26
Technische Universität München Tackling Combustor Design Problems with Large Eddy Simulation of Reacting Flo ws  Wolfgang Polifke Fachgebiet für Thermodynamik T echnische Universität München Acknowledgements:  Joao Carne iro, Patrick Dems, Stephan Föller , Thomas K omarek, Rohit K ulkarni, Luis T ay , Matthieu Zellhuber AG T urbo, Al st om, DFG, DST, KW21, Siemens MUSAF II Colloquium Sep. 18-20, 2013, CERFACS, T oul ous e Donnerstag, 24. Juli 2014

Tackling Combustor Design Problems with Large Eddy Simulation of Reacting Flows

Embed Size (px)

DESCRIPTION

Invited presentation at MUSAF II Colloquium, Sep. 18-20, 2013, CERFACS, Toulouse

Citation preview

  • Technische Universitt Mnchen

    Tackling Combustor Design Problems with Large Eddy Simulation of Reacting Flows

    Wolfgang PolifkeFachgebiet fr ThermodynamikTechnische Universitt Mnchen

    Acknowledgements:Joao Carneiro, Patrick Dems, Stephan Fller, Thomas Komarek, Rohit Kulkarni, Luis Tay, Matthieu Zellhuber

    AG Turbo, Alstom, DFG, DST, KW21, Siemens

    MUSAF II ColloquiumSep. 18-20, 2013, CERFACS, Toulouse

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Overview

    Gas turbine combustor design challenges

    stability emissions

    This talk

    mixing and auto-ignition in turbulent flow flame dynamics from system identification spray dispersion, evaporation & combustion

    2

    control & o

    ptimizatio

    n,

    co

    de coupling

    reacting

    flow

    multi-physis, multi-scale

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Sequential combustion in Alstom GT24/26

    3

    multi-stream mixing in swirling, turbulent flow

    auto-ignition & flame propagation

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Composite PV lookup from PSRs

    4Mixture

    fraction!

    Prog

    ress

    varia

    ble!

    sour

    ce!

    Progress variable!

    Technische Universitt Mnchen!

    0.0!

    0.1!

    0.1!

    0.2!

    0.2!

    0.3!

    0! 0.2! 0.4! 0.6! 0.8! 1!

    Yc!

    Z!

    Yeq!

    Chemistry simplification:!

    Yc!

    t!

    Prog

    ress

    varia

    ble!

    sour

    ce!

    Progress variable!

    0.0!

    0.1!

    0.1!

    0.2!

    0.2!

    0.3!

    0! 0.2! 0.4! 0.6! 0.8! 1!

    Yp!

    Z!

    Yeq!

    Autoignition tabulation (0D reactors):!

    Tabulated Chemistry Concept!

    10!

    Technische Universitt Mnchen!

    0.0!

    0.1!

    0.1!

    0.2!

    0.2!

    0.3!

    0! 0.2! 0.4! 0.6! 0.8! 1!

    Yc!

    Z!

    Yeq!

    Chemistry simplification:!

    Yc!

    t!

    Prog

    ress

    varia

    ble!

    sour

    ce!

    Progress variable!

    0.0!

    0.1!

    0.1!

    0.2!

    0.2!

    0.3!

    0! 0.2! 0.4! 0.6! 0.8! 1!

    Yp!

    Z!

    Yeq!

    Autoignition tabulation (0D reactors):!

    Tabulated Chemistry Concept!

    10!

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Stochastic fields for subgrid scale fluctuations

    5

    Technische Universitt Mnchen!

    Turbulence-Chemistry Interaction models!

    Presumed PDF! Transported PDF!

    Deterministic transport equations! Stochastic partial differential equations!

    Turbulence chemistry interaction!

    Lagrangian/Particle! method!

    Eulerian/Fields !method!

    (ITO formulation)!11!

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Stochastic fields, composite progress variable

    6

    0!

    10!

    20!

    30!

    40!

    940! 950! 960! 970! 980! 990!

    Auto

    igni

    tion

    leng

    th L

    ign/

    d!

    Air temperature [K]!

    Experiment!Presumed PDF!Stochastic fields!

    Implemented in Fluent and OpenFOAMValidation:

    Markides & Mastorakos, Cabra, Delft, SEVH2, n-Heptane, CH4

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Cabra-H2-Flame with Li-Dryer mechanism

    7

    see papers by Kulkarni, Zellhuber, Collonval ...

