42
1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18 Flabeled FAP Inhibitor Johannes Toms* ,1 , Jürgen Kogler 1 , Simone Maschauer 1 , Christoph Daniel 2 , Christian Schmidkonz 3 , Torsten Kuwert 3 , Olaf Prante 1,3,§ 1 FriedrichAlexander University ErlangenNürnberg (FAU), Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Translational Research Center, Schwabachanlage 12, 91054 Erlangen, Germany 2 FriedrichAlexander University ErlangenNürnberg (FAU), Department of Nephropathology, Krankenhausstr. 810, 91054 Erlangen, Germany 3 FriedrichAlexander University ErlangenNürnberg (FAU), Department of Nuclear Medicine, Ulmenweg 18, 91054 Erlangen, Germany § Corresponding author: Olaf Prante, Prof. Dr. Department of Nuclear Medicine, Molecular Imaging and Radiochemistry FriedrichAlexander University ErlangenNürnberg (FAU) Schwabachanlage 12 91054 Erlangen Tel: +4991318544440 Fax: +4991318539288 Email: olaf.prante@ukerlangen.de * First author: Johannes Toms (PhD student) Department of Nuclear Medicine, Molecular Imaging and Radiochemistry FriedrichAlexander University ErlangenNürnberg (FAU) Schwabachanlage 12 91054 Erlangen Tel: +4991318547039 Email: johannes.toms@ukerlangen.de This work was financially supported by the Emerging Field Initiative (EFI) of the FriedrichAlexander University ErlangenNürnberg (FAU) and by the Deutsche Forschungsgemeinschaft (DFG, MA 4295/21) Short title: [ 18 F]FGlcFAPI for imaging of FAP Journal of Nuclear Medicine, published on April 24, 2020 as doi:10.2967/jnumed.120.242958

Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

1  

Targeting Fibroblast Activation Protein: 

Radiosynthesis and Preclinical Evaluation of an 18F‐labeled FAP Inhibitor 

Johannes Toms*,1, Jürgen Kogler1, Simone Maschauer1, Christoph Daniel2, Christian Schmidkonz3, Torsten 

Kuwert3, Olaf Prante1,3,§ 

1Friedrich‐Alexander University Erlangen‐Nürnberg (FAU), Department of Nuclear Medicine, Molecular 

Imaging and Radiochemistry, Translational Research Center, Schwabachanlage 12, 91054 Erlangen, 

Germany 

2Friedrich‐Alexander University Erlangen‐Nürnberg (FAU), Department of Nephropathology, 

Krankenhausstr. 8‐10, 91054 Erlangen, Germany 

3Friedrich‐Alexander University Erlangen‐Nürnberg (FAU), Department of Nuclear Medicine, Ulmenweg 

18, 91054 Erlangen, Germany 

 

§ Corresponding author: Olaf Prante, Prof. Dr. Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Schwabachanlage 12 91054 Erlangen Tel: +49‐9131‐85‐44440 Fax: +49‐9131‐85‐39288 Email: olaf.prante@uk‐erlangen.de  * First author: Johannes Toms (PhD student) Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Schwabachanlage 12 91054 Erlangen Tel: +49‐9131‐85‐47039 Email: johannes.toms@uk‐erlangen.de  This work was financially supported by the Emerging Field Initiative (EFI) of the Friedrich‐Alexander 

University Erlangen‐Nürnberg (FAU) and by the Deutsche Forschungsgemeinschaft (DFG, MA 4295/2‐1) 

Short title: [18F]FGlc‐FAPI for imaging of FAP 

   

Journal of Nuclear Medicine, published on April 24, 2020 as doi:10.2967/jnumed.120.242958

Page 2: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

2  

ABSTRACT 

Fibroblast activation protein  (FAP) has emerged as an  interesting molecular target used  in the  imaging 

and therapy of various types of cancers. Gallium‐68–labeled chelator‐linked FAP  inhibitors (FAPIs) have 

been  successfully  applied  to positron  emission  tomography  (PET)  imaging of  various  tumor  types.  To 

broaden  the  spectrum  of  applicable  PET  tracers  for  extended  imaging  studies  of  FAP‐dependent 

diseases, we herein  report  the  radiosynthesis and preclinical evaluation of an  18F–labeled glycosylated 

FAP  inhibitor  ([18F]FGlc‐FAPI). Methods: An alkyne‐bearing precursor was synthesized and subjected to 

click  chemistry–based  radiosynthesis  of  [18F]FGlc‐FAPI  by  two‐step  18F‐fluoroglycosylation.  FAP‐

expressing  HT1080hFAP  cells  were  used  to  study  competitive  binding  to  FAP,  cellular  uptake, 

internalization, and efflux of [18F]FGlc‐FAPI  in vitro. Biodistribution studies and  in vivo small animal PET 

studies  of  [18F]FGlc‐FAPI  compared  to  [68Ga]Ga‐FAPI‐04  were  conducted  in  nude  mice  bearing 

HT1080hFAP  tumors  or  U87MG  xenografts.  Results:  [18F]FGlc‐FAPI  was  synthesized  with  a  15% 

radioactivity yield and a high radiochemical purity of >99%. In HT1080hFAP cells, [18F]FGlc‐FAPI showed 

specific uptake, a high internalized fraction, and low cellular efflux. Compared to FAPI‐04 (IC50 = 32 nM), 

the  glycoconjugate,  FGlc‐FAPI  (IC50  =  167  nM),  showed  slightly  lower  affinity  for  FAP  in  vitro, while 

plasma  protein  binding  was  higher  for  [18F]FGlc‐FAPI.  Biodistribution  studies  revealed  significant 

hepatobiliary excretion of [18F]FGlc‐FAPI; however, small animal PET studies  in HT1080hFAP xenografts 

showed higher  specific  tumor uptake of  [18F]FGlc‐FAPI  (4.5 %  injected dose per gram of  tissue  [ID/g]) 

compared  to  [68Ga]Ga‐FAPI‐04  (2 %ID/g).  In U87MG  tumor–bearing mice, both  tracers  showed  similar 

tumor  uptake,  but  [18F]FGlc‐FAPI  showed  a  higher  tumor  retention.  Interestingly,  [18F]FGlc‐FAPI 

demonstrated  high  specific  uptake  in  bone  structures  and  joints.  Conclusion:  [18F]FGlc‐FAPI  is  an 

interesting candidate  for  translation  to  the clinic,  taking advantage of  the  longer half‐life and physical 

imaging properties of  F‐18.  The  availability of  [18F]FGlc‐FAPI may  allow  extended  PET  studies of  FAP‐

related diseases, such as cancer, but also arthritis, heart diseases, or pulmonary fibrosis. 

Page 3: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

3  

Keywords:  fibroblast  activation  protein,  cancer‐associated  fibroblasts,  fluorine‐18,  18F‐

fluoroglycosylation, positron emission tomography 

   

Page 4: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

4  

INTRODUCTION 

The fibroblast activation protein (FAP)  is a membrane‐bound serine protease with dipeptidyl peptidase 

and  endopeptidase  activities  (1).  The  regulation  and  role  of  FAP  has  been  studied  for  almost  three 

decades and has gained special attention as a highly expressed marker in the vast majority of epithelial 

tumors (2), as well as in fibrosis (3) and rheumatoid arthritis (4). More generally, FAP is associated with 

the  pathological  and  even  non‐pathological  remodeling  of  the  extracellular  matrix  (5).  The  basal 

expression of FAP  in healthy human tissue  is considered very  low, whereas  in mice detectable  levels of 

FAP expression were shown to be highest in the uterus, pancreas, submaxillary gland, and skin (6). In the 

case  of  cancer,  FAP  is  not  expressed  on malignant  tumor  cells  themselves,  but  on  cancer‐associated 

fibroblasts  (CAFs),  a  non‐malignant  cell  subtype  of  the  stroma,  which  is  a major  part  of  a  tumor’s 

composition (7). However, even though recognized as non‐malignant cells, CAFs are heavily  involved  in 

tumor  growth, migration,  and  progression  of  the  disease  by  communicating  with  several  cell  types 

through  the secretion of growth  factors and chemokines  (8). Not only  is  the mediating role of CAFs  in 

cancer manifold,  but  the  cells  originate  from  various  sources.  Endothelial  cells,  resident  fibroblasts, 

adipocytes and bone marrow–derived hematopoietic or mesenchymal stem cells have been described as 

putative precursors that differentiate into CAFs (9). While low expression of FAP has been also shown on 

some CAF precursors, FAP overexpression by CAFs is a key characteristic and is often connected to a bad 

prognosis and outcomes for respective cancers (10). Several approaches targeting FAP have been made 

using antibodies  (11,12), peptide prodrugs  (13), or small molecules  (14). However,  limited success has 

been achieved  in preclinical studies such that few candidates have entered clinical studies (15,16). The 

protein structure of FAP was described in 2005 (17), together with the first generation of FAP inhibitors 

that  showed  good  affinity  but  lacked  selectivity.  Second‐generation  FAP  inhibitors  were  structurally 

based  on  a  quinoline  amide  core  coupled  to  a  2‐cyanopyrrolidine moiety  (18);  these  demonstrated 

nanomolar  affinity  and  selectivity  for  FAP  with  only  a  low  affinity  to  other  interfering  dipeptidyl 

Page 5: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

5  

peptidases  (19,20).  Recently,  the  development  of  PET  ligands  was  successfully  achieved  by  the 

introduction of a dodecane tetraacetic acid (DOTA) chelator coupled to an alkyl‐piperazine spacer linked 

to the quinoline core and labeled with 68Ga (21,22). A 68Ga–labeled FAPI tracer ([68Ga])Ga‐FAPI‐04; Fig. 1) 

demonstrated  high  tumor‐to‐organ  ratios  and  fast  elimination  in  preclinical  experiments. Moreover, 

first‐in‐human PET studies with [68Ga]Ga‐FAPI‐04 revealed the excellent visualization of a broad range of 

tumors, with  high  tumor‐to‐noise  ratios  and  the  successful  imaging  of  tumor metastases  (23,24).  In 

addition,  derivatives  of  FAPI‐04  are  under  development  that may  allow  radiolabeling  with  177Lu  for 

application  in endoradiotherapy, provided that the biological half‐life  is appropriate for the therapeutic 

demand (25). 

