 0

5 x2 3 0 1 1/5 1/2 0

0 s3 3 0 0 2/5 1/2 1

zj 17 1 5 3/5 2 0

cj – zj 0 0 –3/5 –2 0

Optimal

33.

cj Basic 3 6 0 0 0 0 M

Variables Quantity x1 x2 s1 s2 s3 s4 A1

0 s1 18 3 2 1 0 0 0 0

M A1 5 1 1 0 –1 0 0 1

0 s3 4 1 0 0 0 1 0 0

0 s4 7 0 1 0 0 0 1 0

zj 5M M M 0 –M 0 0 M

zj – cj M – 3 M – 6 0 –M 0 0 0

cj Basic 3 6 0 0 0 0 M

Variables Quantity x1 x2 s1 s2 s3 s4 A1

0 s1 6 0 2 1 0 –3 0 0

M A1 1 0 1 0 –1 –1 0 1

3 x1 4 1 0 0 0 1 0 0

0 s4 7 0 1 0 0 0 1 0

zj M + 12 3 M 0 –M –M + 3 0 M

zj – cj 0 M – 6 0 –M –M + 3 0 0

cj Basic 3 6 0 0 0 0

Variables Quantity x1 x2 s1 s2 s3 s4

0 s1 4 0 0 1 2 –1 0

6 x2 1 0 1 0 –1 –1 0

3 x1 4 1 0 0 0 1 0

0 s4 6 0 0 0 1 1 1

zj 18 3 6 0 –6 –3 0

zj – cj 0 0 0 –6 –3 0

Optimal

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 289

Page 14: Taylmod aff

290

34.

cj Basic 10 5 0 0 –M –M

Variables Quantity x1 x2 s1 s2 A1 A2

–M A1 10 2 1 –1 0 1 0

–M A2 4 0 1 0 0 0 1

0 s2 20 1 4 0 1 0 0

zj –14M –2M –2M M 0 –M –M

cj – zj 2M + 10 2M + 5 –M 0 0 0

cj Basic 10 5 0 0 –M

Variables Quantity x1 x2 s1 s2 A2

10 x1 5 1 1/2 –1/2 0 0

–M A2 4 0 1 0 0 1

0 s2 15 0 7/2 1/2 1 0

zj –4M + 50 10 –M + 5 –5 0 –M

cj – zj 0 M 5 0 0

cj Basic 10 5 0 0

Variables Quantity x1 x2 s1 s2

10 x1 3 1 0 –1/2 0

5 x2 4 0 1 0 0

0 s2 1 0 0 1/2 1

zj 50 10 5 –5 0

cj – zj 0 0 5 0

cj Basic 10 5 0 0

Variables Quantity x1 x2 s1 s2

10 x1 4 1 0 0 1

5 x2 4 0 1 0 0

0 s1 2 0 0 1 2

zj 60 10 5 0 10

cj – zj 0 0 0 –10

Optimal

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 290

Page 15: Taylmod aff

291

35.

cj Basic 1 2 –1 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3

0 s1 40 0 4 1 1 0 0

0 s2 20 1 –1 0 0 1 0

0 s3 60 2 4 3 0 0 1

zj 0 0 0 0 0 0 0

cj – zj 1 2 –1 0 0 0

cj Basic 1 2 –1 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3

2 x2 10 0 1 1/4 1/4 0 0

0 s2 30 1 0 1/4 1/4 1 0

0 s3 20 2 0 2 –1 0 1

zj 20 0 2 1/2 1/2 0 0

cj – zj 1 0 –3/2 –1/2 0 0

cj Basic 1 2 –1 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3

2 x2 10 0 1 1/4 1/4 0 0

0 s2 30 0 0 –3/4 3/4 1 –1/2

1 x1 10 1 0 1 –1/2 0 1/2

zj 30 1 2 3/2 0 0 1/2

cj – zj 0 0 –5/2 0 0 –1/2

Multiple optimum solution

Alternate solution:

cj Basic 1 2 –1 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3

2 x2 10/3 0 1 1/2 0 –1/3 1/6

0 s1 80/3 0 0 –1 1 4/3 –2/3

1 x1 70/3 1 0 1/2 0 2/3 1/6

zj 30 1 2 3/2 0 0 1/2

cj – zj 0 0 –5/2 0 0 –1/2

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 291

Page 16: Taylmod aff

292

36.

cj Basic 1 2 2 0 0 –M –M

Variables Quantity x1 x2 x3 s1 s2 A1 A2

0 s1 12 1 1 2 1 0 0 0

–M A1 20 2 1 5 0 0 1 0

–M A2 8 1 1 –1 0 –1 0 1

zj –28M –3M –2M –4M 0 M –M –M

cj – zj 1 + 3M 2 + 2M 2 + 4M 0 –M 0 0

cj Basic 1 2 2 0 0 –M

Variables Quantity x1 x2 x3 s1 s2 A2

0 s1 4 1/5 3/5 0 1 0 0

2 x3 4 2/5 1/5 1 0 0 0

–M A2 12 7/5 6/5 0 0 –1 1

zj –12M + 8 –4/5 – 7M/5 2/5 – 6M/5 2 0 M –M

cj – zj 1/5 + 7M/5 8/5 + 6M/5 0 0 –M 0

cj Basic 1 2 2 0 0

Variables Quantity x1 x2 x3 s1 s2

0 s1 16/7 0 3/7 0 1 1/7

2 x3 4/7 0 –1/7 1 0 2/7

1 x1 60/7 1 6/7 0 0 –5/7

zj 68/7 1 4/7 2 0 –1/7

cj – zj 0 10/7 0 0 1/7

cj Basic 1 2 2 0 0

Variables Quantity x1 x2 x3 s1 s2

2 x2 16/3 0 1 0 7/3 1/3

2 x3 4/3 0 0 1 1/3 1/3

1 x1 4 1 0 0 –2 –1

zj 52/3 1 2 2 10/3 1/3

cj – zj 0 0 0 –10/3 –1/3

Optimal

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 292

Page 17: Taylmod aff

293

cj Basic 400 350 450 0 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3 s4

0 s1 120 2 3 2 1 0 0 0

0 s2 160 4 3 1 0 1 0 0

0 s3 100 3 2 4 0 0 1 0

0 s4 40 1 1 1 0 0 0 1

zj 0 0 0 0 0 0 0 0

cj – zj 400 350 450 0 0 0 0

37.

cj Basic 400 350 450 0 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3 s4

0 s1 70 1/2 2 0 1 0 –1/2 0

0 s2 135 13/4 5/2 0 0 1 –1/4 0

450 x3 25 3/4 1/2 1 0 0 1/4 0

0 s4 15 –1/4 1/2 0 0 0 –1/4 1

zj 11,250 1,350/4 450/2 450 0 0 450/4 0

cj – zj 250/4 250/2 0 0 0 –450/4 0

cj Basic 400 350 450 0 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3 s4

0 s1 10 –1/2 0 0 1 0 1/2 –4

0 s2 60 2 0 0 0 1 1 –5

450 x3 10 1/2 0 1 0 0 1/2 –1

350 x2 30 1/2 1 0 0 0 –1/2 2

zj 15,000 400 350 450 0 0 50 250

cj – zj 0 0 0 0 0 –50 –250

Multiple optimum solution at x1

Alternate solution:

cj Basic 400 350 450 0 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3 s4

0 s1 20 0 0 1 1 0 1 –5

0 s2 20 0 0 –4 0 1 –1 –1

400 x1 20 1 0 2 0 0 1 –2

350 x2 20 0 1 –1 0 0 –1 3

zj 15,000 400 350 450 0 0 50 250

cj – zj 0 0 0 0 0 –50 –250

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 293

Page 18: Taylmod aff

39. (a)

