22
Task 1.9 (5B): Develop a Model of Photovoltaic Energy Systems for IRW Block PI: Prof. Dionysios Aliprantis RA: Chengrui Cai UC Davis, CA May 13, 2013 D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 1 / 22

Task 1.9 (5B): Develop a Model of Photovoltaic Energy ...home.engineering.iastate.edu/~ccai/papers/arpa-e_May_2013_Davis.pdf · Task 1.9 (5B): Develop a Model of Photovoltaic Energy

  • Upload
    votu

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Task 1.9 (5B): Develop a Model of Photovoltaic

Energy Systems for IRW Block

PI: Prof. Dionysios AliprantisRA: Chengrui Cai

UC Davis, CAMay 13, 2013

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 1 / 22

Overview

Task description:Develop a model for a photovoltaic (PV) energy system, eitherof the residential rooftop or the large utility-size type. This PVsystem will be represented using an appropriate physics-basedmodel, e.g., a stochastic model that captures its physicalcharacteristics appropriately.

Milestone:The (sampled) distributions of stochastic process model matchhistorical data within 10% on the first two distributionalmoments.

Task progress: 100% complete.

Notes:1. Questions raised in the last meeting2. Use of historical irradiance data

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 2 / 22

Overview

What do we want to achieve?

50 scenarios of aggregated hourly PV power (MW) for eachISO-NE load zone (bus) on each day in 2011

◮ Hourly solar irradiance time series for all PV systems◮ Locations and rated capacities of all PV systems◮ Irradiance-to-electric power conversion model

PV power scenarios consistent with the wind power and loadscenarios

◮ From the same weather model◮ With same scenario probability

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 3 / 22

Overview

Data and technical approach

What resources are we using?

3TIER provided weather scenarios for 2011

SolarAnywhere irradiance database1 (freely available)

NREL OpenPV database2 (freely available)

Technical approach:

Irradiance scenario development

PV siting information

Irradiance-to-electric power conversion model

1solaranywhere.com

2openpv.nrel.gov

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 4 / 22

Technical approach Irradiance scenario development

Irradiance scenario development

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 5 / 22

Technical approach Irradiance scenario development

Weather scenarios provided by 3TIERLocations of 8 airports

50 scenarios for each day

Meteorological variables:◮ global horizontal irradiance◮ ground level wind speed◮ dew-point, temperature◮ clearness index, pressure

ID Location Latitude LongitudeKBDL Hartford, CT 41.9391451◦ N 72.6833713◦ WKBDR Bridgeport, CT 41.1634722◦ N 73.1261667◦ WKBOS Boston, MA 42.3629722◦ N 71.0064167◦ WKBTV Burlington, VT 44.4718611◦ N 73.1532778◦ WKCON Concord, NH 43.2027222◦ N 71.5022778◦ WKORH Worcester, MA 42.2671389◦ N 71.8756111◦ WKPVD Providence, RI 41.7239992◦ N 71.4282211◦ WKPWM Portland, ME 43.6456435◦ N 70.3086164◦ W

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 6 / 22

Technical approach Irradiance scenario development

Irradiance scenarios and probabilities

4 8 12 16 20 240

100

200

300

400

500

Hour

GH

I (W

/m2)

Sc #1

Sc #2

Sc #3

Sc #4

Sc #5

Sc #6

Sc #7

Sc #8

Sc #9

Sc #10

10 20 30 40 500

0.02

0.04

0.06

0.08

0.1

0.12

Scenario #

Pro

bab

ilit

y(a) (b)

An example of the 3TIER solar irradiance scenarios for Hartford, CT for Jan. 2nd,2011. The first 10 scenarios with the highest probability are plotted in (a) withvarying line thickness, according to the probability of occurrence shown in (b).

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 7 / 22

Technical approach Irradiance scenario development

SolarAnywhere irradiance database

Hourly irradiance data:◮ global horizontal irradiance (GHI)◮ direct normal irradiance (DNI)◮ diffuse horizontal irradiance (DHI)

Entire U.S. from 1998 to 2009, i.e., 4383 days, with a spatialresolution of 0.1◦ (around 10 km) for both latitude and longitude

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 8 / 22

Technical approach Irradiance scenario development

Match the SolarAnywhere with 3TIER dataTo identify “similar” days from the SolarAnywhere database such that the solar irradiance(specifically the global horizontal irradiance) pattern over these 8 locations is “close” to the3TIER scenarios.

Algorithm 1 The solar scenario generation algorithm for a particular day D

1: input:2: T : 24 × 8× 50 matrix3: S : 24× 2837 × 4383 matrix4: output:5: I : 50× 1 vector6: variable:7: E: 50× 4383 matrix8: for j ← 1 to 50 do9: for k ← 1 to 4383 do

10: Ej,k =∑8

i=1

(

‖T:,i,j − S:,idx(i),k‖2/‖T:,i,j‖2)

/8

11: end for12: Ij = argmin

k∈[1,4383]

Ej,k

13: end for

note:

1. T:,i,j is the vector of 24hours of GHI data of i-th lo-cation for j-th scenario in the3TIER data.

2. symbol “:” in the subscriptmeans the entire data on thatdimension of the matrix.

3. idx(i) is the index of the i-thlocation in the SolarAnywheredata.

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 9 / 22

Technical approach Irradiance scenario development

8 columns (locations)

24

row

s(h

ours

)50

pag

es(s

c.)