We  here  report  an  alkyne‐bearing  version  of  FAPI‐04  and  its  use  as  a  precursor  for  the  click 

chemistry–based synthesis of an 18F‐labeled FAP inhibitor. In previous studies, we demonstrated that the 

introduction  of  18F‐labeled  glycosyl  moieties  could  positively  influence  the  clearance  behavior  of  a 

radiotracer (26‐28), and the glycosylation of biomolecules has been frequently shown to improve the in 

vivo stability  in blood and allows for the optimization of active drug delivery (29,30). Therefore, herein, 

we  present  the  radiosynthesis  and  preclinical  evaluation  of  an  18F–labeled  glycosylated  FAP  inhibitor 

([18F]FGlc‐FAPI; Fig. 1) as a new  18F‐fluoroglycosylated FAP  ligand.  In direct  comparison with  [68Ga]Ga‐

FAPI‐04, we  report biodistribution studies and small animal PET studies of  [18F]FGlc‐FAPI  in nude mice 

xenografts of FAP‐positive tumors. 

   

Page 6: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

6  

MATERIALS AND METHODS 

General 

The stably FAP‐transfected  fibrosarcoma cell  line HT1080hFAP and  the precursor FAPI‐04 were 

kindly provided by Prof. Uwe Haberkorn (University Hospital Heidelberg, Germany). The procedures for 

in  vitro  and  animal  experiments,  including  tumor  transplantation,  were  given  in  detail  in  the 

Supplemental Information File. 

Chemistry 

The  syntheses of all non‐radioactive  compounds,  including  the  reference  compound  FGlc‐FAPI 

are described in detail in the Supplemental Information. 

Radiosynthesis of [18F]FGlc‐FAPI 

Starting  from  the  tosylate  precursor  1,  2,3,4‐tri‐O‐acetyl‐6‐deoxy‐6‐[18F]fluoroglucosyl  azide 

([18F]2) was  prepared,  isolated  and  deacetylated with NaOH  (270  µL,  60 mM)  at  60  °C  for  5 min  as 

described  before  (27).  To  the  crude  product  6‐deoxy‐6‐[18F]fluoroglucosyl  azide  ([18F]3),  a mixture  of 

phosphate  buffer  (270  µL,  0.5  M,  pH  8),  Cu(OAc)2  (20  µL,  4  mM),  tris(3‐

hydroxypropyltriazolylmethyl)amine (THPTA; 20 µL, 20 mM), sodium ascorbate (20 µL, 0.1 M) and alkyne 

11 (1 mM, 400 µL) was added and the reaction was stirred for 15 min at 60 °C. The RCY of [18F]FGlc‐FAPI 

was 52‐85% as determined by analytical HPLC (method 2) from a sample withdrawn from the reaction 

mixture.  Purification  of  [18F]FGlc‐FAPI was  performed  by  semi‐preparative HPLC  (method  1,  tR  =  10.3 

min). The product fraction was diluted with water and passed through a RP‐18 cartridge (Sep‐Pak  light 

C18, Waters).  [18F]FGlc‐FAPI  was  eluted  with  ethanol  (2  mL)  and  after  evaporation  of  the  solvent, 

[18F]FGlc‐FAPI was  formulated with 0.9%  saline.  Starting  from  [18F]fluoride  (500‐1000 MBq),  [18F]FGlc‐

Page 7: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

7  

FAPI was obtained in a radioactivity yield (RAY) of 30‐130 MBq (6‐15%, referred to [18F]fluoride) in a total 

synthesis time of 90‐110 min in specific activities of 30‐200 GBq/µmol (n = 11). 

Biodistribution 

The tumor‐bearing mice were anesthetized with O2/isofluran (2‐3%  isofluran, 1.2 L/min O2) and 

laid on a heating pad  (37  °C). About 1‐2 MBq  (100 µL) of  [18F]FGlc‐FAPI  (and 30 nmol/mouse of FAPI 

alkyne 11 as blocking substance) were injected via the tail vein. The mice were then transferred to a cage 

and allowed to recover from anesthesia. The mice were euthanized by cervical dislocation under deep 

isoflurane anesthesia at 30 min (n = 2), 60 min (n = 2), 60 min (coinjection of 11, n = 2) and 90 min (n = 2) 

post‐injection  (p.i.)  and  samples  from  tissues  and  blood  were  removed,  weighed  and  radioactivity 

counted  in  the  γ‐counter.  The  results were  presented  as  percentage  injected  dose  per  gram  tissue 

(%ID/g)  and  tumor‐to‐organ  ratios were  calculated  thereof.  The  values were  given  as mean  values  ± 

standard deviation. 

Small animal PET Imaging 

Mice bearing xenografted HT1080hFAP or U87MG tumors were laid on a heating pad (37 °C) and 

were anesthetized using an O2/isofluran (2‐3% isofluran, 1.2 L/min O2). A venous access was laid into the 

tail  vein of  the animals and  the  cannula was  fixed by an  instant adhesive on  the  tail. The mice were 

transferred to an Inveon™ microPET scanner (Siemens Healthcare, Erlangen), tempered by a heating pad 

(37 °C). A dynamic PET scan was started from 0 to 60 min after injection of 2‐5 MBq of [18F]FGlc‐FAPI (n = 

2‐3) or 3‐5 MBq [68Ga]Ga‐FAPI‐04 (n = 2‐5) in 100 µL of isotonic saline solution. For three mice a 15 min‐

static scan was acquired at 120 min after tracer injection. The blocking experiments were performed by 

coinjection of  [18F]FGlc‐FAPI and alkyne 11  (30 or 100 nmol/animal, n = 3). After  iterative maximum a 

posteriori image reconstruction of the decay and attenuation corrected images, regions of interest (ROIs) 

were defined using the software PMOD (PMOD Technologies LLC, Switzerland). The mean radioactivity 

Page 8: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

8  

concentration within the ROIs was converted to percentage  injected dose per gram organ  (%ID/g) and 

provided as mean values ± standard deviation. 

 

RESULTS 

Chemistry and Radiochemistry 

Inspired by  recently published  results on  [68Ga]Ga‐FAPI‐04, we  synthesized  the alkyne‐bearing 

derivative 11 as a derivative of FAPI‐04. This can lead to chemoselective copper(I)‐catalyzed alkyne azide 

cycloaddition  (CuAAC)  reactions,  such as a wide variety of  18F‐click  chemistry–based  labeling methods 

(31). The alkyne precursor 11  is composed of a dipeptide analog synthesized according to Jansen et al. 

(20),  a  quinoline  unit,  and  a  piperazine‐alkyl  linker, which was  synthesized  by  a modified  procedure 

following Lindner et al  (22). The alkyne 11 was obtained with an overall yield of 13% over six reaction 

steps  (Supplemental Fig. 1). Applying  chemoselective CuAAC  reaction with 11 and 6‐deoxy‐6‐fluoro‐‐

glucosyl azide (3 (27)), we obtained glycoconjugate FGlc‐FAPI with a yield of 66% and a purity of 95% as a 

FAP inhibitor test compound and reference compound of the 18F‐labeled analog. 

Based  on  our  previous  experience  in  the  development  of  18F‐labeled  glycoconjugates  as  PET 

imaging agents (27,28,32), the radiosynthesis of [18F]FGlc‐FAPI was started from precursor 1 (27) for 18F‐

substitution,  followed by  18F‐fluoroglycosylation of 11  (400 nmol) under optimized  reaction conditions 

(Fig. 2). The complete two‐step radiosynthesis was performed in a maximum of 90–110 min, providing a 

[18F]FGlc‐FAPI formulated tracer with a radioactivity yield of 15%, a radiochemical purity of >99%, and a 

molar activity of 30–200 GBq/µmol (Supplemental Figs. 2‐4). 

   

Page 9: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

9  

In vitro Evaluation of [18F]FGlc‐FAPI 

While [68Ga]Ga‐FAPI‐04 showed high hydrophilicity (logD7.4 = ‐2.41 ± 0.28), [18F]FGlc‐FAPI was less 

polar (logD7.4 = ‐0.99 ± 0.03). Both tracers showed high stability in human serum after incubation for 55 

min of >99% for [18F]FGlc‐FAPI and 93% for [68Ga]Ga‐FAPI‐04. Binding to human blood plasma proteins 

was determined for [18F]FGlc‐FAPI (45 ± 6%, n = 6) and was significantly higher than for [68Ga]Ga‐FAPI‐04 

(10 ± 3%, n = 6). 

To determine whether the introduction of the alkyne moiety and glycosylation of [18F]FGlc‐FAPI 

had any influence on FAP binding, we performed competition binding experiments with [177Lu]Lu‐FAPI‐04 

as a radioligand  in HT1080hFAP cells  (Fig. 3A). The  test compounds FGlc‐FAPI, alkyne 11, FAPI‐04, and 

Ga‐FAPI‐04 showed  IC50 values  in a range from double‐ to triple‐digit nanomolar concentrations (Table 

1). Due to differences in the assay setup, the IC50 values were in general higher than values reported in 

the  literature  (22). All  four FAPI derivatives  lead to the displacement of  [177Lu]Lu‐FAPI‐04 of about 75–

95%, while DOTA derivatives showed a 3–5‐fold higher affinity for FAP compared to alkyne 11 and FGlc‐

FAPI. We also determined the binding to the structurally‐related peptidase dipeptidyl peptidase 4 (DPP4, 

CD26), which is highly expressed on blood cells and memory T cells and, in its soluble form, is present in 

blood plasma.  In direct  comparison  to FAPI‐04,  the glycoconjugate FGlc‐FAPI and FAPI‐alkyne  showed 

comparable IC50 values  in the micromolar range, confirming the binding selectivity of FGlc‐FAPI for FAP 

(Table 1, Supplemental Fig. 5). 

[18F]FGlc‐FAPI  showed  specific  uptake  in  HT1080hFAP  cells  of  6.6  ±  0.8%  after  60  min  of 

incubation, which could be significantly blocked by the addition of alkyne 11 to between 3 and 7% (Fig. 

3B).  Additionally,  FAP‐negative  MCF‐7  cells  did  not  show  any  significant  uptake  of  [18F]FGlc‐FAPI, 

suggesting  specific  FAP‐mediated  uptake  of  [18F]FGlc‐FAPI  in HT1080hFAP  cells  (Supplemental  Fig.  6). 