0 1 2 3 4 5 6x

x

1

Unbounded solution

Z1

2

3

4

5

2

-1-2-3-4

294

38. (a)

0 1 2 3 4 5 6 7x

x

1

Infeasible-no common solution space

1

2

3

4

5

2

(b)

cj Basic 3 2 0 0 –M

Variables Quantity x1 x2 s1 s2 A1

0 s1 1 1 1 1 0 0

–M A1 2 1 1 0 –1 1

zj –2M –M –M 0 M –M

cj – zj M + 3 M + 2 0 –M 0

cj Basic 3 2 0 0 –M

Variables Quantity x1 x2 s1 s2 A1

3 x1 1 1 1 1 0 0

–M A1 1 0 0 –1 –1 1

zj 3 – M 3 3 M M –M

cj – zj 0 –1 –M –M 0

Infeasible solution

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 294

Page 19: Taylmod aff

295

(b)

cj Basic 1 1 0 0

Variables Quantity x1 x2 s1 s2

0 s1 1 –1 1 1 0

0 s2 4 –1 2 0 1

zj 0 0 0 0 0

cj – zj 1 1 0 0

Tie for entering variable; if x1 is chosen, the solution is unbounded. Select x2 arbitrarily.

cj Basic 1 1 0 0

Variables Quantity x1 x2 s1 s2

1 x2 1 –1 1 1 0

0 s2 3 1 0 –1 1

zj 1 –1 1 1 0

cj – zj 2 0 –1 0

cj Basic 1 1 0 0

Variables Quantity x1 x2 s1 s2

1 x2 4 0 1 0 1

1 x1 3 1 0 –1 1

zj 7 1 1 –1 2

cj – zj 0 0 1 –2

Unbounded; no pivot row available

40.

cj Basic 7 5 5 0 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3 s4

0 s1 25 1 1 1 1 0 0 0

0 s2 40 2 1 1 0 1 0 0

0 s3 25 1 1 0 0 0 1 0

0 s4 6 0 0 1 0 0 0 1

zj 0 0 0 0 0 0 0 0

cj – zj 7 5 5 0 0 0 0

(continued)

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 295

Page 20: Taylmod aff

Alternate Solution:

cj Basic 7 5 5 0 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3 s4

5 x2 4 0 1 0 2 –1 0 –1

7 x1 15 1 0 0 –1 1 0 0

0 s3 6 0 0 0 –1 0 1 1

5 x3 6 0 0 1 0 0 0 1

zj 155 7 5 5 3 2 0 0

cj – zj 0 0 0 –3 –2 0 0

296

cj Basic 7 5 5 0 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3 s4

0 s1 5 0 1/2 1/2 1 –1/2 0 0

7 x1 20 1 1/2 1/2 0 1/2 0 0

0 s3 5 0 1/2 –1/2 0 –1/2 1 0

0 s4 6 0 0 0 0 0 0 1

zj 140 7 7/2 7/2 0 7/2 0 0

cj – zj 0 3/2 3/2 0 –7/2 0 0

Tie

cj Basic 7 5 5 0 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3 s4

5 x2 10 0 1 1 2 –1 0 0

7 x1 15 1 0 0 –1 1 0 0

0 s3 0 0 0 –1 –1 0 1 0

0 s4 6 0 0 1 0 0 0 1

zj 155 7 5 5 3 2 0 0

cj – zj 0 0 0 –3 –2 0 0

Multiple optimum (continued)

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 296

Page 21: Taylmod aff

297

41.

cj Basic 15 25 0 0 0 M M

Variables Quantity x1 x2 s1 s2 s3 A1 A2

M A1 12 3 4 –1 0 0 1 0

M A2 6 2 1 0 –1 0 0 1

0 s3 9 3 2 0 0 1 0 0

zj 18M 5M 5M –M –M 0 M M

zj – cj 5M – 15 5M – 25 –M –M 0 0 0

cj Basic 15 25 0 0 0 M

Variables Quantity x1 x2 s1 s2 s3 A1

M A1 3 0 5/2 –1 1 0 1

15 x1 3 1 1/2 0 0 0 0

0 s3 0 0 1/2 0 0 1 0

zj 3M + 45 15 5M/2 + 15/2 –M 3M/2 – 15/2 0 M

zj – cj 0 5M/2 – 35/2 –M 3M/2 – 15/2 0 0

cj Basic 15 25 0 0 0 M

Variables Quantity x1 x2 s1 s2 s3 A1

M A1 3 0 0 –1 –6 –5 1

15 x1 3 1 0 0 –2 –1 0

25 x2 0 0 1 0 3 2 0

zj 3M + 45 15 15 –M –6M +45 –5M +45 M

zj – cj 0 0 –M –6M +45 –5M +45 0

Infeasible solution

42. a).minimize Zd = 90y1 + 60y2subject to

y1 + 2y2 ≥ 64y1 + 2y2 ≥ 10

y1, y2 ≥ 0

b) y1 = the marginal value of one additional lb of brass = $1.33

y2 = the marginal value of one additional hrof labor = $2.33

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 297

Page 22: Taylmod aff

298

cj Basic 6 + ∆ 10 0 0

Variables Quantity x1 x2 s1 s2

10 x2 20 0 1 1/3 –1/6

6 + ∆ x1 10 1 0 –1/3 2/3

zj 260 + 10∆ 6 + ∆ 10 4/3 – ∆/3 7/3 + 2∆/3

cj – zj 0 0 –4/3 + ∆/3 –7/3 – 2∆/3

Solving for the cj – zj inequalities:

–4/3 + ∆/3 ≤ 0∆/3 ≤ 4/3

∆ ≤ 4

Since c1 = 6 + ∆; ∆ = c1 – 6. Thus

c1 – 6 ≤ 4c1 ≤ 10

–7/3 – 2∆/3 ≤ 0–2∆/3 ≤ 7/3

–2∆ ≤ 7∆ ≥ –7/2

Since c1 = 6 + ∆; ∆ = c1 – 6. Thus

c1 – 6 ≥ –7/2c1 ≥ 5/2

Summarizing, 5/2 ≤ c1 ≤ 10.

c2, basic:

cj Basic 6 10 + ∆ 0 0

Variables Quantity x1 x2 s1 s2

10 + ∆ x2 20 0 1 1/3 –1/6

6 x1 10 1 0 –1/3 2/3

zj 280 + 20∆ 6 10 + ∆ 4/3 + ∆/3 7/3 – ∆/6

cj – zj 0 0 –4/3 – ∆/3 –7/3 + ∆/6

c) c1, basic:

Solving for the cj – zj inequalities:

–4/3 – ∆/3 ≤ 0–∆/3 ≤ 4/3

∆ ≥ –4

Since c2 = 10 + ∆; ∆ = c2 – 10. Thus

c2 – 10 ≥ –4c2 ≥ 6

–7/3 + ∆/6 ≤ 0∆/6 ≤ 7/3

∆ ≤ 14

Since c2 = 10 + ∆; ∆ = c2 – 10. Thus

c2 – 10 ≤ 14c2 ≤ 24

Summarizing, 6 ≤ c2 ≤ 24.

d) q1:

x2: 20 + ∆/3 ≥ 0 x1: 10 – ∆/3 ≥ 0∆/3 ≥ –20 –∆/3 ≥ –10

∆ ≥ –60 ∆ ≤ 30

Therefore, –60 ≤ ∆ ≤ 30. Since

q1 = 90 + ∆∆ = q1 – 90

–60 ≤ q1 – 90 ≤ 3030 ≤ q1 ≤ 120

q2:

x2: 20 – ∆/6 ≥ 0 x1: 10 + 2∆/3 ≥ 0– ∆/6 ≥ –20 2∆/3 ≥ –10

∆ ≤ 120 ∆ ≥ –15

Therefore, –15 ≤ ∆ ≤ 120. Since

q2 = 60 + ∆∆ = q2 – 60

–15 ≤ q2 – 60 ≤ 12045 ≤ q2 ≤ 180

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 298

Page 23: Taylmod aff

299

e) The marginal value of 1 hr of labor is $2.33.From part d, the sensitivity range for q2, labor,is 45 ≤ q2 ≤ 180. Thus, the company wouldpurchase up to 180 hr at the marginal valueprice.

43. a) Minimize Zd = 500y1 + 800y2subject to

10y1 + 34y2 ≥ 20050y1 + 20y2 ≥ 300

y1, y2 ≥ 0

y1 = $4.13 = the marginal value of oneadditional lb of chili beans; y2 = $4.67 = the marginal value of one additional lb of ground beef.

b)

Point C must become the optimal solution for x2 = 0; therefore the slope of the objectivefunction must be greater than the slope of theconstraint for ground beef, –34/20. Solving thefollowing for the profit, p, of Razorback chiliyields

–p/300 = –34/20p = $510

Thus, if the profit of Razorback chili is greater than $510, no Longhorn chili will be produced.The new optimal solution will be x1 = 23.5 andx2 = 0.

c)

The constraint line for chili beans rotates,creating a new, smaller solution space, and theoptimal solution shifts from point B to point B´where x1 = 21.43 and x2 = 3.57.

0 10 20 30 40 50x

x

1C

BA

10

20

30

40

50

60

2

60

0 10 20 30 40 50x

x

1C

BB´

A10

20

30

40

50

60

2

60

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 299

Page 24: Taylmod aff

300

cj Basic 200 + ∆ 300 0 0

Variables Quantity x1 x2 s1 s2

300 x2 6 0 1 17/750 –1/150

200 + ∆ x1 20 1 0 –1/75 1/30

zj 5,800 + 20∆ 200 + ∆ 300 310/75 – ∆/75 70/15 + ∆/30

cj – zj 0 0 –310/75 + ∆/75 –70/15 – ∆/30

d) c1, basic:

Solving for the cj – zj inequalities:

–310/75 + ∆/75 ≤ 0∆/75 ≤ 3310/75

∆ ≤ 310

Since c1 = 200 + ∆; ∆ = c1 – 200. Thus

c1 – 200 ≤ 310c1 ≤ 510

–70/15 – ∆/30 ≤ 0–∆/30 ≤ 70/15

∆ ≥ –140

Since c1 = 200 + ∆; ∆ = c1 – 200. Thus

c1 – 200 ≥ –140c1 ≥ 60

Summarizing, 60 ≤ c1 ≤ 510.

c2, basic:

Since c2 = 300 + ∆; ∆ = c2 – 300. Thus

c2 – 300 ≤ 700c2 ≤ 1,000

Summarizing, 117.65 ≤ c2 ≤ 1,000.

e) q1:

x2: 6 + 17∆/750 ≥ 0 x1: 20 – ∆/75 ≥ 017∆/750 ≥ –6 –∆/75 ≥ –20

∆ ≥ –264.7 ∆ ≤ 1,500

Therefore, –264.7 ≤ ∆ ≤1,500. Since

q1 = 500 + ∆∆ = q1 – 500

–264.7 ≤ q1 – 500 ≤ 1,500235.3 ≤ q1 ≤ 2,000

cj Basic 200 300 + ∆ 0 0

Variables Quantity x1 x2 s1 s2

300 + ∆ x2 6 0 1 17/750 –1/150

200 x1 20 1 0 –1/75 1/30

zj 5,800 + 6∆ 200 300 + ∆ 310/75 + 17∆/750 70/15 – ∆/150

cj – zj 0 0 –310/75 – 17∆/750 –70/15 + ∆/150

Solving for the cj – zj inequalities:

–310/75 – 17∆/750 ≤ 0–17∆/750 ≤ 310/75

∆ ≥ –182.35

Since c2 = 300 + ∆; ∆ = c2 – 300. Thus

c2 – 300 ≥ –182.35c2 ≥ 117.65

–70/15 + ∆/150 ≤ 0∆/150 ≤ 70/15

∆ ≤ 700

q2:

x2: 6 – ∆/150 ≥ 0 x1: 20 + ∆/30 ≥ 0– ∆/150 ≥ –6 ∆/30 ≥ –20

∆ ≤ 900 ∆ ≥ –600

Therefore, –600 ≤ ∆ ≤ 900. Since

q2 = 800 + ∆∆ = q2 – 800

–600 ≤ q2 – 800 ≤ 900200 ≤ q2 ≤ 1,700

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 300

Page 25: Taylmod aff

301

f) The marginal value of 1 lb of chili beans is$4.13. The sensitivity range for q1, chili beans,is 235.3 ≤ q1q ≤ 2,000. Thus, the companywould purchase up to 2,000 lb at the marginalvalue price.

g) Groundbeef

h) No effect

44. a) Minimize Zd = 60y1 + 40y2subject to

12y1 + 4y2 ≥ 94y1 + 8y2 ≥ 7

y1, y2 ≥ 0

b) y1 = the marginal value of one additional hr ofprocess 1; y2 = the marginal value of oneadditional hr of process 2

For the s1 column, the cj – zj value of $.55 is the marginal value of 1 hr of process 1production time. For the s2 column, the cj – zjvalue of $0.60 is the marginal value of 1 hr ofprocess 2 production time.

cj Basic 9 + ∆ 7 0 0

Variables Quantity x1 x2 s1 s2

9 + ∆ x1 4 1 0 1/10 –1/20

7 x2 3 0 1 –1/20 3/20

zj 57 + 4∆ 9 + ∆ 7 11/20 – ∆/10 12/20 + ∆/20

cj – zj 0 0 –11/20 – ∆/10 –12/20 + ∆/20

c) cj, basic:

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 301

Page 26: Taylmod aff

302

Solving for the cj – zj inequalities:

–11/20 – ∆/10 ≤ 0–∆/10 ≤ 11/20

–∆ ≤ 11/2∆ ≥ –11/2

Since c1 = 9 + ∆ , ∆ = c1 – 9. Thus

c1 – 9 ≥ 11/2c1 ≥ 7/2

–12/20 + ∆/20 ≤ 0∆/20 ≤ 12/20

∆ ≤ 12

Since c1 = 9 + ∆ , ∆ = c1 – 9. Thus

c1 – 9 ≤ 12c1 ≤ 12

Summarizing, 7/2 ≤ c1 ≤ 12.

c2, basic:

Since c2 = 7 + ∆; ∆ = c2 – 7. Thus

c2 – 7 ≥ –4c2 ≥ 3

Summarizing, 3 ≤ c2 ≤ 18.

d) q1:

x1: 4 + ∆/10 ≥ 0 x2: 3 – ∆/20 ≥ 0∆/10 ≥ –4 –∆/20 ≥ –3

–∆ ≥ –80 –∆ ≥ –60∆ ≥ –40 ∆ ≤ 60

Therefore, –40 ≤ ∆ ≤60. Since

q1 = 60 + ∆∆ = q1 – 60

–40 ≤ q1 – 60 ≤ 6020 ≤ q1 ≤ 120

cj Basic 9 7 + ∆ 0 0

Variables Quantity x1 x2 s1 s2

9 x1 4 1 0 1/10 –1/20

7 + ∆ x2 3 0 1 –1/20 3/20

zj 57 + 3∆ 9 7 + ∆ 11/20 – ∆/20 12/20 + 3∆/20

cj – zj 0 0 –11/20 + ∆/20 –12/20 – 3∆/20

Solving for the cj – zj inequalities:

–11/20 + ∆/20 ≤ 0∆/20 ≤ 11/20

∆ ≤ 11

Since c2 = 7 + ∆; ∆ = c2 – 7. Thus

c2 – 7 ≤ 11c2 ≤ 18

–12/20 – 3∆/20 ≤ 0–3∆/20 ≤ 12/20

∆ ≥ –4

q2:

x1: 4 – ∆/20 ≥ 0 x2: 3 +3 ∆/20 ≥ 0–∆/20 ≥ –4 3∆/20 ≥ –3

–∆ ≥ –80 ∆ ≥ –20∆ ≤ 80

Therefore, –20 ≤ ∆ ≤ 80. Since

q2 = 40 + ∆∆ = q2 – 40

–20 ≤ q2 – 40 ≤ 8020 ≤ q2 ≤ 120

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 302

Page 27: Taylmod aff

303

e) The marginal value of 1 hr of process 1production time is $.55. The sensitivity rangefor q1, production hours, is 20 ≤ q1 ≤ 120.Thus, the company would purchase up to 120hr at the marginal value price.

45. a) Minimize Zd = 180y1 + 135y2subject to

2y1 + 3y2 ≥ 2005y1 + 3y2 ≥ 300

y1, y2 ≥ 0

b) y1 = $33.33 = the marginal value of an additional hr of labor; y2 = $44.44 = themarginal value of an additional bd. ft. of wood

c)

Point A must become the optimal solution forx1 = 0; therefore the slope of the objectivefunction must be less than the slope of theconstraint for labor, –2/5. Solving the followingfor the profit, p, of coffee tables gives

–200/p = –2/5p = $500

Thus, if the profit for coffee tables is greaterthan $500, no end tables will be produced. Thenew optimal solution will be x1 = 0 and x2 = 36.

d)

The constraint line for wood moves outward,creating a new solution space, and the optimalsolution point shifts from point B to point B´where x1 = 31.67 and x2 = 23.33.0 10 20 30 40 50 60 70

x

x

1C

BA

10

20

30

40

50

60

2

80 90 100

0 10 20 30 40 50 60 70x

x

1C C´

B B´

A

10

20

30

40

50

60

2

80 90 100

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 303

Page 28: Taylmod aff

304

cj Basic 200 + ∆ 300 0 0

Variables Quantity x1 x2 s1 s2

300 x2 30 0 1 1/3 –2/9

200 + ∆ x1 15 1 0 –1/3 5/9

zj 12,000 + 15∆ 200 + ∆ 300 100/3 – ∆/3 400/9 + 5∆/9

cj – zj 0 0 –100/3 + ∆/3 –400/9 – 5∆/9

e) c1, basic:

Solving for the cj – zj inequalities:

–100/3 + ∆/3 ≤ 0∆/3 ≤ 100/3

∆ ≤ 100

Since c1 = 200 + ∆; ∆ = c1 – 200. Thus

c1 – 200 ≤ 100c1 ≤ 300

–400/9 – 5∆/9 ≤ 0–5∆/9 ≤ 400/9

–∆ ≤ 80∆ ≥ –80

Since c1 = 200 + ∆; ∆ = c1 – 200. Thus

c1 – 200 ≥ –80c1 ≥ 120

Summarizing, 120 ≤ c1 ≤ 300.

c2, basic:

Since c2 = 300 + ∆; ∆ = c2 – 300. Thus

c2 – 300 ≤ 200c2 ≤ 500

Summarizing, 200 ≤ c2 ≤ 500.

f) q1:

x2: 30 + ∆/3 ≥ 0 x1: 15 – ∆/3 ≥ 0∆/3 ≥ –30 –∆/3 ≥ –15

∆ ≥ –90 –∆ ≤ –45∆ ≤ 45

Therefore, –90 ≤ ∆ ≤ 45. Since

q1 = 180 + ∆∆ = q1 – 180

–90 ≤ q1 – 180 ≤ 4590 ≤ q1 ≤ 225

cj Basic 200 300 + ∆ 0 0

Variables Quantity x1 x2 s1 s2

300 + ∆ x2 30 0 1 1/3 –2/9

200 x1 15 1 0 –1/3 5/9

zj 12,000 + 300∆ 200 300 + ∆ 100/3 + ∆/3 400/9 – 2∆ /9

cj – zj 0 0 –100/3 – ∆/3 –400/9 + 2∆ /9

Solving for the cj – zj inequalities:

–100/3 – ∆/3 ≤ 0–∆/3 ≤ 100/3

–∆ ≤ 100∆ ≥ –100

Since c2 = 300 + ∆; ∆ = c2 – 300. Thus

c2 – 300 ≥ –100c2 ≥ 200

–400/9 + 2∆/9 ≤ 02∆/9 ≤ 400/9

∆ ≤ 200

q2:

x2: 30 – 2∆/9 ≥ 0 x1: 15 + 5∆/9 ≥ 0–2∆/9 ≥ –30 5∆/9 ≥ –15

–∆ ≥ –135 ∆ ≥ –27∆ ≤ 135

Therefore, –27 ≤ ∆ ≤ 135. Since

q2 = 135 + ∆∆ = q2 – 135

–27 ≤ q2 – 135 ≤ 135108 ≤ q2 ≤ 270

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 304

Page 29: Taylmod aff

305

g) The marginal value of 1 lb of wood is $44.44.From part f, the sensitivity range for q2, wood,is 108 ≤ q2 ≤ 270. Thus, the company wouldpurchase up to 270 bd. ft. of wood at themarginal value price.

g) The marginal value of labor is $33.33 and themarginal value of wood is $44.44; thus, woodshould be purchased.

