49
TABLE OF MAGNETIC DIPOLE ROTATIONAL BANDS AMITA and ASHOK KUMAR JAIN Department of Physics, University of Roorkee Roorkee - 247667, India and BALRAJ SINGH Department of Physics & Astronomy, McMaster University Hamilton, Ontario L8S 4M1, Canada The experimentally observed level structures which appear to support the newly proposed magnetic rotation phenomenon in weakly deformed nuclei are classified according to their intrinsic structures and other measured properties such as B(M1)/ B(E2) values, lifetimes, etc. A total of 120 magnetic dipole- rotational bands are observed in 56 nuclei spread over four mass regions, namely, A 5 80 ( Z 5 35–37), 110 ( Z 5 48–51), 135 ( Z 5 54–64), and 195 ( Z 5 80–86); 42 such bands are observed in Pb isotopes alone. Interpretation of these bands in terms of shears mechanism and other possibilities are briefly discussed. A number of high-spin features such as signature splitting, signature inversion, and backbending are also discussed. The literature cutoff date for the data is August 1999. © 2000 Academic Press Atomic Data and Nuclear Data Tables 74, 283–331 (2000) doi:10.1006/adnd.2000.0831, available online at http://www.idealibrary.com on 0092-640X/00 $35.00 Copyright © 2000 by Academic Press All rights of reproduction in any form reserved. 283 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Table of Magnetic Dipole Rotational Bands

  • Upload
    amita

  • View
    217

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Table of Magnetic Dipole Rotational Bands

TABLE OF MAGNETIC DIPOLE ROTATIONAL BANDS

Atomic Data and Nuclear Data Tables74, 283–331 (2000)doi:10.1006/adnd.2000.0831, available online at http://www.idealibrary.com on

AMITA and ASHOK KUMAR JAIN

Department of Physics, University of Roorkee

Roorkee - 247667, India

and

BALRAJ SINGH

Department of Physics & Astronomy, McMaster University

Hamilton, Ontario L8S 4M1, Canada

The experimentally observed level structures which appear to support the newly proposed magneticrotation phenomenon in weakly deformed nuclei are classified according to their intrinsic structures andother measured properties such asB(M1)/B(E2) values, lifetimes, etc. A total of 120 magnetic dipole-rotational bands are observed in 56 nuclei spread over four mass regions, namely,A 5 80 (Z 5 35–37),110 (Z 5 48–51), 135 (Z 5 54–64), and 195 (Z 5 80–86); 42such bands are observed in Pb isotopesalone. Interpretation of these bands in terms of shears mechanism and other possibilities are brieflydiscussed. A number of high-spin features such as signature splitting, signature inversion, and backbendingare also discussed. The literature cutoff date for the data is August 1999.© 2000 Academic Press

0092-640X/00 $35.00Copyright © 2000 by Academic PressAll rights of reproduction in any form reserved. 283 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 2: Table of Magnetic Dipole Rotational Bands

CONTENTS

I 84

67

28899

909191

P 94

E 95

T 6

R 26

the presence of nons

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

NTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Salient Features of Magnetic Dipole Rotational Bands. . . . . . . . . . . 284Physical Mechanism of Magnetic Rotation. . . . . . . . . . . . . . . . . . . . 28Application of Tilted-Axis Cranking Model . . . . . . . . . . . . . . . . . . . 28Electromagnetic Properties of Magnetic Dipole Rotational Bands . .Moments of Inertia, Alignment, and Backbending. . . . . . . . . . . . . . 28Regular and Irregular Bands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Signature Splitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Identical Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

OLICIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

XPLANATION OF TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

ABLE. Magnetic Dipole Rotational Bands. . . . . . . . . . . . . . . . . . . . . . . 29

EFERENCES FOR TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

umorre-

INTRODUCTION

Experimental observation of features like rotationalbands and enhanced transition probabilities usually signify

MR bands, the minimum excitation energy, the minimand maximum spins assigned in these bands, the c

phericity in nuclei. Normally one ob-ctingiro-n to

clearo thear tonetics

c di-alsogiven

andpermost

The

oruch

cleiacher of

sponding parities, and the number of bands which exhibitn ofmostncescited.

eticallow-

nhar-

icalal-

efor-

y (a

th

eticer

284

serves enhanced electric quadrupole transitions conneDI 5 2 levels in a rotational band. Observation of quastational bands based on configurations which are knowbe nearly spherical is therefore quite unexpected. Nustructure physics has in recent times been witness tobservation of many such groups of levels which appehave rotational character and display enhanced magdipole transitions connectingDI 5 1 levels. Such bandhave therefore been termed in the literature “magnetipole” or “magnetic rotational” bands and subsequently“shears” bands. Observation of such structures hasrise to much excitement, and one hopes that many newexotic coupling schemes may be identified [1]. In this pawe present a Table of the established as well as thelikely candidates of magnetic rotation (MR) bands.literature cutoff date for the data is August 1999.

Most MR-band nuclei are either even–evenodd–A; only a few odd–odd nuclei are known to have sbands. The largest aggregate of data occurs in theA ' 195mass region, where 12 lead isotopes having 191# A #202 display as many as 42 MR bands. All the nuincluded in the compiled Table are shown in Fig. 1. Enucleus is assigned a box that exhibits the total numb

backbending. It should be noted that a critical evaluatiothe experimental data is not the aim of this paper andof the information has been gleaned from the referecited for each band; a total of 81 references have been

Salient Features of Magnetic Dipole Rotational Bands

Based on observations made so far and on theorcalculations, MR bands are expected to display the foling properties:

1. The bands exhibit aDI 5 1 structure rather thaa DI 5 2 structure and have a somewhat rotational cacter.

2. They are typically observed in nearly sphernuclei, most having a very small oblate deformation,though many are also known to have small prolate dmation.

3. The bandhead lies at a high excitation energfew MeV) and has a high spin (I ; 10–15\) and a highvalue ofK (the projection ofI on the symmetry axis), boindicative of a multi-quasiparticle character.

4. Intraband transitions are predominantly magndipole (M1) in nature, withB(M1) values being of the ord

Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 3: Table of Magnetic Dipole Rotational Bands

are

( thise

Av

ns too

ertiao e

su-0

\ 15

s in each

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

285

of several Weisskopf units. Crossover E2 transitionseither very weak or absent, so thatB(E2) values are&0.1eb)2. The ratioB(M1)/B(E2) is therefore quite large, wi

values;10–100 (mN/eb)2. In normal rotational bands thratio is less than 1 (mN/eb)2. In a number of MR bands in th

5 110 and 195 mass region, a decrease in theB(M1)alues with increasing spin has been observed.

FIG. 1. Isotope chart ofZ vs N for the magnetic dipole rotational bandsbox.