[18F]FGlc‐FAPI  showed  a  fast  cellular  uptake  (>4%  after  5  min,  Fig.  3B)  with  a  rapid  and  high 

Page 10: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

10  

internalization  rate  in HT1080hFAP  cells  (95%  after  5–120 min;  Fig.  3C),  confirming  results  for  177Lu‐

labeled FAPI derivatives reported by Lindner et al. (22). After 60 min of  incubation with [18F]FGlc‐FAPI, 

75% of  the  tracer was  still  internalized, demonstrating  the  low  cellular efflux  rate of  [18F]FGlc‐FAPI  in 

vitro (Fig. 3C). 

 

Biodistribution of [18F]FGlc‐FAPI 

Biodistribution  studies  of  [18F]FGlc‐FAPI  in  HT1080hFAP  tumor‐bearing  mice  revealed  tumor 

uptake of 1.6–2.0 %ID/g (n = 2, Table 2, Supplemental Fig. 7A) with high retention from 30 to 90 min p.i. 

The  tracer uptake was  shown  to be  specific by  the  coinjection of  [18F]FGlc‐FAPI  together with 11  (30 

nmol/mouse), demonstrating diminished  tumor uptake by 56% at 60 min p.i.  (0.9 ± 0.2 %ID/g, n = 2, 

Table  2,  Supplemental  Fig.  7B). Notably,  partial  necrosis  of  the  tumors was  observed,  such  that  the 

tumor uptake of  [18F]FGlc‐FAPI was heterogeneous and moderate. Biodistribution  studies of  [18F]FGlc‐

FAPI  also  demonstrated  pronounced  uptake  in  the  liver  and  intestine,  suggesting  a  hepatobiliary 

excretion pathway for [18F]FGlc‐FAPI. The observed uptake in the bones (femur) was constant over time, 

similar to the uptake in tumors, and could be blocked by approximately 80% (3.4 %ID/g vs. 0.6 %ID/g, n = 

2,  Table  2,  Supplemental  Fig.  7B),  suggesting  specific  binding  to  bone  marrow.  Similarly,  the 

concentration  of  [18F]FGlc‐FAPI  in  the  blood  was  diminished  under  blocking  conditions  (Table  2, 

Supplemental Fig. 7B). 

µPET Imaging 

For a proof‐of‐concept study and an assessment of  the  tracer performance of  [18F]FGlc‐FAPI  in 

comparison  to  [68Ga]Ga‐FAPI‐04,  small  animal  PET  studies  using  HT1080hFAP  xenografts  were 

conducted.  Dynamic measurements  over  the  course  of  60 min  p.i.  revealed  fast  biodistribution  and 

specific  uptake  in  HT1080hFAP  tumors  in  vivo,  both  for  [18F]FGlc‐FAPI  and  [68Ga]Ga‐FAPI‐04  (Fig.  4). 

Page 11: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

11  

Tumor uptake of [18F]FGlc‐FAPI was limited to intact tumor tissue, as necrotic areas inside the tumor did 

not show any significant tracer uptake (Fig. 4A). At an early time point after tracer injection (10 min p.i.), 

[18F]FGlc‐FAPI reached a  tumor uptake of 4.6 %ID/g and showed retention  in  the  tumor over  the  time 

period of the PET scan  (Fig. 4C).  In comparison,  [68Ga]Ga‐FAPI‐04 showed a  lower tumor uptake of 2.1 

%ID/g (Fig. 4B, D), though homogenous tracer distribution was noted in the tumors.  

As an alternative tumor model for FAP‐transfected HT1080 cancer cell xenografts, we generated 

U87MG xenografts for PET imaging studies. In vitro, U87MG cells lack FAP expression, however, U87MG 

xenograft tumors are FAP‐positive in vivo, which is ascribed to the recruitment and activation of mouse 

fibroblasts (CAF) (33).  In these more homogenous growing tumors, a similarly high uptake of [18F]FGlc‐

FAPI  and  [68Ga]Ga‐FAPI‐04 was observed  (approx. 7 %ID/g,  Fig. 5A, B).  Interestingly,  [68Ga]Ga‐FAPI‐04 

reached maximum uptake at 15 min p.i., which  subsequently  slightly decreased. However,  the  tumor 

uptake of [18F]FGlc‐FAPI slightly but constantly increased, beginning from an initial rapid uptake phase at 

10 min p.i. to the end of the total scan time of 60 min (Fig. 5B). The high tumor retention of [18F]FGlc‐

FAPI has been additionally proven by PET scans at 120‐130 min p.i. (Supplemental Fig. 8). 

Unexpectedly, a high and specific uptake of [18F]FGlc‐FAPI was also detected in bone structures, 

for example  in the joints, spine, skull, and shoulders (Fig. 5C, Supplemental Fig. 9), as demonstrated by 

uptake of around 6 %ID/g in the knee joints (Fig. 5C, D). However, [68Ga]Ga‐FAPI‐04 accumulated in the 

knee joints to a lower extent (2.8 ± 1.4 %ID/g). Blocking studies confirmed the specific uptake [18F]FGlc‐

FAPI in the knee joint region ([18F]FGlc‐FAPI: 6.0 ± 2.5 %ID/g vs. blocking: 0.36 ± 0.06 %ID/g; n = 4–6, all 

values for 55 min p.i., Fig. 5D). Both tracers showed fast blood clearance (Fig. 5E). However, contrary to 

the  low concentration of  [68Ga]Ga‐FAPI‐04  in  the blood at 55 min p.i.,  [18F]FGlc‐FAPI  showed a higher 

residual blood concentration than [68Ga]Ga‐FAPI‐04 (Fig. 5E, insert). 

 

Page 12: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

12  

DISCUSSION 

To  take  advantage  of  the  favorable  properties  of  fluorine‐18,  we  envisaged  the  design  and 

synthesis  of  the  alkyne‐bearing  FAPI  derivative  11,  rendering  click  chemistry–based  18F‐

fluoroglycosylation  feasible  for  the  radiosynthesis of  a new  18F‐labeled  FAPI  glycoconjugate,  [18F]FGlc‐

FAPI.  18F‐Fluoroglycosylation  is  well  established  in  our  lab  and  has  proven  its  potential  in  the 

development  of  new  PET  radiopharmaceuticals  (26,34). We  have  optimized  an  automated  synthesis 

module for 18F‐glycosylation, successfully running the radiosynthesis of four different 18F‐glycoconjugates 

in a reliable manner, with a robust radioactivity yield of 15–20% (35). Currently, the module is used in a 

clean  room  laboratory  for  the  good  manufacturing  practice‐compliant  manufacture  of  18F‐

glycoconjugates, such as [18F]FGlc‐FAPI, to facilitate first‐in‐human PET imaging studies. 

In  vitro,  cellular  uptake  in  FAP‐transfected  human  fibrosarcoma  cells,  ligand  binding, 

internalization,  and  efflux  of  [18F]FGlc‐FAPI  were  similar  to  those  of  [68Ga]Ga‐FAPI‐04,  as  expected. 

However,  FAP  binding  affinity was  five  times  lower  for  [18F]FGlc‐FAPI,  but  still within  the  three‐digit 

nanomolar range. Also, plasma protein binding and  lipophilicity were distinctly higher for [18F]FGlc‐FAPI 

compared  to  [68Ga]Ga‐FAPI‐04.  The  replacement  of  the  hydrophilic  gallium  complex with  a  triazolyl 

glucosyl moiety (Fig. 1) induced lipophilicity in the molecule under physiological conditions (pH 7.4) and 

increased  the  logD7.4 value  from  ‐2.4  to  ‐1.0. This  increase  in  lipophilicity  is  in agreement with higher 

binding to plasma proteins. In fact, the difference in blood‐plasma binding between [18F]FGlc‐FAPI (45%) 

and  [68Ga]Ga‐FAPI‐04  (10%) was the most striking difference of all measured  in vitro results. The most 

abundant plasma protein,  serum albumin, binds a  large diversity of  small organic molecules  to  shield 

their lipophilic character, thereby increasing their solubility in plasma and prolonging the circulating half‐

life, as shown by our in vivo results for [18F]FGlc‐FAPI compared to [68Ga]Ga‐FAPI‐04. 

Page 13: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

13  

In  agreement  to  increased  plasma  protein  binding  and  lipophilicity,  biodistribution  studies  of 

[18F]FGlc‐FAPI in mice revealed that the excretion of [18F]FGlc‐FAPI was through the kidneys as well as the 

hepatobiliary pathway, which was comparable to the recently reported biodistribution of [64Cu]Cu‐FAPI‐

04 (36). For comparison, [68Ga]Ga‐FAPI‐04 is almost exclusively excreted by the kidneys and bladder (22). 

Clearly, a pronounced nonspecific uptake of [18F]FGlc‐FAPI in the liver and intestine may be a problem for 

the detection of abdominal FAP‐positive lesions in tumor patients. Therefore, first‐in‐human studies are 

necessary to clarify whether the excretion of [18F]FGlc‐FAPI in human is similar to that in mice or whether 

predominant renal elimination occurs in human. 

Our  results  of  small  animal  PET  studies  using  HT1080hFAP  xenografts  demonstrated  that 

[18F]FGlc‐FAPI  specifically  bound  to  the  tumor,  revealing  equal  or  even  higher  tumor  uptake  values 

compared  to  [68Ga]Ga‐FAPI‐04.  However,  PET  images  with  higher  tumor‐to‐background  ratios  were 

achieved with  [68Ga]Ga‐FAPI‐04  due  to  the  lower  plasma  protein  binding  and,  thereby,  faster  blood 

clearance of  [68Ga]Ga‐FAPI‐04.  In addition, we performed  small animal PET  studies  in U87MG  tumor–

bearing  mice,  confirming  previous  studies  that,  in  vivo,  U87MG  cells  recruit  activated  FAP‐positive 

fibroblasts  and/or,  by  communicating with  cancer‐associated  fibroblasts,  express  FAP  (33);  such  cells 

were previously used for preclinical imaging including PET with [68Ga]Ga‐FAPI‐04 (33,37).  