46. a) Minimize Zd = 19y1 + 14y2 + 20y3subject to

2y1 + y2 + y3 ≥ 70y1 + y2 + 2y3 ≥ 80

y1, y2, y3 ≥ 0

b) y1 =$20 = the marginal value of an additionalhr of production time; y2 =$0 = the marginalvalue of an additional lb of steel; y3 = $30 = themarginal value of an additional ft of wire

cj Basic 70 + ∆ 80 0 0 0

Variables Quantity x1 x2 s1 s2 s3

70 + ∆ x1 6 1 0 2/3 0 –1/3

0 s2 1 0 0 –1/3 1 –1/3

80 x2 7 0 1 –1/3 0 2/3

zj 980 + 6∆ 70 + ∆ 80 20 + 2∆/3 0 30 – ∆/3

cj – zj 0 0 –20 – 2∆/3 0 –30 + ∆/3

c) c1, basic:

Solving for the cj – zj inequalities:

–20 – 2∆/3 ≤ 0–2∆/3 ≤ 20

–∆ ≤ 30∆ ≥ –30

Since c1 = 70 + ∆; ∆ = c1 – 70. Thus

c1 – 70 ≥ –30c1 ≥ 40

–30 + ∆/3 ≤ 0∆/3 ≤ 30

∆ ≤ 90

Since c1 = 70 + ∆; ∆ = c1 – 70. Thus

c1 – 70 ≤ 90c1 ≤ 160

Summarizing, 40 ≤ c1 ≤ 160.

c2, basic:

Solving for the cj – zj inequalities:

–20 + ∆/3 ≤ 0∆/3 ≤ 20

∆ ≥ 60

Since c2 = 80 + ∆; ∆ = c2 – 80. Thus

c2 – 80 ≤ 60c2 ≤ 140

–30 – 2∆/3 ≤ 0–2∆/3 ≤ 30

–∆ ≤ 45∆ ≥ –45

Since c2 = 80 + ∆; ∆ = c2 – 80. Thus

c2 – 80 ≥ –45c2 ≥ 35

Summarizing, 35 ≤ c2 ≤ 140.

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 305

Page 30: Taylmod aff

306

cj Basic 70 80 + ∆ 0 0 0

Variables Quantity x1 x2 s1 s2 s3

70 x1 6 1 0 2/3 0 –1/3

0 s2 1 0 0 –1/3 1 –1/3

80 + ∆ x2 7 0 1 –1/3 0 2/3

zj 980 + 7∆ 70 80 + ∆ 20 – ∆/3 0 30 + 2∆/3

cj – zj 0 0 –20 + ∆/3 0 –30 – 2∆/3

d) q1:

x1: 6 + 2∆/3 ≥ 0 x2: 7 – ∆/3 ≥ 0 s2: 1 – ∆/3 ≥ 02∆/3 ≥ –6 –∆/3 ≥ –7 –∆/3 ≥ –1

∆ ≥ –9 –∆ ≥ –21 –∆ ≥ –3∆ ≤ 21 ∆ ≤ 3

Therefore, –9 ≤ ∆ ≤ 3. Since

q1 = 19 + ∆∆ = q1 – 19

–9 ≤ q1 – 19 ≤ 310 ≤ q1 ≤ 22

q2:

x1: 6 + 0∆ ≥ 0 x2: 7 + 0∆ ≥ 0 s2: 1 + ∆ ≥ 0∆ ≥ –1

Therefore, ∆ ≥ –1. Since

q2 = 14 + ∆∆ = q2 – 14

q2 – 14 ≥ –1q2 ≥ 13

q3:

x1: 6 – ∆/3 ≥ 0 x2: 7 + 2∆/3 ≥ 0 s2: 1 – ∆/3 ≥ 0–∆/3 ≥ –6 2∆/3 ≥ –7 –∆/3 ≥ –1

–∆ ≥ –18 ∆ ≥ –21/2 –∆ ≥ –3∆ ≤ 18 ∆ ≤ 3

Therefore, –21/2 ≤ ∆ ≤ 3. Since

q3 = 20 + ∆ –21/2 ≤ q3 – 20 ≤ 3∆ = q3 – 20 19/2 ≤ q3 ≤ 23

e) The sensitivity range for production hours is 10 ≤ q1 ≤ 22. Since 25 hr exceeds the upper limit of the range, it would change the optimal solution.

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 306

Page 31: Taylmod aff

307

47. a) Minimize Zd = 64y1 + 50y2 + 120y3 + 7y4 + 7y5subject to

4y1 + 5y2 + 15y3 + y4 ≥ 98y1 + 5y2 + 8y3 + y5 ≥ 12

y1, y2, y3, y4, y5 ≥ 0

b) y1 = $.75 = the marginal value of one additionalhr of labor for process 1; y2 = $1.20 = the marginal value of one additional hr of labor for process 2; y3, y4, y5 = $0; these resources have no value since there were units available which were not used.

c) c1, basic:

Solving for the cj – zj inequalities:

–3/4 + ∆/4 ≤ 0 –6/5 – 2∆/5 ≤ 0∆/4 ≤ 3/4 –2∆/5 ≤ 6/5

∆ ≤ 3 ∆ ≥ –3

Since c1 = 9 + ∆; ∆ = c1 – 9. Thus

–3 ≤ ∆ ≤ 3–3 ≤ c1 – 9 ≤ 36 ≤ c1 ≤ 12

c2, basic:

Solving for the cj – zj inequalities:

–3/4 + ∆/4 ≤ 0 –6/5 + ∆/5 ≤ 0–∆/4 ≤ 3/4 ∆/5 ≤ 6/5

∆ ≥ –3 ∆ ≤ 6

Since c2 = 12 + ∆; ∆ = c1 – 12. Thus

–3 ≤ c2 – 12 ≤ 69 ≤ c2 ≤ 18

d) q1:

x1: 4 – ∆/4 ≥ 0 s5: 1 – ∆/4 ≥ 0 s3: 12 + 7∆/4 ≥ 0–∆/4 ≥ –4 –∆/4 ≥ –1 7∆/4 ≥ –12

∆ ≤ 16 ∆ ≤ 4 ∆ ≥ –6.86

s4: 3 + ∆/4 ≥ 0 x2: 6 + ∆/4 ≥ 0∆/4 ≥ –3 ∆/4 ≥ –6

∆ ≥ –12 ∆ ≥ –24

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 307

Page 32: Taylmod aff

308

Summarizing,

–24 < –12 < –6.86 ≤ ∆ ≤ 4 ≤ 16

and, therefore,

–6.86 ≤ ∆ ≤ 4

Since q1 = 64 + ∆; ∆ = q1 – 64. Therefore,

–6.86 ≤ ∆ q1 – 64 ≤ 457.14 ≤ q1 ≤ 68

e) q3:

x1: 4 + 0∆ ≥ 0 s5: 1 + 0∆ ≥ 0 s3: 12 + ∆ ≥ 00∆ ≥ –4 ∆ ≤ ∞ ∆ ≥ –12∆ ≤ ∞

s4: 3 + 0∆ ≥ 0 x2: 6 + 0∆ ≥ 0∆ ≤ ∞ ∆ ≤ ∞

–12 ≤ ∆ ≤ ∞

Since q3 = 120 + ∆; ∆ = q3 – 120. Therefore,

–12 ≤ ∆ ≤ ∞–12 ≤ q3 – 120 ≤ ∞108 ≤ q3 ≤ ∞

Since 100 pounds is less than the lower limitof the range, the optimal solution mix will change. s2 enters the solution and s3 leaves. The new solution is,

x1 = 3.27s2 = 1.82s5 = 0.64s4 = 3.73x2 = 6.36Z = 105.82

48. a) Minimize Zd = 120y1 + 160y2 + 100y3 + 40y4subject to

2y1 + 4y2 + 3y3 + y4 ≥ 403y1 + 3y2 + 2y3 + y4 ≥ 352y1 + y2 + 4y3 + y4 ≥ 45

y1, y2, y3, y4 ≥ 0

b) y1, y2 = 0; y3 = $5 = the marginal value of 1 hrof operation 3 time; y4 = $25 = the marginal value of 1 ft2 of storage space

c) It does not have an effect. In the alternatesolution the dual values remain the same, i.e.,y3 = $5 and y4 = $25.

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 308

Page 33: Taylmod aff

309

cj Basic 40 35 + ∆ 45 0 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3 s4

0 s1 10 –1/2 0 0 1 0 1/2 –4

0 s2 60 2 0 0 0 1 1 –5

45 x3 10 1/2 0 1 0 0 1/2 –1

35 + ∆ x2 30 1/2 1 0 0 0 –1/2 2

zj 1,500 + 35∆ 40 + ∆/2 35 + ∆ 45 0 0 5 – ∆/2 25 + 2∆

cj – zj –∆/2 0 0 0 0 –5 + ∆/2 –25 – 2∆

d) c2, basic:

Solving for the cj – zj inequalities:

–∆/2 ≤ 0∆ ≥ 0

Since c2 = 35 + ∆; ∆ = c2 – 35. Thus

c2 – 35 ≥ 0c2 ≥ 35

–5 + ∆/2 ≤ 0∆/2 ≤ 5

∆ ≤ 10

Since c2 = 35 + ∆; ∆ = c2 – 35. Thus

c2 – 35 ≤ 10c2 ≤ 45

–25 – 2∆ ≤ 0–2∆ ≤ 25

∆ ≥ –12.5

Since c2 = 35 + ∆; ∆ = c2 – 35. Thus

c2 – 35 ≥ –12.5c2 ≥ 22.5

Summarizing, 35 ≤ c2 ≤ 45.

e) q4:

s1: 10 – 4∆ ≥ 0 s2: 60 – 5∆ ≥ 0–4∆ ≥ –10 –5∆ ≥ –60

∆ ≤ 5/2 ∆ ≤ 12

x3: 10 – ∆ ≥ 10 x2: 30 + 2∆ ≥ 0–∆ ≥ –10 2∆ ≥ –30∆ ≤ 10 ∆ ≥ –15

Therefore, –15 ≤ ∆ ≤ 5/2. Since

q4 = 40 + ∆∆ = q4 – 40

–15 ≤ q4 – 40 ≤ 5/225 ≤ q4 ≤ 42.5

f) The marginal value of 1 ft2 of storage is $25.From part e, the sensitivity range for q4 is 25 ≤ q4 ≤ 42.5. Thus, the company wouldpurchase up to 42.5 ft2 of storage space at themarginal value price.

49. a) Maximize Zd = 20y1 + 30y2 + 12y3subject to

4y1 + 12y2 + 3y3 ≤ .035y1 + 3y2 + 2y3 ≤ .02

y1, y2, y3 ≥ 0

b) y1 = $0 = marginal value of 1 mg of protein;y2 = $0 = marginal value of 1 mg of iron; y3 = $.01 = marginal value of 1 mg ofcarbohydrate (i.e., if one less mg ofcarbohydrate was required, it would be worth$.01 to the dietitian)

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 309

Page 34: Taylmod aff

310

cj Basic .03 + ∆ .02 0 0 0

Variables Quantity x1 x2 s1 s2 s3

.02 x2 3.6 0 1 0 .20 –.80

.03 + ∆ x1 1.6 1 0 0 –.13 .20

0 s1 4.4 0 0 1 .47 –3.2

zj .12 + 1.6∆ .03 + ∆ .02 0 0 – .133∆ –.01 + .2∆

zj – cj 0 0 0 0 – .133∆ –.01 + .2∆

c) c1, basic:

Solving for the zj – cj inequalities:

0 – .133∆ ≤ 0–.133∆ ≤ 0

–∆ ≤ 0∆ ≥ 0

Since c1 = .03 + ∆; ∆ = c1 – .03. Thus

c1 – .03 ≥ 0c1 ≥ .03

–.01 + .2∆ ≤ 0.2∆ ≤ .01

∆ ≤ .05

Since c1 = .03 + ∆; ∆ = c1 – .03. Thus

c1 – .03 ≤ .05c1 ≤ .08

Summarizing, .03 ≤ c1 ≤ .08.

c2, basic:

Since c2 = .02 + ∆; ∆ = c1 – .02. Thus

c2 – .02 ≤ 0c2 ≤ .02

–.01 + .8∆ ≤ 0.8∆ ≤ .01

∆ ≤ .0125

Since c2 = .02 + ∆; ∆ = c1 – .02. Thus

c2 – .02 ≤ .0125c2 ≥ .0075

Summarizing, c2 ≤ .0375.

d) When determining sensitivity ranges for qivalues in a minimization problem, sinceartificial variables are eliminated, the surplusvariable column coefficients must be used. Thiscorresponds to a qi – ∆ change.

cj Basic .03 .02 + ∆ 0 0 0

Variables Quantity x1 x2 s1 s2 s3

.02 + ∆ x2 3.6 0 1 0 .20 –.80

.03 x1 1.6 1 0 0 –.13 .20

0 s1 4.4 0 0 1 .47 –3.2

zj .12 + 3.6∆ .03 .02 + ∆ 0 0 + .2∆ –.01 + .8∆

zj – cj 0 0 0 0 + .2∆ –.01 + .8∆

Solving for the zj – cj inequalities:

0 + .2∆ ≤ 0.2∆ ≤ 0

∆ ≤ 0

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 310

Page 35: Taylmod aff

311

q1:

x2: 3.6 + 0∆ ≥ 0 x1: 1.6 + 0∆ ≥ 0 s1: 4.4 + ∆ ≥ 0∆ ≥ –4.4

Therefore, ∆ ≥ –4.4. Since

q1 = 20 – ∆∆ = 20 – q1

20 – q1 ≥ –4.4q1 ≤ 24.4

q2:

x2: 3.6 + .2∆ ≥ 0 x1: 1.6 – .133∆ ≥ 0.2∆ ≥ –3.6 –.133∆ ≥ –1.6

∆ ≥ –18 –∆ ≥ –12∆ ≤ 12

s1: 4.4 + .47∆ ≥ 0.47∆ ≥ –4.4

∆ ≥ –9.36

Therefore, –9.36 ≤ ∆ ≤ 12. Since

q2 = 30 – ∆∆ = 30 – q2

–9.36 ≤ 30 – q2 ≤ 1218 ≤ q2 ≤ 39.36

q3:

x2: 3.6 – .8∆ ≥ 0 x1: 1.6 + .2∆ ≥ 0–.8∆ ≥ –3.6 .2∆ ≥ –1.6

–∆ ≥ –4.5 ∆ ≥ –8∆ ≤ 4.5

s1: 4.4 – 3.2∆ ≥ 0–3.2∆ ≥ –4.4

–∆ ≥ –1.375∆ ≤ –1.375

Therefore, –8 ≤ ∆ ≤ 1.375. Since

q3 = 12 – ∆∆ = 12 – q3

–8 ≤ 12 – q3 ≤ 1.37510.625 ≤ q3 ≤ 20

e) The marginal value of 1 mg of carbohydrates is $.01. From part d, the sensitivity range for q3, carbohydrates, is 10.625 ≤ q3 ≤ 20. Thus, the dietitian could lower the requirements for carbohydrates to10.625 at the marginal value without the solution becoming infeasible.

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 311

Page 36: Taylmod aff

312

50. a) Minimize Zd = 1,200y1 + 500y3subject to

.50y1 + y2 ≥ 1.251.2y1 – y2 + y3 ≥ 2.00

.80y1 + y2 ≥ 1.75y1, y2, y3 ≥ 0

y1 = the marginal value of an additional hour ofproduction time

= $0y2 = the marginal value of increasing the

combined demand for cheese sandwichesby one sandwich

= $1.75y3 = the marginal value of producing an

additional ham salad sandwich= $3.75

b) c1, non-basic:

–5 + ∆ ≤ 0∆ ≤ .50

Since c1 = 1.25 + ∆; ∆ = c1 – 1.25. Therefore,

c1 – 1.25 ≤ .50c1 ≤ 1.75

c2, basic:

–3.75 – ∆ ≤ 0–∆ ≤ 3.75∆ ≥ –3.75

Since c2 = 2 + ∆; ∆ = c2 – 2. Therefore,

c2 –2 ≥ –3.75c2 ≥ –1.75

c3, basic:

–.5 – ∆ ≤ 0 –3.75 – ∆ ≤ 0–∆ ≤ .5 –∆ ≤ 3.75∆ ≥ –.5 ∆ ≥ –3.75

Summarizing,

–3.75 ≤ –.5 ≤ ∆

and, therefore,

–.5 ≤ ∆

Since c3 = 1.75 + ∆; ∆ = c3 – 1.75. Therefore,

–.5 ≤ ∆–.5 ≤ c3 – 1.75

1.25 ≤ c3

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 312

Page 37: Taylmod aff

313

c) q3:

s1: 200 – 2∆ ≥ 0 x3: 500 + ∆ ≥ 0 x2: 500 + ∆ ≥ 0–2∆ ≥ –200 ∆ ≥ –500 ∆ ≥ –500

∆ ≤ 100

Summarizing,

–500 ≤ ∆ ≤ 100

Since q3 = 500 + ∆, ∆ = q3 – 500. Therefore,

–500 ≤ q3 – 500 ≤ 1000 ≤ q3 ≤ 600

d) The marginal value for demand for cheese sandwiches is $1.75. The range for q2 iscomputed as follows.

s1: 200 – .8∆ ≥ 0 x3: 500 + ∆ ≥ 0 x2: 500 + 0∆ ≥ 0–.8∆ ≥ –200 ∆ ≥ –500 0∆ ≥ –500

∆ ≤ 250 ∆ ≤ ∞

Summarizing,

–500 ≤ ∆ ≤ 250

Since q2 = 0 + ∆, ∆ = q2. Therefore,

–500 ≤ q2 ≤ 250

Thus, the demand for cheese sandwiches canbe increased up to a maximum of 250sandwiches.

The additional profit for 200 more cheesesandwiches would be,

($1.75) (200) = $350

Since the cost of advertising is $100, a $250profit would result, therefore the company should advertise.

51. a) c3, nonbasic:

–13 – ∆ ≤ 0–∆ ≤ 13

∆ ≥ –13

Since c3 = 2 + ∆, ∆ = c3 – 2. And

c3 – 2 ≥ –13c3 ≥ –11

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 313

Page 38: Taylmod aff

314

c1, basic:

cj Basic 3 + ∆ 5 2 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3

0 s2 15 0 0 –4 –3/2 1 –1/2

3 + ∆ x1 5 1 0 –2 –1/2 0 1/2

5 x2 30 0 1 –1 –1/2 0 –1/2

zj 165 + 5∆ 3 + ∆ 5 –11 – 2∆ –4 – ∆/2 0 –1 + ∆/2

zj – cj 0 0 –13 – 2∆ –4 – ∆/2 0 –1 + ∆/2

Solving for the zj – cj inequalities:

–13 – 2∆ ≤ 0–2∆ ≤ 13

∆ ≥ –13/2

Since c1 = 3 + ∆, ∆ = c1 – 3. Thus

c1 – 3 ≥ –13/2c1 ≥ –7/2

–4 – 2∆ ≤ 0–2∆ ≤ 4

∆ ≥ –2

Since c1 = 3 + ∆, ∆ = c1 – 3. Thus

c1 – 3 ≥ –2c1 ≥ 1

–1 + ∆/2 ≤ 0∆/2 ≤ 1

∆ ≤ 2

Since c1 = 3 + ∆, ∆ = c1 – 3. Thus

c1 – 3 ≤ 2c1 ≤ 5

Summarizing, 1 ≤ c1 ≤ 5.

c2: basic:

Solving for the zj – cj inequalities:

–13 – 2∆ ≤ 0–2∆ ≤ 13

∆ ≥ –13/2

Since c2 = 5 + ∆, ∆ = c2 – 5. Thus

c2 – 5 ≥ –13/2c2 ≥ –3/2

–4 – ∆/2 ≤ 0–∆/2 ≤ 4

∆ ≥ –8

Since c2 = 5 + ∆, ∆ = c2 – 5. Thus

c2 – 3 ≥ –8c2 ≥ –3

–1 – ∆/2 ≤ 0–∆/2 ≤ 1

∆ ≥ –2

Since c2 = 5 + ∆, ∆ = c2 – 5. Thus

c2 – 5 ≥ –2c2 ≥ 3

Summarizing, c2 > 3.