5. These bands have generally weak connectiother yrast states.

6. These bands carry a dynamical moment of inf the order ofI(2) 5 10–25\2MeV21, smaller than th

dynamical moments of inertia of normal-deformed andperdeformed nuclei. The ratioI (2)/B(E2) is larger than 15

2MeV21(eb)22 here, in comparison to a value of

in this compilation. See key (inset) for the interpretation of the entrie

Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

included

Page 4: Table of Magnetic Dipole Rotational Bands

\2MeV21(eb)22 in well-deformed nuclei and 5\2MeV21(eb)22 in superdeformed nuclei.

eenen-

clei.

farticlealso

har-hibit

.

ifiedmosthicheticn

of the(i) thesons(iii)rde-in a

e an-ty in

so-fromita-

ken-. Asll

i-

by

B iatedw d

ands

ave

excitation coupled to low-V one/three quasineutrons (in odd–Anuclides) or two/four quasineutrons (in even–A nuclides).Since the protons occupy high-V states, their density distribu-

theherularthe

twogularicularome-enta,

theseir ofch asrma-ture

ulta-m toThis

sm.” Asedcess-gies,

in-area

ion,ardmo-it. In

ndsTheed inionss,gh-y an

shells andbandsnetic

hearsweenter-

orehis

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

286

Keeping these characteristics in mind, we have bable to extract from the published literature on experimtally observed level structures 120 MR bands in 56 nuThese are spread over four mass regions, namelyA 577–85, 105–113, 124–144, and191–205. While most othese bands have been assigned oblate many-quasipconfigurations, several prolate configurations havebeen assigned to bands in the lighter mass regions.

We find that in addition to the above-mentioned cacteristics, the experimentally observed bands also exthe following features:

1. Some of these cascades do not display anI (I 1 1)behavior and are irregular in their structure.

2. Many MR bands display signature splitting.3. A large number of cases display backbending

Physical Mechanism of Magnetic Rotation

The largest number of MR bands has been identin Pb nuclei, and these, therefore, constitute the foretesting ground for the various physical mechanisms wcould give rise to rotation-like features with strong magndipole transitions connectingDI 5 1 states. A configuratioassignment for the bands has been possible in mostcases in Pb nuclei based on considerations such asexcitation energies and angular momenta, (ii) compariwith the known excitations in neighboring nuclei, andestimates from model calculations. Unlike the supeformed bands, the linking transitions have been seenlarge number of cases; the excitation energies and thgular momenta are therefore known with greater certainmany instances.

The low-lying excitations of neutron-deficient Pb itopes are known to consist of spherical states arisingneutron hole excitations, and further higher-lying exctions are formed on weakly oblate states built on bropair proton (particle–hole) excitations across the corean example, the 01 state at 931 keV in194Pb, having a smaoblate deformation [2], is built on the {p9/22[505]} 2 con-figuration of theh9/ 2 orbital. Two high-spin isomeric exctations are observed at 2438 and 2934 keV, havingI p 5 81

and 112, respectively [3]; these are interpreted as (2p2h)broken proton-pair shell model configurations given[{ ph9/ 2, 9/ 22[505]} V { ph9/ 2, 7/ 22[514]}] Kp 581 and[{ ph9/ 2, 9/ 22[505]} V { pi 13/ 2, 13/ 21[606]}] Kp 5112.

oth these configurations are also known to be associth a small oblate deformationb2 ; 20.18 as suggeste

by some calculations. However, no regular collective bbuilt on these states have been observed.

The DI 5 1 bands observed in the lead isotopes hbeen assigned configurations consisting of theKp 5 112

tion is like a torus with angular momentum pointing alongsymmetry axis. The low-V neutron hole states, on the othand, have a dumbbell-like density distribution, with angmomentum pointing along a direction perpendicular tosymmetry axis [4, 5]. Maximum overlap between thedensity distributions is therefore obtained when the anmomenta of proton particle and neutron hole are perpendto each other, and the resultant angular momentum lies swhere between the proton and the neutron angular momas shown in Fig. 2a. Frauendorf [4, 6, 7] suggested thattwo angular momenta are like the two blades of a pashears, and that the unusual properties of MR bands, suthe generation of high angular momenta at such low defotion, predominance of regular M1 transitions, lack of signasplitting, etc., can be explained if the two blades simneously align toward the resultant total angular momentugenerate higher angular momentum states (cf. Fig. 2b).mechanism has hence been named the “shears mechanitilted-axis version of the Cranking model (TAC) was propo[4] which incorporates this shears mechanism quite sucfully and gives a good estimate of the excitation enerspins, andB(M1)/B(E2) values of many such bands.

A similar mechanism is seen to work in theA 5 110and 135 mass regions although different orbitals arevolved. In theA 5 110 mass region the active orbitalshigh-V proton g9/ 2 holes, driving the nucleus towardslightly prolate shape ofb2 ; 0.13, and low-V neutronh11/ 2

particles [7]. Due to the shape of their density distributthe proton angular momentum vector aligns itself towthe nuclear symmetry axis while the neutron angularmentum vector aligns toward an axis perpendicular tothe A 5 135 mass region,h11/ 2 proton particles andh11/ 2

neutron holes are involved in the configuration of MR ba[8]; sometimesg7/ 2 protons are also assigned a role.coexistence of prolate and oblate shapes is predictdifferent bands in a few nuclei. However, the interpretatare not as firm in these mass regions as in theA 5 195 masregion. It may be noted that the high-j intruder orbitalswhich are known to play an important role in many hispin phenomena such as superdeformation, also plaimportant role in generating MR bands.

Recent calculations based on the sphericalmodel with a reasonable configuration space for protonneutrons have also been able to reproduce regular MRand confirm the shears mechanism of generating magdipole rotational bands [9].

A suggestion has recently been made that the smechanism may arise due to a residual interaction betthe protons and neutrons in the two blades [10]. An inaction of theP2(u ) kind can be mediated through the cby particle–vibration coupling acting in second order. T

Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 5: Table of Magnetic Dipole Rotational Bands

ce of

is

edds–

Saxon potential);v is the rotational frequency, and (u, w)are the tilting angle and the azimuthal angle of the totalangular momentum, respectively; and (j 1, j 2, j 3) are thec ,3 axis.

iter-a ticlev avea ncest olem

w ree-

om-

gapctalcu-e

tionsns,

M es fortotalable

alcu-dera-

qui-talperi-ng

T ntalr ularm s

amethat

ed tooper-

oblated (b)

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

287

kind of physical mechanism may not require the presena deformed mean field for nearly spherical nuclei.