The most eye‐catching observation using  [18F]FGlc‐FAPI  for PET  imaging was  its high uptake  in 

bone structures in U87MG tumor–bearing mice. In comparison with [68Ga]Ga‐FAPI‐04, the accumulation 

of  [18F]FGlc‐FAPI  in  the  spine,  femur,  skull,  knees,  and  shoulders  was  unexpectedly  high.  Blocking 

experiments  revealed  that  [18F]FGlc‐FAPI  uptake  was  significantly  diminished  by  coinjection  of  11, 

suggesting specific binding of [18F]FGlc‐FAPI in these regions. In vivo defluorination of [18F]FGlc‐FAPI was 

excluded  by  the  blocking  experiments,  and  was,  to  date,  never  observed  for  18F‐fluoroglycosylated 

compounds.  

Page 14: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

14  

Our  in  vitro  and  in  vivo  results demonstrated  higher plasma protein binding of  [18F]FGlc‐FAPI 

compared  to  [68Ga]Ga‐FAPI‐04,  negligible  binding  to  DPP4‐positive  blood  cells,  and  a  prolonged 

circulation time in blood for [18F]FGlc‐FAPI. These may be the main reasons for the continuously slightly 

increasing tumor uptake over time (Fig. 5B), but also for the higher uptake of [18F]FGlc‐FAPI in the knee 

joints and in bone structures compared to [68Ga]Ga‐FAPI‐04. 

Tran et al. have reported FAP expression of freshly isolated osteogenic cells of nonhematopoietic 

origin,  including multipotent  bone marrow  stromal  cells  (BMSCs)  (38).  The  authors  found  that  FAP‐

reactive T cells  induced severe cachexia and dose‐limiting bone toxicity  in mice, which appeared to be 

the result of targeting of FAP‐expressing multipotent BMSCs. Therefore, the in vivo accumulation pattern 

of [18F]FGlc‐FAPI may be ascribed to binding to the bone marrow  in vivo. Moreover,  it has been shown 

that BMSCs are capable of directed migration towards various tumor types (39), and BMSCs are a source 

of circulating stem cells that are recruited from the blood into peripheral solid organs in times of tissue 

remodeling  (40).  In  the U87MG  tumor‐bearing  nude mice model,  such  circulating murine BMSCs  are 

potential precursor  cells  of  cancer‐associated  fibroblasts  (CAFs)  that  are  recruited by  stroma‐building 

U87MG xenografts (9). Therefore, it is tempting to speculate that [18F]FGlc‐FAPI is capable of binding to 

FAP‐positive BMSCs  and  circulating BMSCs, besides binding  to  FAP‐positive CAFs  in  the  tumor  tissue. 

However, a significant role of the binding of [18F]FGlc‐FAPI to plasma proteins or most abundant proteins 

in  the  murine  synovial  fluid  of  the  knee  joints  cannot  be  ruled  out.  Although  preliminary  in  vitro 

experiments  did  not  show  significant  binding  to  serum  albumin,  other  shared  proteins  in  plasma  or 

synovial fluid, such as several immunoglobulins (41), could bind and trap [18F]FGlc‐FAPI. [68Ga]Ga‐FAPI‐04 

also accumulated in bone structures, however, to a much lower extent than [18F]FGlc‐FAPI. A reason for 

this may be  the extremely  fast and not‐adhesive clearance properties of  [68Ga]Ga‐FAPI‐04. The higher 

specific uptake of [18F]FGlc‐FAPI by bone structures compared to [68Ga]Ga‐FAPI‐04 may be beneficial  in 

monitoring FAP‐dependent bone tissue remodeling in diseases such as rheumatoid arthritis by PET. 

Page 15: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

15  

CONCLUSION 

The glycoconjugate FAP inhibitor [18F]FGlc‐FAPI showed suitable in vitro and in vivo properties for 

the tumor imaging of FAP expression in mice, but slower in vivo clearance properties than [68Ga]Ga‐FAPI‐

04. While hepatobillary clearance of [18F]FGlc‐FAPI in mice could be a disadvantage for successful clinical 

translation, the high uptake of [18F]FGlc‐FAPI  in murine bone structures may be an  interesting property 

of  this  tracer. The glycoconjugate,  [18F]FGlc‐FAPI,  is a viable alternative  18F‐labeled FAP  inhibitor and a 

promising candidate for translation to the clinic for first‐in‐human studies on FAP‐dependent bone tissue 

remodeling in diseases such as rheumatoid arthritis by PET. 

 

Disclosure 

There are no conflicts of interest. This work was supported by the Emerging Fields Initiative (EFI) 

of the Friedrich–Alexander University Erlangen–Nürnberg (grant 3_Nat_01, “Chemistry in live cells”) and 

by the German Research Foundation (DFG, MA 4295/2‐1). 

 

ACKNOWLEDGMENTS 

The authors gratefully thank Dr. Annette Altmann and Prof. Uwe Haberkorn (University Hospital 

Heidelberg and DKFZ, Heidelberg, Germany)  for  kindly providing  the  FAP‐transfected HT1080  cell  line 

and  FAPI‐04. Additional  acknowledgements  go  to Mr.  Stefan  Söllner, Mr. Manuel Geisthoff  and Mrs. 

Ulrike Ittstein for excellent technical assistance as well as to Mr. Jan Hellmann, Mrs. Anke Seitz, and Prof. 

Peter Gmeiner (Chair of Pharmaceutical Chemistry, FAU) for excellent collaboration and help in chemical 

analyses.  

Page 16: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

16  

Key Points 

Question: 

Is an  18F‐labeled glycoconjugate  inhibitor  targeting  fibroblast activation protein  (FAP) an effective PET 

tracer for the imaging of FAP expression? 

Pertinent Findings: 

This  preclinical  study  showed  that  18F‐FGlc‐FAPI  had  suitable  in  vitro  and  in  vivo  properties  for  the 

imaging of FAP‐expressing tumors and is therefore a viable alternative 18F‐labeled FAP inhibitor.  

Implications for Patient Care: 

The  glycoconjugate,  [18F]FGlc‐FAPI,  is  a  viable  alternative  18F‐labeled  FAP  inhibitor  and  a  promising 

candidate  for  translation  to  the  clinic  for  the  first‐in‐human  imaging of FAP expression  in FAP‐related 

diseases such as rheumatoid arthritis by PET. 

   

Page 17: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

17  

REFERENCES 

1.  Park  JE,  Lenter MC,  Zimmermann  RN,  Garin‐Chesa  P,  Old  LJ,  Rettig WJ.  Fibroblast  activation 

protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J 

Biol Chem. 1999;274:36505‐36512.   

2.  Garin‐Chesa  P, Old  LJ,  Rettig WJ.  Cell  surface  glycoprotein  of  reactive  stromal  fibroblasts  as  a 

potential  antibody  target  in human epithelial  cancers. Proc Natl Acad  Sci U  S A. 1990;87:7235‐

7239.   

3.  Acharya PS, Zukas A, Chandan V, Katzenstein A‐LA, Puré E. Fibroblast activation protein: a serine 

protease  expressed  at  the  remodeling  interface  in  idiopathic  pulmonary  fibrosis.  Hum  Pathol. 

2006;37:352‐360.   

4.  Bauer  S,  Jendro MC, Wadle  A,  et  al.  Fibroblast  activation  protein  is  expressed  by  rheumatoid 

myofibroblast‐like synoviocytes. Arthrit Res Ther. 2006;8:R171.   

5.  Jacob M,  Chang  L,  Pure  E.  Fibroblast Activation  Protein  in  Remodeling  Tissues.  Curr Mol Med. 

2012;12:1220‐1243.   

6.  Keane  FM,  Yao  T‐W,  Seelk  S,  et  al.  Quantitation  of  fibroblast  activation  protein  (FAP)‐specific 

protease activity in mouse, baboon and human fluids and organs. FEBS oopen bio. 2014;4:43‐54.   

7.  Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582.   

8.  Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392.   

9.  Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer‐associated fibroblasts: their 

characteristics and their roles in tumor growth. Cancers (Basel). 2015;7:2443‐2458.   

10.  Cohen SJ, Alpaugh RK, Palazzo I, et al. Fibroblast activation protein and  its relationship to clinical 

outcome in pancreatic adenocarcinoma. Pancreas. 2008;37:154‐158.   

Page 18: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

18  

11.  Welt S, Divgi CR, Scott AM, et al. Antibody targeting in metastatic colon cancer: a phase I study of 

monoclonal antibody F19 against a cell‐surface protein of reactive tumor stromal fibroblasts. J Clin 

Oncol. 1994;12:1193‐1203.   

12.  Mersmann M, Schmidt A, Rippmann  JF, et al. Human antibody derivatives against  the  fibroblast 

activation protein for tumor stroma targeting of carcinomas. Int J Cancer. 2001;92:240‐248.   

13.  LeBeau  AM,  Brennen  WN,  Aggarwal  S,  Denmeade  SR.  Targeting  the  cancer  stroma  with  a 

fibroblast activation protein‐activated promelittin protoxin. Mol Cancer Ther. 2009;8:1378‐1386.   

14.  Ryabtsova O, Jansen K, Van Goethem S, et al. Acylated Gly‐(2‐cyano) pyrrolidines as  inhibitors of 

fibroblast  activation protein  (FAP)  and  the  issue of  FAP/prolyl oligopeptidase  (PREP)‐selectivity. 

Bioorg Med Chem Lett. 2012;22:3412‐3417.   

15.  Eager RM, Cunningham CC,  Senzer NN, et al. Phase  II assessment of  talabostat and  cisplatin  in 

second‐line stage IV melanoma. BMC Cancer. 2009;9:263.   

16.  Scott AM, Wiseman G, Welt S, et al. A Phase  I dose‐escalation study of sibrotuzumab  in patients 

with  advanced  or  metastatic  fibroblast  activation  protein‐positive  cancer.  Clin  Cancer  Res. 

2003;9:1639‐1647.   

17.  Aertgeerts  K,  Levin  I,  Shi  L,  et  al.  Structural  and  kinetic  analysis  of  the  substrate  specificity  of 

human fibroblast activation protein α. J Biol Chem. 2005;280:19441‐19444.   

18.  Tsai T‐Y, Yeh T‐K, Chen X, et al. Substituted 4‐carboxymethylpyroglutamic acid diamides as potent 

and selective inhibitors of fibroblast activation protein. J Med Chem. 2010;53:6572‐6583.   

19.  Jansen K, Heirbaut L, Cheng JD, et al. Selective inhibitors of fibroblast activation protein (FAP) with 

a (4‐quinolinoyl)‐glycyl‐2‐cyanopyrrolidine scaffold. ACS Med Chem Lett. 2013;4:491‐496.   

