Talk Shock Tube

Embed Size (px)

Citation preview

  • 7/29/2019 Talk Shock Tube

    1/25

    Tobias KnoppDLR Gottingen, AS-NV

    The Riemann problem and the shock tube problem

    for the Euler equations

    Tobias Knopp

    DLR Gottingen, AS-NV

    Vorlesung, 31.5.2006

    orlesung, 31.5.2006

    http://find/http://goback/
  • 7/29/2019 Talk Shock Tube

    2/25

    Tobias KnoppDLR Gottingen, AS-NV

    Shock tube problem

    Special Riemann problem with zero initial velocity

    tU + xF(U) = 0

    U(x, 0) =

    UL if x< 0UR if x> 0

    t

    x

    Rarefactionfan contact Shock

    Diaphragm

    pressurehighpressure

    low

    1

    1

    2

    2

    3

    3 4

    4

    orlesung, 31.5.2006

    http://find/http://goback/
  • 7/29/2019 Talk Shock Tube

    3/25

    Tobias KnoppDLR Gottingen, AS-NV

    General Riemann problem for Euler eq.

    Structure of the solution

    initial discontinuity at (x, t) = (0, 0) breaks up into 4 regionsof constant state

    In the x t-plane, these 4 regions of constant state aredivided by 3 characteristic waves

    x

    tshock or

    rarefaction fandiscontinuity

    con ac

    rarefactionor

    shock

    fan

    U U

    UU1

    2 3

    4

    orlesung, 31.5.2006

    http://find/http://goback/
  • 7/29/2019 Talk Shock Tube

    4/25

    Tobias KnoppDLR Gottingen, AS-NV

    Nonlinear hyperbolic system. Definition

    state R3 set of all admissible values for (, u,E) R3.

    tU+ xF(U) = 0 .

    strictly hyperbolic, i.e., for any state U state, the Jacobian

    A(U) =F

    U, (A(U))ij =

    Fixj

    (1 i,j 3)

    has m distinct eigenvalues i(U) which are assumed to be ordered

    1(U) < 2(U) < 3(U)

    With each eigenvalue i(U) we associate a right eigenvector ri(U)

    A(U) ri(U) = i(U) ri(U)

    and a left eigenvector li(U) (i.e., an eigenvector of (A(U))T)

    li(U)TA(U) = i(U) li(U)

    T

    with (as eigenvalues are distinct)li(

    U)

    T

    rj(U) = 0 i = j

    orlesung, 31.5.2006

    T bi K

    http://find/
  • 7/29/2019 Talk Shock Tube

    5/25

    Tobias KnoppDLR Gottingen, AS-NV

    Characteristic wave pattern for Euler eq.

    the 2 = u characteristic wave is always a contact

    discontinuity ( u and p continuous, but discontinuous) the 1/3 = u a characteristic wave is either a shock

    (piecewise constant discontinuity) or a rarefaction wave(continuous, piecewise smooth)

    x x

    xx

    t t

    tt

    orlesung, 31.5.2006

    T bi K

    http://find/
  • 7/29/2019 Talk Shock Tube

    6/25

    Tobias KnoppDLR Gottingen, AS-NV

    Characterization of elementary waves

    characteristics run into the shock i(U

    l) > S

    i>

    i(U

    r)

    parallel characteristics at contact i(Ul) = Si = i(Ur)

    fan-like divergence of characteristics at a rarefactioni(Ul) < i(Ur)

    x

    trarefaction shockcontact

    U

    UU

    U1

    23

    4

    orlesung, 31.5.2006

    Tobias Knopp

    http://find/
  • 7/29/2019 Talk Shock Tube

    7/25

    Tobias KnoppDLR Gottingen, AS-NV

    Characterization of elementary waves (cont.)

    change in wave speed i between states Ul and Ur Rankine-Hugoniot cond.: Ur = Ul + r(Ul) + O(2)

    = consider change in i(U) in direction ofri The i-characteristic field is genuinely nonlinear if

    i(U) r(i)(U) = 0 U state

    = characteristic speed is not constant across the wave The i-characteristic field is linearly degenerate, if

    i(U) r(i)(U) = 0 U

    = characteristic speed is constant across the wave (as in alinear system with constant coefficients)

    i(U) = iu1

    ,iu2

    ,iu3

    , i(U) r(i) =

    3

    j=1iuj

    r(i)j

    orlesung, 31.5.2006

    Tobias Knopp

    http://find/
  • 7/29/2019 Talk Shock Tube

    8/25

    Tobias KnoppDLR Gottingen, AS-NV

    Genuinely non-linear and linear degeneracy

    The 2-characteristic field is lin. degenerate: 2 = u= u2/u1

    2(U) =

    2u1

    , 2u2

    , 2u3

    =

    u1

    u2

    u1,

    u2u2

    u1,

    u3u2

    u1

    =

    u2

    u21,

    1

    u1, 0

    =

    u

    ,

    1

    , 0

    = 2(U) r2(U) =u

    , 1

    , 0

    1, u, 12u2T

    = 0

    The 1, 3-characteristic fields are genuinely non-linear.