T:,i,j

2837 columns (locations)

24

row

s(h

ours

)

4383

pag

es(d

ays)

S:,idx(i),k

3TIER SolarAnywhere

Averaged error:

Ej,k = 18

∑8i=1

‖T:,i,j−S:,idx(i),k‖2‖T:,i,j‖2

Selected day:

Ij = argmink∈[1,4383]

Ej,k

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 10 / 22

Technical approach Solar irradiance scenario generation

4 8 12 16 20 240

250

500

KBDL

4 8 12 16 20 240

250

500

KBDR

4 8 12 16 20 240

250

500

KBOS

4 8 12 16 20 240

250

500

KBTV

4 8 12 16 20 240

250

500

KCON

4 8 12 16 20 240

250

500

KORH

4 8 12 16 20 240

250

500

KPVD

4 8 12 16 20 240

250

500

KPWM

4 8 12 16 20 240

250

500

KBDL

4 8 12 16 20 240

250

500

KBDR

4 8 12 16 20 240

250

500

KBOS

4 8 12 16 20 240

250

500

KBTV

4 8 12 16 20 240

250

500

KCON

4 8 12 16 20 240

250

500

KORH

4 8 12 16 20 240

250

500

KPVD

4 8 12 16 20 240

250

500

KPWM

Clear day scenario Cloudy day scenarioG

HI

(W/m

2)

GH

I(W

/m

2)

Red: SolarAnywhere

Blue: 3TIER

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 11 / 22

Technical approach PV siting information

PV siting information

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 12 / 22

Technical approach PV siting information

NREL OpenPV database of PV system info in US

Capital cost

Rated capacity

Location (latitude and longitude)

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 13 / 22

Technical approach PV siting information

Current situation

2007 2008 2009 2010 2011 20120

50

100

150

200

250

Year

MW

dc

ME, NH and RI

VT

CT

MA

185.72

35.35

17.395.65 Historical trend of installed

PV capacity from 2007 to2012 in ISO-NE

2007 to 2011 data fromIREC (Interstate RenewableEnergy Council) Solar MarketTrends Reports

2012 data from OpenPVdatabase

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 14 / 22

Technical approach PV siting information

Process OpenPV data for SolarAnywhere

72° W 70

° W 68

° W

42° N

44° N

46° N

NY VTNH

ME

MA

RICT 72

° W 70

° W 68

° W

42° N

44° N

46° N

Density of PV capacity: kW/km2

10 20 30 40 50 60 70 80 90 100Each blue dot is a PV system.

0.1◦× 0.1◦ tiles (10 km × 10 km)

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 15 / 22

Technical approach PV siting information

Magnified MA, CT and RI area

73.5° W 72.5

° W 71.5

° W 70.5

° W

41.0° N

41.5° N

42.0° N

42.5° N

Density of PV capacity: kW/km2

10 20 30 40 50 60 70 80 90 100

CT RI

MA

NY

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 16 / 22

Technical approach Irradiance-to-electric power conversion model

Irradiance-to-electric power conversion model

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 17 / 22

Technical approach Irradiance-to-electric power conversion model

From irradiance to electric power

ISO-NE 8 load zonesSource: www.iso-ne.com

−74 −73 −72 −71 −70 −69 −68 −6741

42

43

44

45

46

47

48

Longitude (degrees)

Lat

itu

de

(deg

rees

)

Each point is the center of a tile.

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 18 / 22

Technical approach Irradiance-to-electric power conversion model

Power conversion model

P = C · η ·

G

Gn

P : hourly average electric power in MWAC generated by PVsystems in a tile

C : total PV capacity in MWDC in a tile (from OpenPV)

η : PV derating percentage3 (e.g., wiring losses, shading,aging, dirt, etc)

G : hourly average solar irradiance incident on the PV arrays inW/m2 (function of DNI and DHI from SolarAnywhere)

Gn : STC (standard test condition) constant of 1000 W/m2

3default value is 0.77, as suggested by NREL PVWatts model.

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 19 / 22

Technical approach Irradiance-to-electric power conversion model

Aggregated PV power for each load zone

4 8 12 16 20 240

0.20.40.60.8

Maine

4 8 12 16 20 240

0.51

1.52

2.5

New Hampshire

4 8 12 16 20 240

3

6

9

Vermont

4 8 12 16 20 2407

14212835

WC Mass

4 8 12 16 20 240

15

30

45

NE Mass

4 8 12 16 20 2405

10152025

SE Mass

4 8 12 16 20 2405

101520

Connecticut

4 8 12 16 20 240

0.5

1

1.5

Rhode Island

4 8 12 16 20 240

0.20.40.60.8

Maine

4 8 12 16 20 240

0.51

1.52

2.5

New Hampshire

4 8 12 16 20 240

3

6

9

Vermont

4 8 12 16 20 2407

14212835

WC Mass

4 8 12 16 20 240

15

30

45

NE Mass

4 8 12 16 20 2405

10152025

SE Mass

4 8 12 16 20 2405

101520

Connecticut

4 8 12 16 20 240

0.5

1

1.5

Rhode Island

A winter clear day A summer cloudy day

MW

AC

MW

AC

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 20 / 22

Conclusion

Summary

Develop scenarios of photovoltaic power in ISO-NE region forthe stochastic unit commitment problem.

X 50 scenarios for each of the 8 load zones (buses)X 365 days in 2011X Correlated with wind and load profiles

The technical approach includes three components.

X Irradiance scenario development (using historical measurements)X PV siting information (based on actual PV system locations)X Irradiance-to-electric power conversion model (physical-based

model)

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 21 / 22

Q & A

Thank You

Questions?

Contacts:Prof. Dionysios Aliprantis ([email protected])

Chengrui Cai ([email protected])

D. C. Aliprantis, C. Cai (ECpE, ISU) ARPA-E Project Meeting May 13, 2013 22 / 22