20.  Jansen  K,  Heirbaut  L,  Verkerk  R,  et  al.  Extended  structure–activity  relationship  and 

pharmacokinetic  investigation of  (4‐quinolinoyl) glycyl‐2‐cyanopyrrolidine  inhibitors of  fibroblast 

activation protein (FAP). J Med Chem. 2014;57:3053‐3074.   

Page 19: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

19  

21.  Loktev  A,  Lindner  T,  Mier  W,  et  al.  A  tumor‐imaging  method  targeting  cancer‐associated 

fibroblasts. J Nucl Med. 2018;59:1423‐1429.   

22.  Lindner T, Loktev A, Altmann A, et al. Development of quinoline‐based theranostic ligands for the 

targeting of fibroblast activation protein. J Nucl Med. 2018;59:1415‐1422.   

23.  Giesel  FL,  Kratochwil  C,  Lindner  T,  et  al.  68Ga‐FAPI  PET/CT:  biodistribution  and  preliminary 

dosimetry estimate of 2 DOTA‐containing FAP‐targeting agents in patients with various cancers. J 

Nucl Med. 2019;60:386‐392.   

24.  Kratochwil C, Flechsig P, Lindner T, et al. 68Ga‐FAPI PET/CT: Tracer Uptake in 28 Different Kinds of 

Cancer. J Nucl Med. 2019;60:801‐805.   

25.  Loktev  A,  Lindner  T,  Burger  E‐M,  et  al.  Development  of  novel  FAP‐targeted  radiotracers  with 

improved tumor retention. J Nucl Med. DOI:jnumed. 118.224469.   

26.  Maschauer  S,  Einsiedel  J,  Haubner  R,  et  al.  Labeling  and Glycosylation  of  Peptides  Using  Click 

Chemistry:  A  General  Approach  to  18F‐Glycopeptides  as  Effective  Imaging  Probes  for  Positron 

Emission Tomography. Angew Chem Int Ed. 2010;49:976‐979.   

27.  Maschauer S, Haubner R, Kuwert T, Prante O. 18F‐Glyco‐RGD peptides for PET  imaging of  integrin 

expression:  efficient  radiosynthesis  by  click  chemistry  and  modulation  of  biodistribution  by 

glycosylation. Mol Pharm. 2014;11:505‐515.   

28.  Potemkin R, Strauch B, Kuwert T, Prante O, Maschauer S. Development of 18F‐Fluoroglycosylated 

PSMA‐Ligands with Improved Renal Clearance Behavior. Mol Pharm. 2020;17:933‐943.   

29.  Davis BG, Robinson MA. Drug delivery  systems based on  sugar‐macromolecule  conjugates. Curr 

Opin Drug Discov Devel. 2002;5:279‐288.   

30.  Moradi  SV,  Hussein WM,  Varamini  P,  Simerska  P,  Toth  I.  Glycosylation,  an  effective  synthetic 

strategy  to  improve  the  bioavailability  of  therapeutic  peptides.  Chemical  Science.  2016;7:2492‐

2500.   

Page 20: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

20  

31.  Mirfeizi L, Campbell‐Verduyn L, Dierckx RA, Feringa BL, Elsinga PH. Application of Click Chemistry 

for PET. Curr Org Chem. 2013;17:2108‐2118.   

32.  Maschauer  S, Ott  JJ,  Bernhardt  G,  Kuwert  T,  Keller M,  Prante O.  (18)F‐labelled  triazolyl‐linked 

argininamides targeting the neuropeptide Y Y1R for PET imaging of mammary carcinoma. Sci Rep. 

2019;9:12990.   

33.  Röhrich M,  Loktev A, Wefers AK, et  al.  IDH‐wildtype  glioblastomas  and  grade  III/IV  IDH‐mutant 

gliomas  show  elevated  tracer uptake  in  fibroblast  activation protein‐specific PET/CT.  Eur  J Nucl 

Med Mol Imaging. 2019;46:2569‐2580.   

34.  Maschauer  S, Prante O.  Sweetening pharmaceutical  radiochemistry by  18F‐fluoroglycosylation: a 

short review. BioMed Res Int. 2014;2014:16.   

35.  Ott  JJ.  Selective  neuropeptide  and  opioid  receptor  radioligands  for  imaging  studies  in  vivo  by 

positron emission tomography (PET), PhD thesis, FAU Erlangen‐Nürnberg; 2018.   

36.  Watabe T, Liu Y, Kaneda‐Nakashima K, et al. Theranostics targeting fibroblast activation protein in 

the  tumor  stroma:  (64)Cu  and  (225)Ac  labelled  FAPI‐04  in  pancreatic  cancer  xenograft mouse 

models. J Nucl Med. 2019:doi:10.2967/jnumed.2119.233122.   

37.  Li  J,  Chen  K,  Liu  H,  et  al.  Activatable  near‐infrared  fluorescent  probe  for  in  vivo  imaging  of 

fibroblast activation protein‐alpha. Bioconj Chem. 2012;23:1704‐1711.   

38.  Tran  E,  Chinnasamy  D,  Yu  Z,  et  al.  Immune  targeting  of  fibroblast  activation  protein  triggers 

recognition of multipotent bone marrow  stromal cells and cachexia.  J Exp Med. 2013;210:1125‐

1135.   

39.  Hamada  H,  Kobune  M,  Nakamura  K,  et  al.  Mesenchymal  stem  cells  (MSC)  as  therapeutic 

cytoreagents for gene therapy. Cancer Sci. 2005;96:149‐156.   

40.  Kaplan RN, Psaila B, Lyden D. Niche‐to‐niche migration of bone‐marrow‐derived cells. Trends Mol 

Med. 2007;13:72‐81.   

Page 21: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

21  

41.  Bennike T, Ayturk U, Haslauer CM, et al. A normative study of  the synovial  fluid proteome  from 

healthy porcine knee joints. J Proteome Res. 2014;13:4377‐4387.   

   

Page 22: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

22  

Tables and Figures 

TABLE 1 

IC50 values as determined by radioligand displacement studies for FAP (using 177Lu‐FAPI‐04) and by 

inhibition of DPP4 enzyme activity 

Compound IC50 (FAP) 

MW ± SD, (n = 3) IC50 (DPP4) 

MW ± SD, (n = 2) 

FAPI‐alkyne (11)  109 ± 60 nM  9.5 µM 

FGlc‐FAPI  167 ± 110 nM  26.6 µM 

FAPI‐04  49 ± 22 nM  7.9 µM 

Ga‐FAPI‐04  32 ± 7 nM*  n.d.** 

    * n.d. not determined; ** n = 2 

 

   

Page 23: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

23  

TABLE 2 

Biodistribution data of [18F]FGlc‐FAPI in HT1080hFAP xenografts for 30, 60, and 90 min p.i. and of 

[18F]FGlc‐FAPI coinjected with competitor 11 (30 nmol/mouse, blocking) for 60 min p.i. Data are given as 

mean values ± standard deviation (n = 2). 

  30 min  60 min  90 min 60 min blocking 

Blood  2.3 ± 0.9  1.1 ± 0.6  0.7 ± 0.2  0.2 ± 0.1 

Lung  1.5 ± 0.2  0.8 ± 0.3  0.5 ± 0.2  0.3 ± 0.1 

Liver  4.0 ± 1.4  2.2 ± 0.1  1.7 ± 0.2  2.9 ± 1.2 

Kidney  1.7 ± 0.1  1.5 ± 0.3  1.0 ± 0.2  1.4 ± 0.3 

Heart  1.3 ± 0.5  0.7 ± 0.5  0.4 ± 0.2  0.1 ± 0.1 

Spleen  1.0 ± 0.5  0.5 ± 0.1  0.3 ± 0.1  0.4 ± 0.3 

Brain  0.13 ± 0.02  0.05 ± 0.02  0.07 ± 0.03  0.02 ± 0.01 

Muscle  1.5 ± 0.3  1.2 ± 0.5  0.9 ± 0.2  0.2 ± 0.1 

Femur  3.2 ± 0.5  3.4 ± 0.6  2.6 ± 0.5  0.6 ± 0.8 

HT1080hFAP Tumor  1.6 ± 0.4  2.0 ± 0.5  1.6 ± 0.2  0.9 ± 0.2 

Intestine  6.1 ± 4.4  6.4 ± 6.0  5.2 ± 6.1  8.0 ± 9.9 

 

 

   

Page 24: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

24  

 

FIGURE 1. Molecular structure of [68Ga]Ga‐FAPI‐04 (22) and [18F]FGlc‐FAPI (this work). 

   

Page 25: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

25  

 

FIGURE 2. 18F‐fluoroglycosylation of FAPI alkyne 11: a) [18F]fluoride, K222, K2CO3, KH2PO4, acetonitrile, 85°C, 10 min; 

b) NaOH, 60°C, 5 min; (27) c) Cu(OAc)2, THPTA, sodium ascorbate, phosphate buffer pH 8, 11, 60°C, 15 min. 

   

Page 26: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

26  

 

FIGURE 3. A) Competitive binding in HT1080hFAP cells of four reference compounds against [177Lu]Lu‐FAPI‐04 (n = 

6–9). B) Tracer uptake of [18F]FGlc‐FAPI in HT1080hFAP cells, with and without blocking using FAPI alkyne 11 as a 

competitor (n = 4). C) Internalization of [18F]FGlc‐FAPI in HT1080hFAP cells and efflux of [18F]FGlc‐FAPI out of 

HT1080FAP cells after 1 hour incubation and exchange by fresh medium. Each data point represents the mean ± 

standard deviation (n = 8). 

 

Page 27: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

27  

 

FIGURE 4. Representative µPET images and time‐activity‐curves of HT1080hFAP xenografts using [18F]FGlc‐FAPI (A, 

C) and [68Ga]Ga‐FAPI‐04 (B, D) and respective blocking experiments with competitor 11 (30 nmol/mouse). 

   

Page 28: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

28  

 

FIGURE 5. Representative µPET images and time‐activity curves of U87MG xenografts using [18F]FGlc‐FAPI (A, C left 

side), [18F]FGlc‐FAPI together with competitor 11 (100 nmol/mouse) (A, C middle), and [68Ga]Ga‐FAPI‐04 (A, C right 

side). A, B) Projection of the U87MG tumor (red arrows) and time activity curves of U87MG tumor uptake in %ID/g. 