    nonlinear t

    genuinelynonlineardegenerate

    genuinelylinearly

    Vorlesung, 31.5.2006

    Tobias Knopp

    http://find/
  • 7/29/2019 Talk Shock Tube

    9/25

    Tobias KnoppDLR Gottingen, AS-NV

    Rarefaction wavesWe seek a continuous self-similar weak solution of the form

    U(x, t) =

    UL , xt k(UL)vxt

    , k(U)L

    xt k(UR)

    UR ,xt k(UR)

    If U(x, t) = v(x, t) solves tU+ A(U)xU= 0, then

    xt2

    vxt

    +

    1

    t

    A

    vxt

    vxt

    = 0

    Then by setting = x/t, we obtain

    ( A(v()) I ) v

    () = 0

    so that either v() = 0, i.e., U is constant (U= Ul or U= Ur), orthere exists an index k 1, . . . ,m such that

    v() = () rk(v()) , k(v()) =

    orlesung, 31.5.2006

    http://find/
  • 7/29/2019 Talk Shock Tube

    10/25

    Tobias Knopp

  • 7/29/2019 Talk Shock Tube

    11/25

    Tobias KnoppDLR Gottingen, AS-NV

    Riemann invariants

    The solution v(x/t) is constant along each ray

    x= k(v(x/t))t The wave speed k(v) is constant along each ray

    = The characteristic curves are straight lines

    x

    t

    ULU

    R

    = k

    ( UL

    )x

    t

    t

    x

    = k UR( )

    orlesung, 31.5.2006

    Tobias Knopp

    http://find/
  • 7/29/2019 Talk Shock Tube

    12/25

    ppDLR Gottingen, AS-NV

    k-Riemann invariantsA k-Riemann invariant is a smooth function w : state R,U

    w(

    U) with

    w(U) r(k)(U) = 0 , U state

    There exist (locally) (m 1) k-Riemann invariants w1, . . . ,wm1whose gradients are linearly independent, which are independent ofthe set of independent variables chosen.If the k-characteristic field is linearly degenerate, then k is ak-Riemann invariant.The 2-Riemann invariants may be computed from

    w( W) r2( W) = 0

    w

    ,

    w

    u,

    w

    p

    10

    0

    = 0

    i.e., two linear-independent 2-RI are w1(U) = u, and w2(U) = porlesung, 31.5.2006

    Tobias KnoppDLR G i AS NV

    http://find/
  • 7/29/2019 Talk Shock Tube

    13/25

    DLR Gottingen, AS-NV

    k-Riemann invariants (cont.)

    On a k-rarefaction wave, all k-Riemann invariants are

    constant. The two Riemann invariants of a k-rarefaction are

    w1( W) = s= cv ln(p) cp ln()

    w2( W) = u+2a

    1

    = (const) for x= (u a)t

    resp. w2( W) = u2a

    1= (const) for x= (u+ a)t

    Increase in entropy describes the loss in information about aphysical system

    For a continuous solution, there is no loss in information For diverging characteristics, s= 0 (for each point (x, t), its

    prior history and its future is uniquely determined) For shocks, s> 0: for (x, t) on the shock, its prior history is

    not known (did the point run from the left into the shock or

    from the right)orlesung, 31.5.2006

    Tobias KnoppDLR Gtti AS NV

    http://find/
  • 7/29/2019 Talk Shock Tube

    14/25

    DLR Gottingen, AS-NV

    Isentropic relations for ideas gases

    s= cv ln(p) cp ln() = cv ln(p) cv ln() = cv ln

    p

    s= cv ln(e) Rln()

    = cv ln(cvT) (cp cv)ln() = (const) + cv ln

    T1

    Then for isentropic processes s= 0

    p= (const)

    T = (const)1

    a = (const)(1)/2

    orlesung, 31.5.2006

    Tobias KnoppDLR Gottingen AS NV

    http://find/
  • 7/29/2019 Talk Shock Tube

    15/25

    DLR Gottingen, AS-NV

    Rarefaction waves for Euler eq.

    Here 1 wave: Recalll the 1-Riemann invariant

    u+ 2a 1

    = (const) fur x= (u a)t

    Using x= (u a)t and hence a = u x/t we get

    u+

    2

    1u

    x

    t

    = uL +

    2aL 1 = uR +

    2aR 1

    Solving this equation for u gives the solution for u in the expansion

    u(x, t) =2

    + 1xt

    + 1

    2

    uL + aL = 2+ 1

    xt

    + 1

    2

    uR + aRa(x, t) = u(x, t)

    x

    t

    p= pLa

    aL2/(1)

    = pRa

    aR2/(1)

    orlesung, 31.5.2006

    Tobias KnoppDLR Gottingen AS NV

    http://find/
  • 7/29/2019 Talk Shock Tube

    16/25

    DLR Gottingen, AS-NV

    Shock tube problem for Euler eq.

    Special Riemann problem with zero initial velocity

    tU + xF(U) = 0

    U(x, 0) =

    UL if x< 0UR if x> 0

    t

    x

    Rarefactionfan contact Shock

    Diaphragm

    pressurehighpressure

    low

    1

    1

    2

    2

    3

    3 4

    4

    orlesung, 31.5.2006

    Tobias KnoppDLR Gottingen AS-NV

    http://find/
  • 7/29/2019 Talk Shock Tube

    17/25

    DLR Gottingen, AS-NV

    Shock tube problem for Euler eq. (cont.)