Application of Tilted-Axis Cranking Model

A general TAC Hamiltonian for a single particlegiven by [4]

h9TAC 5 hsp 2 v~ j 1sin u cosw 1 j 2sin u sin w 1 j 3cosu !,

(1)

wherehsp is the single particle Hamiltonian in a deformfield (e.g., a deformed oscillator or a deformed Woo

FIG. 2. Schematic coupling scheme of shears mechanism for a smalldeformation in the Pb region at (a) small rotational frequency anlarge rotational frequency. For details see text.

omponents of particle angular momentumj along the (1, 2) axes, respectively, where the 3-axis is the symmetry

Detailed calculations have been reported in the lture for the MR bands, where, using the multiparersion of the TAC, pairing and residual interactions hlso been included (for example see [11, 12] and refere

herein). Within the pairing plus quadrupole–quadrupodel, the quasiparticle Routhian is given by [5]

h9 5 hsp 2 \v0bScosgq0 2sin g

Î2~q2 1 q22!D

2 D~P1 1 P! 2 ln 2 v~ j 1sin u 1 j 3cosu !, (2)

here w 5 0° has been substituted to reduce the thdimensional problem to a planar one. Here,\v 0 5 41A21/3;b andg are the usual deformation parameters; andq0, q2,and q22 are the expectation values of the respective cponents of the quadrupole tensorQ. The operatorP1 cre-ates the pair field, the strength of which is fixed by theparameterD. The Fermi levell is fixed to give the correparticle number. As an example, we have performed clations for the MR band in105Sn by using the TAC cod[13]. The proton pairing was neglected in these calculabecause the protonZ 5 50 shell is closed. For the neutropairing was taken into account using a constantDn 5 0.80

eV. The neutron Fermi levell was calculated to give thappropriate particle number. We have done calculationa series of deformation parameters to minimize theenergy in the lab frame and found that the most suitdeformation in this case isb 5 0.137 andg 5 10°. Singleproton and single quasineutron Routhians were then clated. Taking the bandhead spin and parity into consition, we chose the configurationp(g9/2

21g7/2) V n[h11/22 (g7/2d5/2)

1]and calculated the total quantities (like spin, energy, elibrium tilt angle u). In order to compare the experimenresults with the calculated ones, we transform the exmental energiesE(I ) into rotational frequencies by usithe relation

\v~I ! 5 E~I ! 2 E~I 2 1!. (3)

he results of our calculations along with the experimeesults [14] are shown in Fig. 3, where the total angomentum I vs \v is plotted. The TAC curve differ

slightly from the observed values but exhibits the strend. The observed values also show a backbendinghas been attributed in [14] to the alignment of a (g7/ 2d5/ 2)neutron pair. The wavefunctions so obtained can be uscalculate the electromagnetic transitions and other prties, as discussed in the following section.

Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 6: Table of Magnetic Dipole Rotational Bands

i igh-p

ws.l

axisularaxistumed).po-

align-ular

hea-inl-, 6],

B~M1! 53

8p@sin u$ gl ,p^ j p,3&v 1 ~ gs,p 2 gl ,p !^sp,3&v

a

-

lts ofe

thatin-singears

re-es

tessm inatiosof

rtion

st-

lue

i o

tenionsri-

r-

eE2

may

e

e

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

288

Electromagnetic Properties of Magnetic DipoleRotational Bands

A DI 5 1 structure and large intrabandB(M1) valuesmmediately suggest that the MR bands are based on hKroton configurations. In the strong coupling limit [15],

B~M1, I 3 I 9! 53

4pK 2~ gK 2 gR! 2u^I 9K10uIK &u 2, ~4!

heregK is the protong-factor andgR ' Z/A. When bothK and (gK 2 gR) are large, theB(M1) value increaseHowever, the trend of theB(M1) values with rotationafrequency distinguishes a high-K band from a MR band.

The coupling scheme for the bandhead in a tiltedrepresentation is shown in Fig. 2a, with the proton angmomentum vector close to the nuclear symmetry(deformation-aligned) and the neutron angular momenvector close to an axis perpendicular to it (rotation-alignSuch a coupling gives rise to a large perpendicular comnent of the magnetic moment,m' 5 mp

' 1 mn'. Higher

angular momentum states are generated by a gradualment of the neutron and proton blades with the total angmomentum IW. As IW increases,m' decreases. Since tB(M1) values are proportional toum'u2, the shears mechnism predicts decreasingB(M1) values with increasing spalong the band. TheB(M1) and B(E2) values can be caculated in the TAC model by using the expressions [4

FIG. 3. Angular momentum vs rotational frequency for105Sn using thTAC model for the configurationp( g9/ 2

21g7/ 2) V n[h11/ 22 (d5/ 2g7/ 2)

1]and the deformation parameters (b, g) 5 (0.137, 10°) along with thexperimental curve for the dipole band in105Sn.

1 gs,n^sn,3&v% 2 cosu$ gl ,p^j p,1&v

1 ~ gs,p 2 gl ,p !^sp,1&v 1 gs,n^sn,1&v%# 2 (5)

nd

B~E2! 515

128p~eQ0sin2u ! 2, (6)

where the average values of the components ofj , the spins,and the intrinsic electric quadrupole momentQ0 are calculated from the TAC model configurations. Theg’s are theusual gyromagnetic factors. In Fig. 4, we show the resuour calculations forB(M1) andB(M1)/B(E2) values for th105Sn nucleus discussed in the previous section. We findboth B(M1) and B(M1)/B(E2) values decrease withcreasing rotational frequency and hence with increaangular momentum, thus proving the validity of the shmechanism in the massA 5 110 region.

A comparison of the calculated values with thecently measuredB(M1) values in a series of Pb isotopwith A 5 193–197 hasconfirmed the decrease inB(M1)with increasing angular momentum [11]. This constituthe strongest argument in favor of the shears mechanilead nuclei. It may be emphasized that whereas the rsuch asB(M1)/B(E2) may be explained on the basisprincipal axis cranking, the behavior ofB(M1) with angulamomentum confirms that it is a new mode of excitawhich requires the TAC.

Measurement of theg-factor is another sensitive teof a configuration. For example, theg-factor of the 2584keV bandhead in193Pb was measured [16] to be 0.6860.03, which matches very well with the calculated va0.71 6 0.04 for the assigned configuration [(ph9/ 2 V

13/ 2)Kp 5112 V (ni 13/ 2)21] Kp 529/ 22; other configurations d

not reproduce the measured value.Another useful quantity which is reported more of

and which highlights the large strength of the M1 transitis the ratioB(M1)/B(E2). It can be obtained from expement by using the expression [17]

B~M1!/B~E2! 50.6968Eg2

5

lEg13 ~1 1 d 2!

