47
IEA Bioenergy Task 37, 6 April 2017, Vlijmen, The Netherlands Task 37 Work Programme and Green Gas Prof Jerry D Murphy Task Leader International Energy Agency (IEA) Energy from Biogas, Director of MaREI (Centre for Marine and Renewable Energy), University College Cork, Ireland IEA Bioenergy Task 37

Task 37 Work Programme and Green Gas · 2017. 4. 18. · jelly fish Increased yields of seaweed as compared to pristine waters Clean water of excess nutrients Harvest when yield is

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • IEA Bioenergy Task 37, 6 April 2017, Vlijmen, The Netherlands

    Task 37 Work Programme and Green Gas

    Prof Jerry D MurphyTask Leader International Energy Agency (IEA) Energy from Biogas, Director of

    MaREI (Centre for Marine and Renewable Energy), University College Cork, Ireland

    IEA Bioenergy Task 37

  • Australia Bernadette McCabeAustria Bernard Drosg / Günther BochmannBrazil Cícero Jayme BleyDenmark Teodorita Al-SeadiFinland Saija RasiFrance Olivier Théobald / Guillaume BastideGermany Jan LiebertrauIreland Jerry MurphyKorea Ho KangNorway Tormod BriseidSweden Mattias SvenssonSwitzerland Urs BaierThe Netherlands Mathieu DumontUnited Kingdom Clare Lukehurst / Charles Banks

    Member countries participating in Task 37

    IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

    http://task37.ieabioenergy.com/technical-brochures.html

    http://task37.ieabioenergy.com/technical-brochures.html

  • Technical Reports Triennium 2016 - 2018

    1. Food waste digestion systems.2. International approaches to sustainable anaerobic digestion3. Grid injection and greening of the gas grid4. The role of biogas in the circular economy5. Validity of BMP results6. Methane emissions7. Biomethane as a transport fuel8. Sustainable Bioenergy Chains (Collaboration with Task 40)

    IEA Bioenergy Task 37

  • Case Studies 2016 - 2018

    IEA Bioenergy Task 37

    http://task37.ieabioenergy.com/case-studies.html

    http://task37.ieabioenergy.com/case-studies.html

  • 6 European gas grids have committed to 100% green gas in the gas grid by 2050

    Green Gas

    IEA Bioenergy Task 37

  • TRL 7-9

    TRL 6

    TRL 4,5

    TRL 3,4Initiation of Industry

    Green Gas from residues, slurriesand grass

    IEA Bioenergy Task 37

  • Grass to transport fuel

    harvest silage storage

    macerator

    Source: energiewerkstatt, IEA and personal photos

    anaerobic

    digester

    weigh bridge

    Biogas service station Scrubbing &

    storage

    IEA Bioenergy Task 37

  • Co-digestion of grass and slurry

    IEA Bioenergy Task 37

  • Grass %VS Slurry %VS

    100 0

    80 20

    60 40

    50 50

    40 60

    20 80

    0 100

    Cellulose

    Biomethane Potential Assays

    IEA Bioenergy Task 37

  • 107 m3 CH4 t-1 Grass Silage v. 16 m3 CH4 t

    -1 Dairy Slurry

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    0 10 20 30

    L C

    H4

    kg

    -1V

    S

    Days

    Cellulose 0:100 G:S 100:0 G:S

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    0 10 20 30

    L C

    H4

    kg

    -1V

    S

    Days

    80:20 G:S 60:40 G:S 50:50 G:S

    40:60 G:S 20:80 G:S

    SMY decreases as

    slurry input increases

    IEA Bioenergy Task 37

  • 170 digesters treating 10,000 t a-1 of grass and 40,000 t a-1 of dairy slurry

    1.1 % Grassland in Ireland

    Scale of Grass Biogas industry

    IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

  • Higher Grass Silage Input

    Higher Dairy Slurry Input

    R1 R2 R3 R4 + R5 & R6

    Grass

    %VS

    Slurry

    %VS

    R6 100 0

    R5 80 20

    R4 60 40

    R3 40 60

    R2 20 80

    R1 0 100

    Continuous digestion of grass and slurry

    IEA Bioenergy Task 37

  • 0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    0 1 2 3 4 5 6

    L C

    H4

    KG

    -1V

    S

    REACTOR NO.