C,  D,  E)  Projection  of  the  knee  joints  (dashed  circles)  and  time  activity  curves  for  blood  represented  by  the 

integration of radioactivity in the heart. 

Page 29: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

1

Chemistry

General

All chemicals were purchased in the highest available quality and used without further purification. NMR

spectra were acquired on a Bruker Avance Nanobay V3-I 400 MHz or a Bruker Avance III HD 600 MHz

spectrometer. ESI mass spectra were recorded on Bruker amaZon SL or Bruker ESI timsTOF mass

spectrometers. The FPLC system (FlashPure, Büchi Labortechnik AG) was equipped with a UV-detector

(254 nm) and C-18 columns.

Synthesis of FGlc-FAPI

Precursor 1 as well as compounds 2 and 3 were synthesized according to Maschauer et al (1). Compound

10 was synthesized as described by Jansen et al (2). The analytical data was in agreement with the

literature. For the synthesis of compounds 4 to 11 the route was adapted form Lindner et al (3) and is

described below (Supplemental Figure 1). Since the reaction was up-scaled compared to the previous

procedure the carboxylic acid moiety was methylated to provide simplified workup without the use of a

preparative HPLC system. Finally, FGlc-FAPI was obtained by copper-catalyzed alkyne azide cycloaddition

with compounds 3 and 11 according to Maschauer et al (1).

NN

MMeeOO

OOHHOO

NN

HHOO

OOOO

NN

OO

OOOO

CCll

NN

OONNNN

BBBBrr33

DDCCMM,, 00 °°CC ---->> rr tt

CCll BBrr

HH22OO//MMeeOOHH,, 6600 °°CC,, 3300 mmiinn

KKIIDDMMFF,, 6600 °°CC,, 1188 hh

NNHHNN

NN

MMeeOO

OOOO

OOOO

NNaaOOHH

MMeeOOHH,, 6600 °°CC,, 1188 hh

HH22SSOO44 CCss22CCOO33

DDMMFF,, 6600 °°CC,, 1188 hh

NN

OONNNN

OOHHOO

HHBBTTUU,, HHOOBBtt,, DDIIPPEEAA

DDMMFF,, rrtt,, 2244 hh

NNFF

FFCCNN

OO NNHH22NN

NN OO

NN

HHNN NN

FFFF

NNCC HHOO

OO

44 55 66

77 88

99

1100

1111

NNNN

NNNN

NN OO

NN

HHNN NN

FFFF

NNCC HHOO

OOOOHHOO

HHOO OOHH

FF

CCuuSSOO44,, NNaaAAsscc

HH22OO,, 6600 °°CC,, 22 hh

OOHHOOHHOO OOHH

FF

NN33

33

FFGGllcc--FFAAPPII Supplemental Figure 1. Synthesis route of alkyne 11 and reference substance FGlc-FAPI.

Page 30: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

2

Methyl 6-methoxyquinoline-4-carboxylate (5)

N

O

OO

6-Methoxyquinoline-4-methyl carboxylic acid 4 (0.291 g, 1.43 mmol) was suspended in MeOH (2 mL).

H2SO4 (0.382 mL, 7.16 mmol) was added to the reaction while cooling to 0°C. The reaction was stirred at

60 °C for 18 hours. The solvent was evaporated under reduced pressure. Saturated sodium bicarbonate

solution (10 mL) was added and extracted three times with dichloromethane. The combined organic

phases were washed three times with brine and dried over sodium sulfate. The solvent was evaporated

and the residue was dried under vacuum. The product 5 was obtained as light brown solid (0.303 g, 1.40

mmol, 97%). 1H NMR (600 MHz, DMSO-d6) δ 8.89 (d, J = 4.4 Hz, 1H), 8.08 (d, J = 2.8 Hz, 1H), 8.05 (d, J = 9.2 Hz, 1H),

7.94 (d, J = 4.4 Hz, 1H), 7.52 (dd, J = 9.2, 2.8 Hz, 1H), 3.99 (s, 3H), 3.92 (s, 3H).

LC-MS (ESI): m/z 217.77 [M+H]+ , calculated: 218.07 [M+H]+

Methyl 6-hydroxyquinoline-4-carboxylate (6)

N

HO

OO

Methyl 6-methoxyquinoline-4-carboxylate (0.155 g, 0.71 mmol) was dissolved in dry dichloromethane (4

mL) under argon atmosphere. BBr3 (1 M solution, 1.43 mL, 1.43 mmol) was added dropwise to the

reaction while cooling to 0 °C. The reaction was allowed to warm to room temperature and was stirred

overnight. Saturated sodium bicarbonate solution (10 mL) was added and the solution was extracted

with ethyl acetate three times. The combined organic phases were dried over sodium sulfate. The

solvent was evaporated and the residue was dried under vacuum. The product 6 was obtained as yellow

solid (0.120 g, 0.59 mmol, 82%). 1H NMR (600 MHz, DMSO-d6) δ 8.89 (d, J = 4.6 Hz, 1H), 8.03 (d, J = 9.1 Hz, 1H), 7.99 (d, J = 2.6 Hz, 1H),

7.96 (d, J = 4.6 Hz, 1H), 7.48 (dd, J = 9.1, 2.7 Hz, 1H), 3.99 (s, 3H).

LC-MS (ESI): m/z 203.72 [M+H]+ , calculated: 204.06 [M+H]+

Page 31: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

3

Methyl 6-(4-chloropropoxy)quinoline-4-carboxylate (7)

N

O

OO

Cl

Methyl 6-hydroxyquinoline-4-carboxylate (0.105 g, 0.56 mmol) and Cs2CO3 (0.906 g, 2.78 mmol) were

dissolved in DMF (3 mL) and 1-bromo-3-chloropropane (0.19 mL, 1.95 mmol) was added. The reaction

was stirred at 60 °C overnight. Then the solvent was removed under reduced pressure. The residue was

partitioned between ethyl acetate and brine and the aqueous phase was extracted with ethyl acetate

two times. The combined organic phases were dried over sodium sulfate and the solvent was evaporated

under reduced pressure. Finally, the crude product was purified by column chromatography (n-

hexane/ethyl acetate, 2:1) using silica. The product 7 was obtained as yellow oil (0.055 g, 0.20 mmol,

35%). 1H NMR (600 MHz, DMSO-d6) δ 8.90 (dd, J = 4.4, 3.2 Hz, 1H), 8.05 (d, J = 9.2 Hz, 1H), 8.01 (d, J = 4.4 Hz,

1H), 7.95 (d, J = 4.4 Hz, 1H), 7.57 – 7.51 (m, 1H), 4.26 (t, J = 6.0, 2H), 3.99 (s, 3H), 3.91 – 3.81 (m, 2H), 2.32

– 2.23 (m, 2H).

LC-MS (ESI): m/z 279.82 [M+H]+ , calculated: 280.07 [M+H]+

Methyl 6-(3-(1-piperazinyl-4-prop-2-ynyl)propoxy)quinoline-4-carboxylate (8)

N

ONN

O O

Methyl 6-(4-chloropropoxy)quinoline-4-carboxylate 7 (0.050 g, 0.18 mmol) and 1-prop-2-ynyl-piperazine

(0.077 g, 0.62 mmol) were dissolved in DMF (2.5 mL) together with potassium iodide (0.206 g,

1.24 mmol). The reaction was stirred under argon atmosphere at 60 °C overnight. The solvent was

evaporated under reduced pressure. Saturated sodium bicarbonate solution (10 mL) was added and

extracted three times with ethyl acetate. The combined organic phases were dried over sodium sulfate

and the solvent was evaporated under reduced pressure. The crude product was purified by column

chromatography (dichloromethane/methanol, 15:1 + 1% ammonia solution) using silica. The product 8

was obtained as yellow oil (0.033 g, 0.09 mmol, 50%).

Page 32: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

4

1H NMR (600 MHz, DMSO-d6) δ 8.90 (dd, J = 4.5, 3.2 Hz, 1H), 8.04 (d, J = 9.1 Hz, 1H), 8.00 (d, J = 4.4 Hz,

1H), 7.94 (d, J = 4.4 Hz, 1H), 7.56 – 7.49 (m, 1H), 4.27 (t, J = 6.2, 2H), 3.99 (s, 3H), 3.52 (s, 2H), 3.35 (s, 1H),

3.32 – 3.24 (m, 2H), 3.23 – 2.82 (m, 8H), 2.30 – 2.24 (m, 2H).

LC-MS (ESI): m/z 368.20 [M+H]+ , calculated: 368.19 [M+H]+

6-(3-(1-Piperazinyl-4-prop-2-ynyl)propoxy)quinoline-4-carboxylic acid (9)

N

ONN

O OH

Methyl 6-(3-(1-piperazinyl-4-prop-2-ynyl)propoxy)quinoline-4-carboxylate 8 (0.033 g, 0.09 mmol) was

dissolved in a mixture of methanol (1.5 mL) and water (0.5 mL) and sodium hydroxide solution (2 M, 0.2

mL) was added. The reaction was stirred at 60 °C for 30 min. The reaction was neutralized with HCl and

the solvent was evaporated under reduced pressure. The residue was purified by column

chromatography using a FPLC system with a C18-column (25% acetonitrile in H2O + 0.1% TFA). The

product 9 was obtained as a light yellow solid which could be a hydrochloride or sodium salt (0.049 g,

0.13 mmol, quantitative). 1H NMR (400 MHz, D2O) δ 8.95 (d, J = 5.5 Hz, 1H), 8.18 (d, J = 9.4 Hz, 1H), 7.99 (d, J = 5.5 Hz, 1H), 7.80 (dd,

J = 9.4, 2.6 Hz, 1H), 7.70 (d, J = 2.7 Hz, 1H), 4.37 (t, J = 5.7 Hz, 2H), 3.85 – 3.60 (m, 8H), 3.85 – 3.60 (m,

2H), 3.85 – 3.60 (m, 1H), 3.58 (t, J = 7.8 Hz, 2H), 2.39 (p, J = 7.6, 5.8 Hz, 2H).