, (7)

whereEg1,g2 are the respectiveg-ray energies in MeV coresponding to the M1 (DI 5 1) and E2 (DI 5 2) transitionsfrom a stateI , l is theg-ray intensity ratio [I (g 2)/I (g 1)],and d is the mixing ratio for theDI 5 1 transition. Sincobserved M1 transitions are much stronger than thetransitions, it may be assumed that theDI 5 1 transitionsare pure M1 transitions and therefore the mixing ratio

Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 7: Table of Magnetic Dipole Rotational Bands

eer of

tiae

typical cases from theA 5 80, 110, 135, and 195massregions. HereDEg(I ) 5 Eg(I 3 I 2 1) 2 Eg(I 2 1 3I 2 2). We notice many similarities in the four plots from

llyppo-

onallarthellec-llertaltua-to aior oflsol

the

eage,clei,atedted,meand

theoc-

th alei10

iirtion-rthis

pos-two

he firstsmall

entalrisebe

on-andstter

been

l)the

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

289

be ignored. We tabulate thisB(M1)/B(E2) ratio in the Tablfor a large number of cases. It turns out to be of the ord10–100 (mN/eb)2 as compared to a value less than 1 (mN/eb)2 in normally deformed nuclei.

Moments of Inertia, Alignment, and Backbending

The kinematic moment of inertiaI (1) 5 \I /v 5\ 2I /Eg(I 3 I 2 1) and the dynamic moment of inerI (2) 5 \dI/dv 5 \ 2/DEg(I) are plotted in Fig. 5 for som

FIG. 4. TheB(M1) (upper panel) andB(M1)/B(E2) values (lower panevs rotational frequency from the TAC model calculations forconfiguration shown in Fig. 3.

each mass region. TheI(1) values (solid lines) generadecrease with increasing angular momentum, a trend osite to what one observes in normal deformed rotatibands whereI(1) generally rises with increasing angumomentum. This is indicative of a large contribution tototal angular momentum from a source other than cotive. Also theI(2) values are typically considerably smathan I(1), again indicating a large contribution to the toangular momentum from alignment; the very large fluctions in I(2) values shown in some MR bands are duebackbending in these bands. More recently, the behavI(1) and I(2) as a function of angular momentum has abeen shown to be consistent with theP2(u ) type of residuainteraction between protons and neutrons [18].

For rotational bands in normal deformed nuclei,moment of inertia is directly proportional to theB(E2)values, and hence the ratioI (2)/B(E2) is expected to broughly constant. For MR bands, this ratio is, on avermore than a factor of 10 larger than in well deformed nuwhich shows that only a fraction of the inertia is generby the rotation of the deformed core. It should be nohowever, that ratiosI (2)/B(E2) as large as 10 can also coabout for a normal rotor in the presence of pairinghaving a small deformation.

A kind of singularity or sharp rise is observed invalue of I(2) at angular momenta where backbendingcurs, which is normally attributed to a bandcrossing wifurther alignment of thei 13/ 2 quasineutron pair in Pb nucand an alignment of theh11/ 2 neutron pair in the mass 1and 135 regions. For example an upbend at\v ; 0.38 MeVn band 2 of196Pb having configurationp(h9/ 2 V i 13/ 2) V

n(i 13/ 2)22 is attributed to a secondi 13/ 2 quasineutron pa

crossing [19]. Thus after the crossing, the configurabecomesp(h9/ 2 V i 13/ 2) V n(i 13/ 2)

24. A similar bandcrossing is also noticed in band 3 of198Pb but at a highefrequency; the shift in frequency may be interpreted asband having some pairing prior to crossing. It is alsosible to interpret the backbending as the crossing ofshears bands. When a second shears band crosses tshears band, the shears angle opens up again from avalue (near 0°) to a large value (near 90°). The experimevidence in favor of such a crossing would be a suddenin theB(M1) value near the crossing frequency. It wouldvery interesting to make such measurements.

Regular and Irregular Bands

While most of the bands are nearly regular (not csidering backbending as an irregularity), some of the bappear quite irregular. It may be pointed out that with bestatistics in experiments, the order of transitions has

Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 8: Table of Magnetic Dipole Rotational Bands

gularttingre ofby

nu-

w wob lign-m

It ist atures en-t ting.

ficultr four

o thec d 2 of

on.nver-rmedan].odd

forave

a

o

.

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

290

changed in many cases, thereby making some irrebands regular. Also, it may be noted that signature spliin a band must be distinguished from the irregular natua DI 5 1 band. This distinction may be achieveddividing a DI 5 1 band into twoDI 5 2 bands, theanalyzing the levels within theDI 5 2 subbands for reglarity and bandcrossing. For example, band 3 of196Pb,

hich otherwise looks quite irregular, on dividing into tands can be interpreted as a rotational structure with aent taking place around the 1237-keV level [19].

Signature Splitting

The TAC model mixes states of good signature.herefore expected that MR bands may not have a signplitting. We find that 14 of the 42 MR bands experimally observed in the Pb nuclei display a signature split

FIG. 5. Kinematic (solid lines) and dynamic (dashed lines) moments

We did not include a few other cases because it was difto make a judgment in those cases where only three otransitions are known. In Fig. 6, we plotDEg(I ) vs I for 6

f the 14 cases; a signature splitting is evident in allases. It is interesting to note that 2 cases, namely ban

195Pb and band 4 of199Pb, also exhibit a signature inversiSuch phenomena of signature splitting and signature ision have been observed and studied in normal defoeven–even [20], odd–A, and odd–odd nuclei [21] and cbe explained by using the particle-rotor model [22, 23

An odd–odd nucleus with the odd proton and theneutron in appropriate orbitals is the simplest systemsimulating the shears mechanism. Accordingly we hused the two-quasiparticle-plus-rotor model fordeformation-aligned proton particle in anh9/ 2, 9/ 2[514]

rbit and a rotation-aligned neutron hole in ani 13/ 2,

s spin plotted for five nuclei from theA 5 80, 110, 135, and 195mass regions

Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

of inertia v

Page 9: Table of Magnetic Dipole Rotational Bands

enta,this

ased.

de-a-

t valida thev ed byM lsop erves ma-t thep wers mo-m l thatt ighers resc thes sence

ion

nu-ome

cus.ition

trone-g]; it

ves-

dataar to

ottom panels

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

291

1/ 2[600] orbit at a small oblate deformation (e 5 20.1),and calculated energies and the aligned angular mometc. Our calculations [24] show that the band based onconfiguration develops a strong signature splitting atI 516. The signature splitting persists even for the band bon the h9/ 2, 9/ 2[514] V i 13/ 2, 7/ 2[604] configurationHowever, this signature splitting disappears when theformation is increased to, say,e 5 20.25. These calculions also indicate that the shears mechanism is moret small deformations. Similar conclusions regardingalidity of the shears mechanism have also been reachacchiavelli et al. [25]. Since signature splitting is arominent at small deformation, it is not unusual to obsignature splitting in MR bands, which is a small deforion phenomenon. In Fig. 7, we show the geometry ofarticle angular momenta and their alignments at lopins where splitting is absent and at higher angularenta where splitting is present. The diagrams revea

he shears mechanism is active at the lower spins. At hpins (I . 16), thestates belonging to different signatulearly align along different directions, thus dilutinghears mechanism. We may therefore infer that the pre

FIG. 6. Signature splitting in some MR bands in Pb isotopes as obser

of a large signature splitting may be linked with a dilutof the shears mechanism.