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Thermo-acoustic combustion instabilities

    8

    from Lieuwen & Yang, 2006

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Feedback between heat release and acoustics

    9

    W . Polifke / divide et impera Ercoftac TecTag / 2

    Thermo-Akustische Instabilitt

    (p, u) (p, u)Q

    !!Q !p d""# > 0.

    Rckkopplung zwischen Fluktuationen

    der Strmung (p,u) und der Wrmefreisetzung Q

    -> Selbsterregte Schwingungen !

    Stabilittskriterium nach Rayleigh:

    Eingeschlossene Flamme

    Rayleighs criterion: Instability requiresp Q dt > 0,

    Premix flames are velocity sensitive: Q = Q(),

    System acoustics controls phase p : Z = p

    .

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Multi-physics interactions with feedback

    10

    FlameFuel Supply

    Air Supply

    Combustor

    Equivalence Ratio

    Position and Area of Flame

    Burning Velocity Q

    p, uu

    p

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013 11

    Combustion LES captures (in principle) all relevant effects:

    but:

    turbulent, reacting, compressible flow at low Ma-# acoustic boundary conditions !? wide range of length and time scales

    Technische Universitt Mnchen

    brute force LES for combustion dynamics?

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    divide et impera

    12

    Stability analysis by combined use of

    system model for combustor acoustics reduced order model (ROM) of heat source dynamics

    This strategy may be adopted to

    network models state-space models Galerkin models FE/FV-based solvers for Helmholtz / APE / LEE

    this is code-coupling, too !!

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    ROMs of input-output systems

    Matrix-based methods (for state-space models)

    Truncated Balanced Realization Krylov methods (moment matching)

    Data-based models

    PODs & Galerkin Projection System Identification

    non-parametric model (e.g. spectral analysis)

    parametric models

    - Black Box models (e.g. time-delay models)

    - Gray Box models (e.g. state space models)

    13

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Time-delay ROMs for linear systems

    present response depends on present & previous signals

    14

    and previous responses ... and noise, too

    +

    trade offs: accuracy - uncertainty - # of coefficients - flow/flame physics

    Donnerstag, 24. Juli 2014

  • FrequencyResponse F

    F()

    F() =P

    k hketk

    z-transform

    Unit ImpulseResponse h

    h

    h = cWiener filter equation

    Auto-correlation Cross-correlation c

    , c

    j Pk skskjc Pk skrk

    Time Series(0B(kt); Q0(kt))

    s, r

    Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Flame transfer function from LES

    15

    Signal

    | {z }Q0

    0B

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Turbulent premix swirl burner

    16

    Komarek et al, 09, 10; Tay et al, 10, 11

    URANS LESSolver CFX AVBPTurb./Sub-grid model

    SST WALE

    Combustion Model

    TFC DTFM1 step Kin.

    Time step [s] 5e-5 1.25e-7

    Spatial/temp. Discretization

    Second order

    Second order

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    LES/SI for premix swirl burner

    17

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Validation: FTF from CFD/SI vs experiment

    18

    Donnerstag, 24. Juli 2014

  • Daubechieswavelets

    Tychonov Regularization for inversion of Wiener Filter:

    h =T+ 2RRT

    1Tc

    Generation of optimal excitation signals:

    Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Advanced SI for low signal-to-noise

    19

    maximumentropy

    non-Gaussiansimulation

    Fller & Polifke, ICSV 11:Transmission and reflectionof sound at duct discontinuity

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Aero-acoustic scattering at an orifice

    20

    input to excite acoustic eigenmodes of the pipe network. If the acoustic lossesare weaker than the acoustic gain provided by the orifice the eigenmode willgrow rapidly and the system becomes acoustically unstable.

    Due to the high amplification potential and the regular appearance in pipenetworks, orifices were studied by several research groups. Experimentally,the scattering coefficients of cylindrical orifices with different diameters andthicknesses were determined and analyzed by Testut et al. [TAMH09]. In com-parison to experimental studies, orifices were investigatedmore frequently byresearches with different numerical approaches. Kirkegaard et al. [KAE12]applied the linearizedNavier-Stokes equations to solve for the scattering coef-ficients of a 2-dimensional orifice configuration. Rupp et al. [RCS10] analyzednumerically the aero-acoustic interactions in the vicinity of an orifice geom-etry based on unsteady 3-dimensional Navier-Stokes simulations. In previ-ous years, results for the scattering coefficients and for the whistling crite-rion [AS99] of the here introduced geometry were already published by La-combe et al. [LMF+10,Lac11,LFJ+13]. All these results base on the SI method-ology presented by Fller et al. in 2012 [FP12] where a FIR model structurewithout individual time lag adaption was employed.