LC-MS (ESI): m/z 354.13 [M+H]+ , calculated: 354.17 [M+H]+

(S)-N-(2-(2-Cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-(1-piperazinyl-4-prop-2-

ynyl)propoxy)quinoline-4-carboxamide (11)

6-(3-(1-Piperazinyl-4-prop-2-ynyl)propoxy)quinoline-4-carboxylic acid 9 (0.065 g, 184 µmol) and HOBt

(0.037 g, 276 µmol) were dissolved in DMF (1.2 mL). Then DIPEA (78 µL, 460 µmol) and HBTU (0.084 g,

221 µmol) were added to the reaction and stirred for 10 min before addition of compound 10 (0.083 g,

NN O

N

HN

N

F F

NC HO

O

Page 33: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

5

230 µmol) dissolved in DMF (0.6 mL) and DIPEA (78 µL, 460 µmol). The reaction was stirred for 24 hours

at room temperature before quenching it with H2O. The solvent was evaporated and the residue purified

by column chromatography (dichloromethane:methanol 9:1) using silica. This gave a light colored solid

which was again purified using a FPLC system with a C18-column (10% acetonitrile in H2O + 0.1% TFA).

The product 11 was obtained as slightly yellow oil (0.094 g, 179 µmol, 97%). 1H NMR (400 MHz, DMSO-d6) δ 9.13 (t, J = 6.0 Hz, 1H), 8.87 (d, J = 4.4 Hz, 1H), 8.04 (d, J = 9.2 Hz, 1H),

7.92 (d, J = 2.8 Hz, 1H), 7.59 (d, J = 4.4 Hz, 1H), 7.50 (dd, J = 9.2, 2.8 Hz, 1H), 5.15 (dd, J = 9.4, 2.9 Hz, 2H),

4.38-4.20 (m, 2H), 4.30-4.11 (m, 2H), 4.25 (t, J = 6.0 Hz, 2H), 3.50 (s, 2H), 3.36 (s, 1H), 3.30 (t, J = 8.1 Hz,

2H), 3.18-2.80 (m, 8H), 2.22 (p, J = 14.9, 7.0 Hz, 2H).

LC-MS (ESI): m/z 525.18 [M+H]+ , calculated: 525.23 [M+H]+

N-(2-((R)-2-Cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-(4-((1-((2R,3R,4S,5S,6S)-6-

(fluoromethyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)-1H-1,2,3-triazol-4-yl)methyl)piperazin-1-

yl)propoxy)quinoline-4-carboxamide (FGlc-FAPI)

NN

NN

N O

N

HN

N

F F

NC HO

OOHO

HOOH

F

Compound 11 (3.15 mg, 6.01 µmol) was dissolved in H2O (300 µL) and 6-deoxy-6-fluoro-β-D-

glucopyranosyl-1-azide 3 (1.57 mg, 7.58 µmol) dissolved in H2O (150 µL) was added. A CuSO4

pentahydrate solution (75 µL, 0.2M) was added and the reaction was started by addition of a sodium

ascorbate solution (75 µL, 0.6M) and heating to 60 °C. After stirring for 2 hours the reaction was diluted

with H2O and purified by HPLC (method 1) followed by lyophilization to obtain FGlc-FAPI as a pale white

solid (2.9 mg, 3.96 µmol, 66%). 1H NMR (600 MHz, D2O) δ 8.87 (d, J = 4.8 Hz, 1H), 8.27 (s, 1H), 8.11 (d, J = 9.3 Hz, 1H), 7.79 (d, J = 4.8 Hz,

1H), 7.70 (d, J = 2.7 Hz, 1H), 7.62 (dd, J = 9.3, 2.7 Hz, 1H), 5.82 (d, J = 9.3 Hz, 1H), 5.16 (dd, J = 9.0, 3.9 Hz,

1H), 4.68 (d, J = 3.7 Hz, 1H), 4.43 – 4.35 (d, 2H), 4.33 (t, J = 6.2, 2H), 4.35 – 4.13 (ddt, J = 20.3, 10.5 Hz,

1H), 4.06 (t, J = 9.2 Hz, 1H), 3.98 – 3.88 (m, 1H), 3.94 (s, 2H), 3.75 (t, J = 9.2 Hz, 1H), 3.70 (t, J = 9.6 Hz,

1H), 3.41 (t, J = 7.8 Hz, 2H), 3.20 – 2.80 (m, 8H), 3.05 – 2.89 (m, 2H), 2.32 (p, J = 6.1 Hz, 2H).

LC-MS (ESI): m/z 732.23 [M+H]+ , calculated: 732.30 [M+H]+

HRMS (ESI): m/z 732.3076 [M+H]+ , calculated: 732.3071 [M+H]+

Page 34: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

6

Radiochemistry

General

The FAPI-04 precursor was obtained from the Department of Nuclear Medicine, University of Heidelberg,

Germany.

The HPLC-System (Series 1100, Agilent) was equipped with a VWD UV-Lamp (detection at 214 or 254 nm)

and was for radio-HPLC additionally connected to a radio-detector (500 TR Series, Packard). Computer

analysis of the HPLC data was performed using FLO-One software (Canberra Packard). The conditions

used for preparative and analytical HPLC are described in methods 1-5.

Method 1: Kromasil C8, 125 × 8 mm, 0-30% acetonitrile (0.1% trifluoroacetic acid (TFA)) in water (0.1%

TFA) in a linear gradient over 20 min, 4 mL/min.

Method 2: Chromolith RP-18e, 100 × 4.6 mm, 0-30% acetonitrile (0.1% TFA) in water (0.1% TFA) in a

linear gradient over 5 min, 4 mL/min.

Method 3: Kromasil C8, 250 × 4.6 mm, 0-30% acetonitrile (0.1% TFA) in water (0.1% TFA) in a linear

gradient over 20 min, 1.5 mL/min.

Method 4: Chromolith RP-18e, 100 × 4.6 mm, 10-50% acetonitrile (0.1% TFA) in water (0.1% TFA) in a

linear gradient over 5 min, 4 mL/min.

Method 5: Chromolith RP-18e, 100 × 4.6 mm, 0-70% acetonitrile (0.1% TFA) in water (0.1% TFA) in a

linear gradient over 5 min, 4 mL/min.

The time difference between UV detector and radio-detector was 0.06 min for method 2 (flow: 4

mL/min) and 0.15 min for method 3 (flow: 1.5 mL/min).

A γ-counter (Wallac Wizard, Perkin Elmer, Waltham, MA, USA) was used to measure the radioactivity of

samples generated in cell-based experiments, in vitro experiments and the determination of the

biodistribution.

No-carrier-added [18F]fluoride was produced through the 18O(p,n)18F reaction on a PETtrace 800

cyclotron using H2[18O]O as a target at the University Hospital Würzburg (Center of Radiopharmacy,

Würzburg, Germany). [177Lu]LuCl3 was obtained from Isotope Technologies Garching (ITG, Garching).

[68Ga]Ga3+ was obtained by elution from a 68Ge/68Ga-generator (Eckert & Ziegler, Berlin).

Characterization of [18F]FGlc-FAPI

For characterization of [18F]FGlc-FAPI, a coinjection with non-radioactive FGlc-FAPI was performed using

method 2 on the HPLC system (tR= 2.90 min, Supplemental Figure 2). The time delay of 0.06 min between

Page 35: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

7

the radio and the UV detector was corrected by the processing program. A coinjection using method 3

was additionally performed which showed the same retention time for radio and UV peak (tR= 9.9 min,

data not shown).

Supplemental Figure 2. Coinjection of [18F]FGlc-FAPI (above) and non-radioactive reference FGlc-FAPI

(below).

Supplemental Figure 3. Chromatogram of a representative isolation of the fraction containing [18F]FGlc-

FAPI (dashed lines) by semi-preparative HPLC (method 1).

n (FGlc-FAPI) [nmol]

UV p

eak

area

[mAU

]

0 5 10 15 200

1000

2000

3000

4000

Supplemental Figure 4. Calibration curve of the HPLC UV detector for the quantification of the amount

of FGlc-FAPI (linear regression of the amount of FGlc-FAPI vs. peak area (UV, 214 nm)).

Page 36: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

8

Radiosynthesis of [177Lu]Lu-FAPI-04

For the radiosynthesis of 177Lu-labeled FAPI-04 2-12 µL [177Lu]LuCl3-solution (2-12 µL, 20-120 MBq) were

diluted with HEPES-solution (0.5M, 200 µL, pH 5) and FAPI-04 precursor (4 µL, 4.6 nmol) was added. The

reaction was heated to 99 °C in an Eppendorf tube and the reaction progress was monitored on HPLC (tR

= 1.19 min, method 4). After 15-20 min, the radiochemical yield was 92 ± 5% (n = 5), as determined by

integration of the radio-HPLC peaks and [177Lu]Lu-FAPI-04 was used without further purification or was

isolated on a C18-cartridge and eluted with ethanol, followed by evaporation and formulation with cell

culture media for the use of [177Lu]Lu-FAPI-04 as a radioligand in the competitive FAP binding assay.

Radiosynthesis of [68Ga]Ga-FAPI-04

[68Ga]Ga3+ was eluted with 0.1M HCl (10 mL) and trapped on a PS-H+-cartridge (Chromafix, Machery-

Nagel) which was then eluted with a NaCl solution (5M, 1 mL). The FAPI-04 precursor (3 µL, 3.44 nmol)

was diluted with HEPES solution (2.5M, 300 µL, pH 5) and the 68Ga-eluate was added (500 µL, 100 - 250

MBq). The reaction was incubated in an Eppendorf tube for 10 min at 99 °C to obtain a radiochemical

yield of 86 ± 11% (n=3) as determined by HPLC (tR = 1.10 min, method 4). The reaction mixture was fixed

on a C18-cartridge and eluted with ethanol, which was finally evaporated. The radiotracer was obtained

in a radioactivity yield of 53 ± 2% in a total synthesis time of 30 min, with a radiochemical purity of >97%

and an apparent molar activity of approximately 15-40 GBq/µmol.

In-vitro studies

Determination of the partition coefficient (logD7.4)

An aliquot (50 kBq) of [18F]FGlc-FAPI or [68Ga]Ga-FAPI-04 was added to an Eppendorf tube with 500 µL

PBS (pH 7.4) and 500 µL n-octanol and was vortexed for 1 min. After centrifugation (20000 rpm, 1 min),

three samples (each 100 µL) were taken from each phase and measured in a γ-counter. The cpm values

were calculated as logarithm of the octanol/PBS ratio. The determination of logD7.4 was performed in

triplicate in two independent experiments. The values of logD7.4 were given as mean values ± standard

deviation.