Identical Bands

Observation of identical bands in superdeformedclei brought this phenomenon, which is also present to sextent in normal deformed nuclei [26, 27], into sharp foSome MR bands also appear to have identical transenergies. An example is band 2 of199Pb and band 1 of200Pb.The bands differ in their configuration by a quasineuorbital f 5/ 2, 1/ 2[521]. An interpretation in terms of a dcoupling of a pseudo-spinL 5 0 quasineutron originatinfrom p3/ 2 andf 5/ 2 Nilsson orbitals has been suggested [5requires a decoupling parametera 5 1. However, noidentical band has been found in a similar situation in201Pband 202Pb. This phenomenon therefore remains to be intigated in MR bands.

Conclusions

In this paper, we have presented experimentaland other evidence taken from the literature which appe

experimental data. The spins are uncertain in the three cases in the b.

Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

ved in the

Page 10: Table of Magnetic Dipole Rotational Bands

tion.onsonal

ythis

suffi-satedas-rtantaveperi-any

other features of MR bands such as signature effects are alsodiscussed. Preliminary results from the two-particle–rotormodel are given to check the applicability of the shears

bes ofit is

theile al beion).ctlyperi-earsalso

erve

efulessorure,portST,e-andrate-

)

on-

. A

)

r

for

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

292

support the recently proposed concept of magnetic rotaA total of 120 bands in 56 nuclei from four mass regihave been compiled from the literature. Some additicases, namely83Y [28, 29], 83Zr [30], 106Cd [31], 103,105,107,109In[32, 33], 117I [34], 128Ba [35], and139Pm [36], are also likelcandidates of MR bands but have not been included inTable due to the uncertain nature of the bands and incient information. The bands in theA 5 80 and 135 regionand Hg nuclides included in the Table should also be trewith caution. The energies, spin, parity, configurationsignments, electromagnetic properties, and other impodetails of MR bands are listed in the Table. We hdiscussed very briefly the shears mechanism and exmental as well as theoretical evidence in its favor. M

FIG. 7. Geometry of particle angular momenta atI 5 8 and 16 (uppepanel), and at three consecutive angular momenta forI 5 20, 21, and22, which lie in the region of signature splitting (lower panel),small oblate deformatione2 5 20.1.

mechanism when signature splitting occurs. It maypointed out that MR is just one of the several new moderotation that are being talked about [1]. For example,possible to construct both blades of the shears fromsame type of particles (either protons or neutrons). Whregular pattern of levels would still be formed, these wilconnected by weak E2 transitions (antimagnetic rotatObservation of a “pure” MR band based on a perfespherical configuration is another challenge for the exmentalists. Another mode where the blades of the shclose with decreasing excitation rather than open hasbeen predicted. It would indeed be interesting to obsthese new modes of rotation in experiments.

Acknowledgments

We thank Professor S. C. Pancholi for many usdiscussions and comments. We are also grateful to ProfS. Frauendorf for providing the TAC code and literatand making several useful comments. Financial supfrom the Department of Science and Technology (DIndia), from the Council of Scientific and Industrial Rsearch (CSIR, India), and from the Natural SciencesEngineering Research Council (NSERC, Canada) is gfully acknowledged.

References for Introduction

1. R. M. Clark and R. Wadsworth, Physics World11, 25(1998)

2. P. Van Duppen et al., Phys. Rev. Lett.52, 1974 (1984

3. M. G. Porquet et al., J. Phys. G20, 765 (1994)

4. S. Frauendorf, Nucl. Phys. A557,259c (1993)

5. G. Baldsiefen et al., Nucl. Phys. A574,521 (1994)

6. S. Frauendorf, Z. Phys. A358,163 (1996)

7. S. Frauendorf, inProceedings of the WorkshopGammasphere Physics, Berkeley, 1995(World Scientific, Singapore, 1996), p. 272

8. C. M. Petrache et al., Nucl. Phys. A617,249 (1997)

9. S. Frauendorf, J. Reif, and G. Winter, Nucl. Phys601,41 (1996)

10. A. O. Macchiavelli et al., Phys. Rev. C58,R621 (1998

11. R. M. Clark et al., Phys. Lett. B440,251 (1998)

12. D. G. Jenkins et al., Phys. Rev. Lett.83, 500 (1999)

Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 11: Table of Magnetic Dipole Rotational Bands

13. S. Frauendorf, TAC code, private communication

14. A. Gadea et al., Phys. Rev. C55, R1 (1993)

1

1 d

1

1

2

2 )

2 )

2

24. Amita, A. K. Jain, A. Goel, and B. Singh, Pramana-J.Phys.53, 463 (1999)

2

2

2

2

2

3

3

3

3

3

3

3

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

15. A. Bohr and B. R. Mottelson,Nuclear Structure(Ben-jamin, New York, 1975), Vol. II

6. S. Chmel et al., Phys. Rev. Lett.79, 2002 (1997)

7. H. Ejiri and M. J. A. de Voigt,Gamma Ray anElectron Spectroscopy in Nuclear Physics(OxfordUniv. Press, Oxford, 1987), p. 504

8. A. O. Macchiavelli et al., Phys. Rev. C58, 3746(1998)

9. E. F. Moore et al., Phys. Rev. C51, 115 (1995)

0. A. Goel and A. K. Jain, Phys. Lett. B337, 240(1994)

1. A. K. Jain and A. Goel, Phys. Lett. B277,233 (1992

2. A. Goel and A. K. Jain, Nucl. Phys. A620,265 (1997

3. A. K. Jain et al., Rev. Mod. Phys.70, 843 (1998)

293

5. A. O. Macchiavelli et al., Phys. Lett. B450,1 (1999)

6. A. K. Jain, Z. Phys. A317,117 (1984)

7. C. Baktash et al., Annu. Rev. Nucl. Part. Sci.45, 485(1995)

8. F. Cristancho et al., Nucl. Phys. A540,307 (1992)

9. C. J. Lister et al., Z. Phys. A329,413 (1988)

0. D. Rudolph et al., Z. Phys. A338,139 (1991)

1. P. H. Regan et al., Nucl. Phys. A586,351 (1995)

2. S. K. Tandel et al., Phys. Rev. C58, 3738 (1998)

3. J. Kownacki et al., Nucl. Phys. A627,239 (1997)

4. M. P. Waring et al., Phys. Rev. C48, 2629 (1993)

5. I. Wiedenhover et al., Phys. Rev. C58, 721 (1998)

6. N. Xu et al., Phys. Rev. C36, 1649 (1987)

Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 12: Table of Magnetic Dipole Rotational Bands

POLICIES

Level Energies The listed level energies are taken from the first reference given for a band. In cases where values given by theken fromh of the

a reactionby the

a

R Nuclear

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

original authors are relative to the energy of an isomer, we have added the energy of the isomer (tathe Evaluated Nuclear Structure Data File database at Brookhaven National Laboratory) to eacenergy levels.