    The aero-acoustical network element representation of the orifice configu-ration is shown in Fig. 6.2. There are potentially two directions for incidentacoustic waves with fu as the corresponding upstream ingoing characteris-tic wave amplitude and gd as the downstream ingoing counterpart. The twooutgoing characteristic wave amplitudes are upstream gu and downstreamfd, respectively. Since the orifice configuration represents a 2x2 aero-acoustic

    Figure 6.2: Acoustical network element representation of the cylindrical orifice in a pipe

    MIMO system, its scattering matrix (Eq. (6.1)) agrees with the acoustic ele-

    189

    6.3 Results

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.700.20.40.60.8

    11.21.4

    Sr

    |T+|

    (a) upstream transmission

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    Sr

    |R |

    (b) downstream reflection

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    Sr

    |R+ |

    LES/SI99% Conf. Int.Lacombe, exp.

    (c) upstream reflection

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.700.20.40.60.8

    11.21.41.6

    Sr

    |T|

    (d) downstream transmission

    Figure 6.5: Amplitudes of the scattering coefficients for the cylindrical orifice in a pipe vs. Srnumber; LES/SI results with 99% confidence intervals at 2 M numbers (MLES/SI =0.0252: black, MLES/SI = 0.0349: red) in comparison with experimental data of La-combe [Lac11] (Mexp = 0.026: black, Mexp = 0.0335: red)

    highest model frequency of interest fmax,mod. The remaining frequency con-tent in ranges above fmax,mod in the acoustic responses gu and fd is not mod-eled and thus, causes a reduction of the prediction quality.

    Comparing the results in Figs. 6.5 and 6.6 to the LES/SI results presentedin earlier publications [LMF+10, LFJ+13], methodological improvements ledto the significant better quality of the solutions. Especially, the occurrenceof wavy deviations over the entire frequency range could be successfully re-

    201

    M = 0.026M = 0.034

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Summary

    Status Quo

    LES/SI can give flame dynamics with quantitative accuracy

    Ongoing work

    optimal model structures for identification non-linear effects high frequencies, acoustic losses combustion noise LES model for (partially) premixed (spray) combustion

    21

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013 22

    Poly-Celerity MOM for polydisperse sprays

    x0

    y

    f(x0,y)

    y

    f(x0,y;D)

    D

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Test case: sedimentation of bubbles

    23

    2.4 Test Case

    Figure 2.2: Contours of the Sauter Mean Diameter obtained with the Moments Model in Open-FOAM.

    Figure (2.4) shows the evolution of the bubble size distribution function at several positionsinside the channel (corresponding to axial positions x = 1,5; 5,7 cm and vertical positions y =0,1; 10; 19,9 mm). As bubbles tend to move towards the upper side of the channel, the numberdensity is higher for the vertical coordinate corresponding to y = 19,9 mm, and smaller at y =0,1 mm. Furthermore, a very reasonable agreement can be noted between both methods, withthe Moments Model being able to reproduce not only the shape of the distribution function, butalso its variation along the channel. However, the distribution obtained with the Moments Modelnear the upper wall at the most downstream axial position in the channel deviates considerablyfrom that of the Multi-Fluid solution. This occurs because the shape of the spectral distributionat that location is dominated by the high accumulation of big bubbles near the top wall, whichis not appropriately reproduced by a Gamma distribution.

    11

    (Carneiro et al)

    Donnerstag, 24. Juli 2014

  • Experiments (Sommerfeld & Qiu, 91) vs. LES (Dems et al, 2012)

    Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Polydisperse multi-phase turbulent swirl flow

    24

    Technische Universitt Mnchen

    Results for Sommerfeld & Qiu - Axial Velocity

    %&

    Gas phase Particles

    Technische Universitt Mnchen

    Comparison Against Experiment of Sommerfeld & Qiu (1991)

    ! "

    #

    #$

    Swirl air

    Particles & air

    D = 200 mm

    Axial velocities

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013

    Conclusions

    Large Eddy Simulation is relevant for R&D in industry

    Industrial applications imply special modelling requirements

    Reduced Order Models can be an interesting alternative to code-coupling for multi-physics, multi-scale problems

    25

    Donnerstag, 24. Juli 2014

  • Technische Universitt Mnchen

    W. Polifke - MUSAF II, Sep. 2013 26

    Thank you !

    Donnerstag, 24. Juli 2014