cj Basic 3 5 + ∆ 2 0 0 0

Variables Quantity x1 x2 x3 s1 s2 s3

0 s2 15 0 0 –4 –3/2 1 –1/2

3 x1 5 1 0 –2 –1/2 0 1/2

5 + ∆ x2 30 0 1 –1 –1/2 0 –1/2

zj 165 + 30∆ 3 5 + ∆ –11 – 2∆ –4 – ∆/2 0 –1 – ∆/2

zj – cj 0 0 –13 – 2∆ –4 – ∆/2 0 –1 – ∆/2

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 314

Page 39: Taylmod aff

315

q1:

s2: 15 – 3∆/2 ≥ 0 x1: 5 – ∆/2 ≥ 0 x2: 30 – ∆/2 ≥ 0–3∆/2 ≥ –15 –∆/2 ≥ –5 –∆/2 ≥ –30

∆ ≤ 10 ∆ ≤ 10 ∆ ≤ 60

Therefore, ∆ ≤ 10. Since

q1 = 35 – ∆∆ = 35 – q1

35 – q1 ≤ 10q1 ≥ 25

q2:

s2: 15 + ∆ ≥ 0 x1: 5 – 0∆ ≥ 0 x2: 30 – 0∆ ≥ 0∆ ≥ –15

Therefore, ∆ ≤ –15. Since

q2 = 50 – ∆∆ = 50 – q2

50 – q2 ≤ –15q2 ≤ 65

q3:

s2: 15 – ∆/2 ≥ 0 x1: 5 + ∆/2 ≥ 0 x2: 30 – ∆/2 ≥ 0–∆/2 ≥ –15 ∆/2 ≥ –5 –∆/2 ≥ –30

∆ ≤ 30 ∆ ≥ –10 ∆ ≤ 60

Therefore, –10 ≤ ∆ ≤ 30. Since q3 = 25 – ∆ and ∆ = 25 – q3

–10 ≤ 25 – q3 ≤ 30–5 ≤ q3 ≤ 35

b) When determining sensitivity ranges for qivalues, since artificial values are eliminated,the surplus variable column coefficients mustbe used. This corresponds to a qi – ∆ change.

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 315

Page 40: Taylmod aff

316

52. a) y1 = 7/15 = $.467

Range for q1:

Since q1 = 320 + ∆,

∆ = q1 – 320–120 ≥ q1 – 320 ≤ 80200 ≤ q1 ≤ 400

As many as 400 pears can be purchased.

b) y2 = 1/15 = $.067

Range for q2:

x1: 8 + ∆/30 ≥ 0 x2: 16 + ∆/15 ≥ 0∆/30 ≥ –8 ∆/15 ≥ –16

∆ ≥ –240 ∆ ≥ –240

x3: 3 – ∆/10 ≥ 0 s4: 36 – ∆/30 ≥ 0–∆/10 ≥ –3 –∆/30 ≥ –36

∆ ≤ 30 ∆ ≤ 1,080

–240 ≤ ∆ ≤ 30

Since q2 = 400 + ∆,

∆ = q2 – 400–240 ≤ q2 – 400 ≤ 30160 ≤ q2 ≤ 430

Range over which the value of peaches is valid

c) Range for q3:

s3: 3 + ∆ ≥ 0∆ ≥ –3

Since q3 = 43 + ∆,

∆ = q3 – 43q3 – 43 ≥ –3

q3 ≥ 40

No, increasing q3 from 43 to 60 will not affectthe optimal solution.

x1: 8 + ∆/15 ≥ 0 x2: 16 – ∆/30 ≥ 0∆/15 ≥ –8 –∆/30 ≥ –16

∆ ≥ –120 ∆ ≤ 480

x3: 3 – ∆/40 ≥ 0∆ ≥ 120

s4: 36 – ∆/30 ≥ 0 s5: 8 – ∆/10 ≥ 0–∆/30 ≥ – 36 –∆/10 ≥ –8

∆ ≤ 1,080 ∆ ≤ 80–120 ≤ ∆ ≤ 80

d) Range for q5:

s5: 8 + ∆ ≥ 0∆ ≥ –8

Since q5 = 40 + ∆,

∆ = q5 – 40q5 – 40 ≥ –8

q5 ≥ 32

No, increasing q5 from 40 to 50 will have noaffect on the optimal solution.

e) Since y1 = 7/15 = $.467, pears should be secured.

53. a) y2 = $0, spruce has no marginal value

q2:

s2: 70 + ∆ ≥ 0∆ ≥ –70

Since q2 = 160 + ∆,

∆ = q2 – 160q2 – 160 ≥ –70

q2 ≥ 90

b) y3 = $2, marginal value of cutting hours

q3:

s1: 80 – 4∆/3 ≥ 0 s2: 70 + ∆/3 ≥ 0–4∆/3 ≥ –80 ∆/3 ≥ –70

∆ ≤ 60 ∆ ≥ –210

x3: 20 + 2∆/3 ≥ 0 x2: 10 – ∆/3 ≥ 02∆/3 ≥ –20 –∆/3 ≥ –10

∆ ≥ –30 ∆ ≤ 30

Therefore, –30 ≤ ∆ ≤ 30. Since q3 = 50 + ∆,

∆ = q3 – 5020 ≤ q3 ≤ 80

c) y3 = $2, cutting hours; y4 = $2, pressing hours.Since they both have the same marginal value,management could choose either.

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 316

Page 41: Taylmod aff

317

d) From part a, q2 ≥ 90; thus, a decrease from 160to 100 lb of spruce will not affect the solution.

e) Compute the range for c1, a nonbasic cj value.

c1 = 4 + ∆–2 + ∆ ≤ 0

∆ ≤ 2c1 – 4 ≤ 2

c1 ≤ 6

The unit profit from Western paneling would have to be $6 or more before it would beproduced.

f) Compute the range for c3.

c3 = 8 + ∆

–2 – ∆/3 ≤ 0 –2 – 2∆/3 ≤ 0 –2 +∆/6 ≤ 0–∆/3 ≤ 2 –2∆/3 ≤ 2 ∆/6 ≤ 2

∆ ≥ –6 ∆ ≥ –3 ∆ ≤ 12

Since ∆ = c3 – 8,

c3 – 8 ≥ –6 c3 – 8 ≥ –3 c3 – 8 ≤ 12c3 ≥ 2 c3 ≥ 5 c3 ≤ 20

Summarizing, 5 ≤ c3 ≤ 20. If the unit profit ofColonial paneling is increased to $13, thepercent solution would not be affected.

54. y1 = $1.33

q1:

x4: 80 + 2∆/3 ≥ 0 x2: 40 – ∆/3 ≥ 02∆/3 ≥ –80 –∆/3 ≥ –40

∆ ≥ –120 ∆ ≤ 120

–120 ≤ ∆ ≤ 120

Since q1 = 200 + ∆,

∆ = q1 – 200–120 ≤ q1 – 200 ≤ 120

80 ≤ q1 ≤ 320

TaylMod-Aff.qxd 4/21/06 8:50 PM Page 317