Band Intensity The quoted value represents the approximate intensity (as a percentage) of the population of a band inchannel leading to that nucleus. The value is taken from the cited reference if quoted explicitlyauthors. Otherwise an approximate value is deduced by us from the authors’ relativeg-ray intensity dat(either numeric or graphic).

eferences The references are listed in chronological order in terms of eight digit key numbers as assigned in theScience References database at Brookhaven National Laboratory.

294 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 13: Table of Magnetic Dipole Rotational Bands

EXPLANATION OF TABLE

olumn

, Y, Z,e about

infor.atabase ate firster the

authors.itivegative

heesrisingto thed of

ugh not

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

TABLE. Magnetic Dipole Rotational Bands

ZAXN Denotes the specific nuclide with

X chemical symbolA mass numberZ atomic numberN neutron number

A single blank row marks the end of entries for each band. The number in the first cdenotes the band number.

Elevel Level energy in units of keV. Energies in parentheses denote tentative levels. Labels Xetc., indicate that absolute excitation energies are unknown due to lack of knowledglinking transitions to the lower levels.

I p I denotes the level spin for each band member.p denotes the parity (1 or 2). I p given inparentheses denotes uncertain spin and/or parity assignments.

Eg(M1) g-Ray energies in units of keV for the M1 (DI 5 1) transitionI 3 I 2 1.Eg(E2) g-Ray energies in units of keV for the E2 (DI 5 2) transitionI 3 I 2 2.B(M1)/B(E2) The ratio of reduced transition probabilities in units of (mN/eb)2 given with the uncertainties

the last digits in parentheses [Eq. (7),d 5 0]. In some bands where only upper limitsthe intensities of the E2 transitions are given the lower limits forB(M1)/B(E2) are given

References The references follow key numbers as assigned in the Nuclear Science References dBrookhaven National Laboratory. The data for a band have been taken from threference cited (printed bold). Information taken from other references is given undcolumn “Configurations and Comments.”

Configurations andComments The quasiparticle configuration for a band is given wherever assigned by the original

p here is for protons andn is for neutrons. s, p, d, f, g, h, and i are the orbitals. A posinteger in the superscript of the orbital denotes the number of particles while a neinteger denotes the number of holes in that orbital.

The abbreviations in this item are explained below:DSM deformed shell modelTAC tilted-axis crankingCSM cranked shell modelTRS total Routhian surfacePSM projected shell modelIBFM interacting Boson–Fermion modelFAL Fermi alignedHF Hartree–FockBCS Pairing theory of Bardeen, Cooper, and SchriefferCWS Cranked Woods–Saxon

(b2 , g) Deformation parameters.Backbending In a rotational band, the transition energies increase with increase in spin reflecting tI (I 1

1) behavior, but in some cases, e.g., in band 1 of108Cd, the moment of inertia increasdrastically after the spin 162, and the transition energy decreases and again startsafter 182. This phenomenon is known as backbending and is usually attributedcrossing of two rotational bands due to the alignment of a pair of either kinquasiparticles.

Regular band A band where the excitation energy varies more or less smoothly with spin, thonecessarily asI (I 1 1).

Irregular band A band where energy variation with spin is quite abrupt.

295 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 14: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

296 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 15: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

297 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 16: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

298 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 17: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

299 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 18: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

300 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 19: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

301 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 20: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

302 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 21: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

303 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 22: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

304 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 23: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

305 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 24: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

306 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 25: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

307 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 26: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

308 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 27: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

309 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 28: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

310 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 29: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

311 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 30: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

312 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 31: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

313 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 32: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

314 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 33: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

315 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 34: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

316 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 35: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

317 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 36: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

318 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 37: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

319 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 38: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

320 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 39: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

321 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 40: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

322 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 41: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

323 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 42: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

324 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 43: Table of Magnetic Dipole Rotational Bands

TABLE. Magnetic Dipole Rotational BandsSee page 295 for Explanation of Table

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

325 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 44: Table of Magnetic Dipole Rotational Bands

REFERENCES FOR TABLE

1980Ga17 W. Gast, K. Dey, A. Gelberg, U. Kaup, F. Paar, R. Richter, K. O. Zell and P. von Brentano, Phys. Rev. C22,

n and

6, 43

ev. C39,

ev. C39,

ev. C41,

ev. C41,

990).

., K. H.

ewski,W. H.

ewski,W. H.

A. O.E. A.deBoer,

. Jones,

Fallon,cl. Phys.

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

469 (1980).

1986Fu04 L. Funke, J. Do¨ring, P. Kemnitz, P. Ojeda, R. Schwengner, E. Will, G. Winter, A. Johnson, L. HildingssoTh. Lindblad, Z. Phys. A324, 127 (1986).

1988Hi04 L. Hildingsson, C. W. Beausang, D. B. Fossan and W. F. Piel, Jr., Phys. Rev. C37, 985 (1988).

1988Sc13 R. Schwengner, J. Do¨ring, L. Funke, H. Rotter, G. Winter, A. Johnson and A. Nilsson, Nucl. Phys. A48(1988).

1989Hi02 L. Hildingsson, C. W. Beausang, D. B. Fossan, R. Ma, E. S. Paul, W. F. Piel, Jr. and N. Xu, Phys. R471 (1989).

1989Pa17 E. S. Paul, D. B. Fossan, Y. Liang, R. Ma and N. Xu, Phys. Rev. C40, 1255 (1989).

1989Xu01 N. Xu, C. W. Beausang, R. Ma, E. S. Paul, W. F. Piel, Jr., D. B. Fossan and L. Hildingsson, Phys. R1799 (1989).

1990Ma26 R. Ma, E. S. Paul, D. B. Fossan, Y. Liang, N. Xu, R. Wadsworth, I. Jenkins and P. J. Nolan, Phys. R2624 (1990).

1990Pa05 E. S. Paul, D. B. Fossan, Y. Liang, R. Ma, N. Xu, R. Wadsworth, I. Jenkins and P. J. Nolan, Phys. R1576 (1990).

1990Sc07 R. Schwengner, J. Do¨ring, L. Funke, G. Winter, A. Johnson and W. Nazarewicz, Nucl. Phys. A509, 550 (1

1992Ba13 G. Baldsiefen, H. Hu¨bel, D. Mehta, B. V. Thirumala Rao, U. Birkental, G. Fro¨hlingsdorf, M. Neffgen, NNenoff, S. C. Pancholi, N. Singh, W. Schmitz, K. Theine, P. Willsau, H. Grawe, J. Heese, H. KlugeMaier, M. Schramm, R. Schubart and H. J. Maier, Phys. Lett. B275, 252 (1992).