Tracer stability in human serum

An aliquot of [18F]FGlc-FAPI or [68Ga]Ga-FAPI-04 (20 µL) was added to human serum (400 µL) and

incubated at 37 °C. At defined time points (5, 15, 25, 35, 45, 55 min), samples (50 µL) were taken and

added to a mixture of 10% TFA (50 µL) and acetonitrile (50 µL). The mixture was centrifuged (2 min,

Page 37: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

9

20,000 g) and a sample of the supernatant (10 µL) was analyzed by radio HPLC using method 5 ([18F]FGlc-

FAPI) or method 4 ([68Ga]Ga-FAPI-04).

Plasma protein binding

The binding of tracers to plasma proteins was determined using a micro column separation method. The

radiotracer (1 µL, 100-500 kBq) was added to human plasma (100 µL) and incubated for 10 min at 37 °C.

The microcolumns (illustra MicroSpin G-50 columns, GE Healthcare) were preconditioned as described

by the manufacturer and a sample of the plasma (50 µL) was carefully applied to the resin. The columns

were placed in an Eppendorf tube and centrifuged (2 min, 2000 g). The eluate and the remaining resin

were both collected separately and measured using a γ-counter. The radioactivity which eluted from the

resin, representing the plasma protein bound tracer, was calculated as percentage of the total amount of

radioactivity in the sample. The experiment was performed twice each in triplicate.

Cell-based experiments

For the cell-based experiments the stably FAP-transfected fibrosarcoma cell line HT1080hFAP was used

which was obtained from the Department of Nuclear Medicine, University of Heidelberg, Germany. The

cells were cultivated in Dulbecco's modified Eagle's medium containing 10% fetal calf serum at 37 °C and

a CO2 content of 5%. If not stated otherwise, the experiments were performed in 48-well plates with a

final confluence of 80-100%.

Competitive FAP binding assay

Competitive binding experiments were performed in 96-well plates using [177Lu]Lu-FAPI-04 as

radioligand. For this HT1080hFAP cells (100,000 cells/well) were seeded 24 h before the experiment,

washed with media once before applying the non-radioactive test substances FGlc-FAPI, FAPI alkyne 11,

Ga-FAPI-04 and DOTA-FAPI-04 in concentrations ranging from 1 nM to 5 µM in 90 µL media. For FGlc-

FAPI, FAPI alkyne 11 and DOTA-FAPI-04 the concentrations were achieved by weighting and dissolving of

the substance, for Ga-FAPI-04 by HPLC measurement using a calibration curve. [177Lu]Lu-FAPI-04 was

subsequently added (in 10 µL media, approximately 0.1 MBq/well) and incubated for 60 min at 37 °C.

After setting the plate on ice, the cells were washed with media and cold PBS. Finally, the cells were

lysed with 1 M NaOH and counted. IC50 values were calculated using Prism 6.0 Software (GraphPad, One-

Site Fit logIC50) from the raw data (in cpm). The experiments were performed in triplicates and two to

three independent experiments were conducted.

Page 38: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

10

DPP4 activity assay

For testing of inhibitory effects of FAPI-04, FAPI alkyne 11 and FGlc-FAPI on DPP4 inhibitors were

incubated in concentrations between 1 nM and 1 mM together with 125 mU purified DPP4 (Sigma

Aldrich, Germany) in 130 µL Hepes buffer (pH 7.6) and incubated for 10 minutes at 37°C in 96 well

microtiter plates. Purified DPP4 with activity between 3.9-125 mU was used as standards. After addition

of Gly-Pro-pNA (4-nitroaniline, Sigma Aldrich, Germany) as DPP4 substrate (100 µL of 1 mM solution)

kinetics of enzymatic pNA release (25 cycles in 20 min) was monitored at 405 nm in a microplate ELISA-

reader (Synergy II, BioTek Instruments Inc., Germany). IC50 values were calculated using Prism 6.0

software (GraphPad, One-Site Fit logIC50, Supplemental Fig. 5). All measurements were carried out in

duplicates.

-8 -6 -4 -20

50

100

150

Log c (M)

DPP4

act

ivity

(mU) FAPI-04

FAPI alkyneFGlc-FAPI

Supplemental Figure 5. Inhibition of DPP4 activity by FAPI-04, FAPI alkyne 11, and FGlc-FAPI (n = 2).

Cellular uptake

For determination of cellular uptake cells were seeded 2 or 3 days before the experiment and were

washed with medium once before incubation with the radiotracer. The cells were incubated for 5, 15,

30, 60 or 120 min at 37 °C in a total volume of 250 µL in binding buffer. Blocking of specific binding was

achieved by the addition of FAPI alkyne 11 in an end concentration of 1 µM. After the incubation time

the plates were put on ice and washed twice with cold PBS. After detachment and lysis of the cells by 2

min incubation in 0.1M NaOH the radioactivity was determined in a γ-counter. The counting results were

normalized to 1 million cells and calculated as the percentage of applied dose (%ID/1 million cells). The

experiment was performed in quadruplicate for each time point.

The uptake of [18F]FGlc-FAPI was determined in HT1080hFAP cells and compared to the uptake in FAP-

negative MCF-7 cells, demonstrating FAP-specific uptake of [18F]FGlc-FAPI (Supplemental Figure 6). The

Page 39: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

11

incubation was performed for 60 min at 37 °C as described above for the uptake experiments. The

experiment was performed in quadruplicate for each condition.

upta

ke [%

/1 m

io c

ells

]

0

2

4

6

8

HT1080hFAP cellsblocked HT1080hFAP cellsMCF-7 cellsblocked MCF-7 cells

Supplemental Figure 6. Uptake of [18F]FGlc-FAPI in HT1080hFAP cells (with FAP expression) and MCF-7 cells (without FAP expression). Nonspecific uptake was defined in the presence of an excess of FAPI alkyne 11 in a concentration of 1 µM. Each bar represents the mean ± SD (n = 4). Internalization and efflux

The internalization of the radiotracer was determined after incubation times of 5, 15, 30, 60 and 120

minutes. After the respective incubation times the cells were washed with PBS (300 µL/well) twice and

were then incubated two times for 1 min each with an acid wash solution (0.02 M NaOAc, pH 5) to

detach extracellulary bound tracer. After washing one more time with PBS the cells were lysed by

addition of 0.1 M NaOH for 2 min. Radioactivity of the cell lysates and the acid wash solutions was

measured in the γ-counter. Values were calculated by the relation of counts in the acid wash solution

(extracellularly bound tracer) to counts in the corresponding cell lysate (internalized tracer). The

experiments were performed in quadruplicates and two independent experiments were conducted.

Efflux of the radiotracer out of the cells was measured after a 60 min incubation at 37 °C. After setting

the plate on ice and washing with cold PBS fresh media was applied on the cells. The media was

collected 5, 15, 30, 60 and 120 min after its addition to the cells. After washing with cold PBS the

remaining cells were lysed with 0.1 M NaOH. Radioactivity of the cell lysates and the media solutions was

measured in the γ-counter. The values are calculated by the relation of counts in the collected media

(effluxed tracer) to counts in the corresponding cell lysate (still internalized tracer). The experiments

were performed in quadruplicates and two independent experiments were conducted.

Page 40: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

12

Animal experiments

All animal experiments were approved by the local animal protection authorities (Government of Central

Franconia, Germany, No. 55.2 2532-2-279) and performed in accordance with the relevant E.U.

guidelines and regulations.

Tumor xenotransplantation

Female athymic nude mice (CD1-Foxn1/nu, homozygous) were obtained from Charles River Laboratories

(Germany) at 4 weeks of age and were kept under standard conditions (12 h light/dark) with nude mice

food and water available ad libitum for at least 5 weeks. Viable cells were harvested, suspended in

PBS/Matrigel (1:1, 100 μL) and were injected subcutaneously in the left (5x106 HT1080hFAP cells/mouse

or 2x106 U87MG cells/mouse) back of the mice. The body weight and diameter of each tumor were

determined and documented every 2-3 days. Two to four weeks after inoculation, the mice, now

weighing about 30 g and bearing tumors of 6.5 - 15 mm (for HT1080hFAP) and 2.5 - 7 mm (for U87MG) in

diameter, were used for biodistribution and small-animal PET studies.

Page 41: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

13

bloodlung

liver

kidney

heart

splee

nbrai

n

muscle

femur

HT1080

hFAP tumor

intestin

e0

5

10

15[18

F]FG

lc-F

API

(%ID

/g) 30 min

60 min90 min

bloodlung

liver

kidney

heart

splee

nbrai

n

muscle

femur

HT1080

hFAP tumor

intestin

e0

5

10

15

20

[18F]

FGlc

-FA

PI (%

ID/g

) 60 min control60 min blocking

A B

Supplemental Figure 7. A) Biodistribution of [18F]FGlc-FAPI in HT1080hFAP xenografts after 30, 60, and 90 min p.i. (n = 2). B) Comparison of biodistribution of [18F]FGlc-FAPI in HT1080hFAP xenografts at 60 min p.i., without (control) and with coinjection of 11 (blocking, 30 nmol/mouse, n = 2).

0

2

4

6

8

10

12

Tum

or u

ptak

e (%

ID/g

)12

0-13

0 m

in p

.i.

HT1080hFAP U87MG

ControlBlocking

Supplemental Figure 8. Tumor uptake values [18F]FGlc-FAPI at 120-130 min p.i. derived from PET scans

(additional data for Fig. 4 and Fig. 5 of the main manuscript).

Page 42: Targeting Fibroblast Activation Protein: Radiosynthesis ... · 4/23/2020  · 1 Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F‐labeled

14

Supplemental Figure 9. Representative µPET images of U87MG xenografted mice in sagittal view using [18F]FGlc-FAPI (left), [18F]FGlc-FAPI together with alkyne 11 (middle), and [68Ga]Ga-FAPI (right).

References

1. Maschauer S, Haubner R, Kuwert T, Prante O. 18F-Glyco-RGD peptides for PET imaging of integrin expression: efficient radiosynthesis by click chemistry and modulation of biodistribution by glycosylation. Mol Pharm. 2014;11:505-515. 2. Jansen K, Heirbaut L, Verkerk R, et al. Extended structure–activity relationship and pharmacokinetic investigation of (4-quinolinoyl) glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J Med Chem. 2014;57:3053-3074. 3. Lindner T, Loktev A, Altmann A, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59:1415-1422.