    The states to the left and right of the shock U3 and U4 UR are

    related bya23a24

    =p3

    p4

    +11 +

    p3p4

    1 + +11p3p4

    u3 = u4 +

    a4

    p3p4 1

    +12

    p3p4 1

    + 1

    S= u4 + a4

    + 1

    2 p3

    p4 1 + 1

    The states to the left and right of the contact U2 and U3 arerelated by

    u3 = u2

    p3 = p2orlesung, 31.5.2006

    Tobias KnoppDLR Gottingen, AS-NV

    http://find/
  • 7/29/2019 Talk Shock Tube

    18/25

    DLR Gottingen, AS NV

    Shock tube problem for Euler eq. (cont.)

    The states to the left and right of the expansion U1 = UL and U2

    are connected by

    u(x, t) =2

    + 1

    x

    t+

    1

    2u1 + a1

    a(x, t) = u(x, t)x

    t=

    2

    + 1

    x

    t+

    1

    2

    u1 + a1 x

    t

    p= p1

    a

    a1

    2/(1)As u+ 2a/( 1) is constant across the fan

    u2 + 2a2 1

    = u1 + 2a1 1

    The we use the isentropic relations

    u2 = u1 +2a1

    1

    2a2

    1

    , a2 = a1 p2p1

    (1)/2

    orlesung, 31.5.2006

    Tobias KnoppDLR Gottingen, AS-NV

    http://find/
  • 7/29/2019 Talk Shock Tube

    19/25

    g ,

    Shock tube problem for Euler eq. (cont.)

    u2 = u1 + 2a1 1

    1 (p2/p1)(1)/2

    u3 = u1 +

    2a1 1

    1

    p3

    p4

    p4

    p1

    (1)/2

    We solve this equation for p1/p4 and obtain

    p1

    p4=

    p3

    p4

    1 +

    1

    a1(u1 u3)

    2/(1)

    We finally substitute u3 and get an implicitequation for p3/p4.

    We set x p3/p4 and solve for x using Newtons method

    p1

    p4=

    p3

    p4

    1 +

    1

    a1

    u1 u4

    a4

    p3p4 1

    +12

    p3p4 1 + 1

    2/(1)

    orlesung, 31.5.2006

    Tobias KnoppDLR Gottingen, AS-NV

    http://find/http://goback/
  • 7/29/2019 Talk Shock Tube

    20/25

    g

    L = 1kg/m3,

    uL = 0m/spL = 100000N/m

    2

    R = 0.125kg/m3,

    uR = 0m/spR = 10000N/m

    2

    Acoustic wave: u1 a1 = 3.74 102m/s

    Acoustic wave: u2 a2 = 2.22 101m/s

    Contact: u3 = u2 = 2.93 102m/s

    Acoustic wave: u2 + a2 = 6.93 102m/s

    Shock wave: S = 5.54 102m/s

    Acoustic wave: u1 + a1 = 3.35 102

    m/sorlesung, 31.5.2006

    Tobias KnoppDLR Gottingen, AS-NV

    http://find/
  • 7/29/2019 Talk Shock Tube

    21/25

    Test case 1: Shock tube problem

    u and p are continuous at the contact largest decrease in p due to rarefaction

    orlesung, 31.5.2006

    Tobias KnoppDLR Gottingen, AS-NV

    http://find/http://goback/
  • 7/29/2019 Talk Shock Tube

    22/25

    Test case 1: Shock tube problem

    M< 1: flow is subsonic, no strong (compression) shock jump in (a, and M) at contact discont.

    orlesung, 31.5.2006

    Tobias KnoppDLR Gottingen, AS-NV

    http://find/
  • 7/29/2019 Talk Shock Tube

    23/25

    L = 1kg/m3,

    uL = 0m/spL = 100000N/m

    2

    R = 0.01kg/m3,

    uR = 0m/spR = 1000N/m

    2

    Acoustic wave: u1 a1 = 3.74 102m/s

    Acoustic wave: u2 a2 = 3.55 101m/s

    Contact: u3 = u2 = 6.08 102m/s

    Acoustic wave: u2 + a2 = 1.14 103m/s

    Shock wave: S = 8.87 102m/s

    Acoustic wave: u1 + a1 = 3.74 102

    m/sorlesung, 31.5.2006

    Tobias KnoppDLR Gottingen, AS-NV

    http://find/
  • 7/29/2019 Talk Shock Tube

    24/25

    Test case 2: Shock tube problem

    u and p are continuous at the contact largest decrease in p due to rarefaction

    orlesung, 31.5.2006

    Tobias KnoppDLR Gottingen, AS-NV

    http://find/
  • 7/29/2019 Talk Shock Tube

    25/25

    Test case 2: Shock tube problem

    subsonic and supersonic flow regions jump in (a, and M) at contact discont.

    orlesung, 31.5.2006

    http://find/