1992Ku06 A. Kuhnert, M. A. Stoyer, J. A. Becker, E. A. Henry, M. J. Brinkman, S. W. Yates, T. F. Wang, J. A. CizF. S. Stephens, M. A. Deleplanque, R. M. Diamond, A. O. Macchiavelli, J. E. Draper, F. A. Azaiez,Kelly and W. Korten, Phys. Rev. C46, 133 (1992).

1992Wa20 T. F. Wang, E. A. Henry, J. A. Becker, A. Kuhnert, M. A. Stoyer, S. W. Yates, M. J. Brinkman, J. A. CizA. O. Macchiavelli, F. S. Stephens, M. A. Deleplanque, R. M. Diamond, J. E. Draper, F. A. Azaiez,Kelly, W. Korten, E. Rubel and Y. A. Akovali, Phys. Rev. Lett. 69, 1737 (1992).

1993Ce04 B. Cederwall, M. A. Deleplanque, F. Azaiez, R. M. Diamond, P. Fallon, W. Korten, I. Y. Lee,Macchiavelli, J. R. B. Oliveira, F. S. Stephens, W. H. Kelly, D. T. Vo, J. A. Becker, M. J. Brinkman,Henry, J. R. Hughes, A. Kuhnert, M. A. Stoyer, T. F. Wang, J. E. Draper, C. Duyar, E. Rubel and J.Phys. Rev. C47, R2443 (1993).

1993Cl02 R. M. Clark, R. Wadsworth, F. Azaiez, C. W. Beausang, A. M. Bruce, P. J. Dagnall, P. Fallon, P. MM. J. Joyce, A. Korichi, E. S. Paul and J. F. Sharpey-Schafer, J. Phys. G19, L57 (1993).

1993Cl05 R. M. Clark, R. Wadsworth, E. S. Paul, C. W. Beausang, I. Ali, A. Astier, D. M. Cullen, P. J. Dagnall, P.M. J. Joyce, M. Meyer, N. Redon, P. H. Regan, J. F. Sharpey-Schafer, W. Nazarewicz and R. Wyss, NuA562, 121 (1993).

326 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 45: Table of Magnetic Dipole Rotational Bands

REFERENCES FOR TABLE continued

1993De42 J. K. Deng, W. C. Ma, J. H. Hamilton, J. D. Garrett, C. Baktash, D. M. Cullen, N. R. Johnson, I. Y. Lee, F. K.

S. L.

rinkman,per, C.tanaki,viol,(1993).

erwall,i, L. A..

san,

S. vaniang, U.

M. A.

ble,

o

we,(1994).

scu, T.Jones,son, D.

th, D. B.e,J. Twin,

signori,

J.

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

McGowan, S. Pilotte, C. H. Yu and W. Nazarewicz, Phys. Lett. B319, 63 (1993).

1993Do14 J. Do¨ring, L. Funke, R. Schwengner and G. Winter, Phys. Rev. C48, 2524 (1993).

1993Ho15 J. W. Holcomb, J. Do¨ring, T. Glasmacher, G. D. Johns, T. D. Johnson, M. A. Riley, P. C. Womble andTabor, Phys. Rev. C48, 1020 (1993).

1993Hu01 J. R. Hughes, Y. Liang, R. V. F. Janssens, A. Kuhnert, J. A. Becker, I. Ahmad, I. G. Bearden, M. J. BJ. Burde, M. P. Carpenter, J. A. Cizewski, P. J. Daly, M. A. Deleplanque, R. M. Diamond, J. E. DraDuyar, B. Fornal, U. Garg, W. Grabowski, E. A. Henry, R. G. Henry, W. Hesselink, N. Kalantar-NayesW. H. Kelly, T. L. Khoo, T. Lauritsen, R. H. Mayer, D. Nissius, J. R. B. Oliveira, A. J. M. Plompen, W. ReE. Rubel, F. Soramel, F. S. Stephens, M. A. Stoyer, D. Vo and T. F. Wang, Phys. Rev. C47, R1337

1993Hu08 J. R. Hughes, J. A. Becker, M. J. Brinkman, E. A. Henry, R. W. Hoff, M. A. Stoyer, T. F. Wang, B. CedM. A. Deleplanque, R. M. Diamond, P. Fallon, I. Y. Lee, J. R. B. Oliveira, F. S. Stephens, J. A. CizewskBernstein, J. E. Draper, C. Duyar, E. Rubel, W. H. Kelly, and D. Vo, Phys. Rev. C48, R2135 (1993)

1993Me12 D. Mehta, W. Korten, H. Hu¨bel, K. Theine, W. Schimtz, P. Willsau, C. X. Yang, F. Hannachi, D. B. FosH. Grawe, H. Kluge and K. H. Maier, Z. Phys. A346, 169 (1993).

1993Pl02 J. M. Plompen, M. N. Harakesh, W. H. A. Hesselink, G. Van’t Hof, N. Kalantar-Nayestanaki, J. P.Schagen, M. P. Carpenter, I. Ahmed, I. G. Bearden, R. V. F. Janssens, T. L. Khoo, T. Lauritsen, Y. LGarg, W. Reviol and D. Ye, Nucl. Phys. A562, 61 (1993).

1993Ro03 N. Roy, J. A. Becker, E. A. Henry, M. J. Brinkman, M. A. Stoyer, J. A. Cizewski, R. M. Diamond,Deleplanque, F. S. Stephens, C. W. Beausang and J. E. Draper, Phys. Rev. C47, R930 (1993).

1993Sy03 G. N. Sylvan, J. E. Purcell, J. Do¨ring, J. W. Holcomb, G. D. Johns, T. D. Johnson, M. A. Riley, P. C. WomV. A. Wood and S. L. Tabor, Phys. Rev. C48, 2252 (1993).

1993Th05 I. Thorslund, C. Fahlander, J. Nyberg, S. Juutinen, R. Julin, M. Piiparinen, R. Wyss, A. Lampinen, T. L¨nnroth,D. Muller, S. Tormanen and A. Virtanen, Nucl. Phys. A564, 285 (1993).

1994Ba43 G. Baldsiefen, H. Hu¨bel, W. Korten, D. Mehta, N. Nenoff, B. V. Thirumala Rao, P. Willsau, H. GraJ. Heese, H. Kluge, K. H. Maier, R. Schubart, S. Frauendorf and H. J. Maier, Nucl. Phys. A574, 521

1994Cl01 R. M. Clark, R. Wadsworth, H. R. Andrews, C. W. Beausang, M. Bergstrom, S. Clarke, E. DraguleDrake, P. J. Dagnall, A. Galindo-Uribarri, G. Hackman, K. Hauschild, I. M. Hibbert, V. P. Janzen, P. M.R. W. MacLeod, S. M. Mullins, E. S. Paul, D. C. Radford, A. Semple, J. F. Sharpey-Schafer, J. SimpWard and G. Zwartz, Phys. Rev. C50, 84 (1994).