    OLR = 2.0 kg VS m-3 d-1

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    0 1 2 3 4 5 6

    L C

    H4

    KG

    -1V

    S

    REACTOR NO.

    OLR = 2.5 kg VS m-3 d-1

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    0 1 2 3 4 5 6

    L C

    H4

    KG

    -1V

    S

    REACTOR NO.

    OLR = 3.0 kg VS m-3 d-1

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    0 1 2 3 4 5 6

    L C

    H4

    KG

    -1V

    S

    REACTOR NO.

    OLR = 3.5 kg VS m-3 d-1

    Increased gas production with increased grass

    IEA Bioenergy Task 37

  • 3.5 OLR

    HRT 21 days

    12%

    decrease

    in SMY

    Reduction in yield of mono-digestion at high OLR

    IEA Bioenergy Task 37

  • Trace element analysis

    IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

  • Demand Driven Biogas

    IEA Bioenergy Task 37

  • TRL 7-9

    TRL 6

    TRL 4,5

    TRL 3,4

    Second stage of Industry

    Green Gas from gasification ofwoody crops

    IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

    Gothenburg Biomass Gasification Project (GoBiGas)

  • Thermal production

    of Biomethane

    CO + 3H2 = CH4 + H2O

    CO2 + 4 H2= CH4 + 2H2O

    2CO + 2H2= CH4 + CO2

    Typically ca. 65% energy efficiency

    Gas upgrading

    Removal of CO2

    IEA Bioenergy Task 37

  • Plant Size MW 50

    Land area (ha) 6800

    Number of plants required 11

    As a % Energy in Transport 5.5%

    As a % of agricultural land 1.7%

    IEA Bioenergy Task 37

    Compare with 170 digesters

  • TRL 7-9

    TRL 6

    TRL 4,5

    TRL 3,4

    Third stage of Industry

    Green Gas from seaweed

    IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

  • Seasonal Variation in composition of Laminaria Digitata

    IEA Bioenergy Task 37

  • Seasonal Variation in biomethane yield from Laminaria Digitata

    IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

    Seasonal Variation in A. nodosum

  • Cultivating Seaweed

    31

    Position adjacent to fish farms, protect fish from

    jelly fish

    Increased yields of seaweed as compared to

    pristine waters

    Clean water of excess nutrients

    Harvest when yield is highest

    IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

    Long term co-digestion of seaweed with dairy slurry

  • Higher methane yields after ensiling

    can compensate for silage

    fermentation losses.

    No losses in methane yield occurred

    during 90 day storage for 4 of 5

    species.

    IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

  • TRL 7-9

    TRL 6

    TRL 4,5

    TRL 3,4Fourth stage of Industry

    Green Gas from electricity

    IEA Bioenergy Task 37

  • Curtailment and storage of variable renewable electricity

    41

    Wind capacity as a proportion of minimum demand in summer 2020

    IEA Bioenergy Task 37

  • IEA Bioenergy Task 37

  • BIOENERGY

    IEA Bioenergy Task 37

  • H2: energy Density 12.1 MJ/mn3 : CH4: Energy density 37.6 MJ/mn

    3

    Sabatier Equation: 4H2 + CO2 = CH4 + 2H2O

    Gaseous biofuel from non-biological origin

    Source of CO2 from biogas:

    Mix biogas (50% CH4 and 50% CO2) with H2; generate double the CH4

    (1 mol CO2 generates 1 mol CH4).

    IEA Bioenergy Task 37

  • http://www.marei.ie/wp-content/uploads/2017/03/MaREI-4-pg-A4-Brochure-v8-Single-pages.pdf

    IEA Bioenergy Task 37

    http://www.marei.ie/wp-content/uploads/2017/03/MaREI-4-pg-A4-Brochure-v8-Single-pages.pdf