1994Da17 P. J. Dagnall, C. W. Beausang, R. M. Clark, R. Wadsworth, S. Bhattacharjee, P. Fallon, P. D. ForsyFossan, G. deFrance, S. J. Gale, F. Hannachi, K. Hauschild, I. M. Hibbert, H. Hu¨bel, P. M. Jones, M. J. JoycA. Korichi, W. Korten, D. R. LaFosse, E. S. Paul, H. Schnare, K. Starosta, J. F. Sharpey-Schafer, P.P. Vaska, M. P. Waring and J. N. Wilson, J. Phys. G20, 1591 (1994).

1994De11 G. de Angelis, M. A. Cardona, M. De Poli, S. Lunardi, D. Bazzacco, F. Brandolini, D. Vretenar, G. BonM. Savoia, R. Wyss, F. Terrasi and V. Roca, Phys. Rev. C49, 2990 (1994).

1994Do18 J. Do¨ring, R. Schwengner, L. Funke, H. Rotter, G. Winter, B. Cederwall, F. Lide´n, A. Johnson, A. Atac,Nyberg and G. Sletten, Phys. Rev. C50, 1845 (1994).

327 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 46: Table of Magnetic Dipole Rotational Bands

REFERENCES FOR TABLE continued

1994Jo08 G. D. Johns, J. Do¨ring, J. W. Holcomb, T. D. Johnson, M. A. Riley, G. N. Sylvan, P. C. Womble, V. A. Wood

.

,s.

. Gall,, H.auschild,M.

,r, N.Clark, J.

K..

n

luge,

, K.

. Bruce,Phys.

erris, M.et, C.

agnall,dsworth,

,

J. F.

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

and S. L. Tabor, Phys. Rev. C50, 2786 (1994).

1994Ju04 S. Juutinen, R. Julin, M. Piiparinen, P. Ahonen, B. Cederwall, C. Fahlander, A. Lampinen, T. Lo¨nnroth, A. Maj,S. Mitarai, D. Muller, J. Nyberg, P. Simecek, M. Sugawara, I. Thorslund, S. To¨rmanen, A. Virtanen and RWyss, Nucl. Phys. A573, 306 (1994).

1994Ju05 S. Juutinen, P. Simecek, C. Fahlander, R. Julin, J. Kumpulainen, A. Lampinen, T. Lo¨nnroth, A. Maj, S. MitaraiD. Muller, J. Nyberg, M. Piiparinen, M. Sugawara, I. Thorslund, S. To¨rmanen and A. Virtanen, Nucl. PhyA577, 727 (1994).

1994Le08 Y. Le Coz, N. Redon, A. Astier, R. Beraud, R. Duffait, M. Meyer, F. Hannachi, G. Bastin, I. Deloncle, BM. Kaci, M. G. Porquet, C. Schu¨ck, F. Azaiez, C. Bourgeois, J. Duprat, A. Korichi, N. Perrin, N. PoffeSergolle, J. F. Sharpey-Schafer, C. W. Beausang, S. J. Gale, M. J. Joyce, E. S. Paul, R. M. Clark, K. HR. Wadsworth, J. Simpson, M. A. Bentley, A. G. Smith, H. Hu¨bel, P. Willsau, G. De France, I. Ahmad,Carpenter, R. Henry, R. V. F. Janssens, T. L. Khoo and T. Lauritsen, Z. Phys. A348, 87 (1994).

1994Po08 M. G. Porquet, F. Hannachi, G. Bastin, V. Brindejonc, I. Deloncle, B. Gall, C. Schu¨ck, A. G. Smith, F. AzaiezC. Bourgeois, J. Duprat, A. Korichi, N. Perrin, N. Poffe, H. Sergolle, A. Astier, Y. Le Coz, M. MeyeRedon, J. Simpson, J. F. Sharpey-Schafer, M. J. Joyce, C. W. Beausang, R. Wadsworth and R. M.Phys. G20, 765 (1994).

1994Rz01 T. Rzaca-Urban, S. Utzelmann, K. Stra¨hle, R. M. Lieder, W. Gast, A. Georgiev, D. Kutchin, G. Marti,Spohr, P. Von Brentano, J. Eberth, A. Dewald, J. Theuerkauf, I. Wiedenho¨fer, K. O. Zell, K. H. Maier, HGrawe, J. Heese, H. Kluge, W. Urban and R. Wyss, Nucl. Phys. A579, 319 (1994).

1994Th01 I. Thorslund, C. Fahlander, J. Nyberg, M. Piiparinen, R. Julin, S. Juutinen, A. Virtanen, D. Mu¨ller, H. Jenseand M. Sugawara, Nucl. Phys. A568, 306 (1994).

1995Ba35 G. Baldsiefen, S. Chmel, H. Hu¨bel, W. Korten, M. Neffgen, W. Pohler, U. J. van Severen, J. Heese, H. KK. H. Maier and K. Spohr, Nucl. Phys. A587, 562 (1995).

1995Ba70 G. Baldsiefen, P. Maagh, H. Hu¨bel, W. Korten, S. Chmel, M. Neffgen, W. Pohler, H. Grawe, K. H. MaierSpohr, R. Schubart, S. Frauendorf and H. J. Maier, Nucl. Phys. A592, 365 (1995).

1995Fa19 B. Fant, B. Cederwall, L. O. Norlin, R. Wyss, P. Fallon, C. W. Beausang, P. A. Butler, R. Roberts, A. MD. M. Cullen, S. M. Mullins, R. J. Poynter, R. Wadsworth, M. A. Riley, W. Korten and M. J. Piiparinen,Scr. T56, 245 (1995).

1995Fo13 N. Fotiades, S. Harissopulos, C. A. Kalfas, S. Kossionides, C. T. Papadopoulos, R. Vlastou, M. SMeyer, N. Redon, R. Duffait, Y. Le Coz, L. Ducroux, F. Hannachi, I. Deloncle, B. Gall, M. G. PorquSchuck, F. Azaiez, J. Duprat, A. Korichi, J. F. Sharpey-Schafer, M. J. Joyce, C. W. Beausang, P. J. DP. D. Forsyth, S. J. Gale, P. M. Jones, E. S. Paul, J. Simpsons, R. M. Clark, K. Hauschild and R. WaJ. Phys. G21, 911 (1995).

1995Ka19 M. Kaci, M. G. Porquet, F. Hannachi, M. Aı¨che, G. Bastin, I. Deloncle, B. J. P. Gall, C. Schu¨ck, F. AzaiezC. W. Beausang, R. Beraud, C. Bourgeois, R. M. Clark, R. Duffait, J. Duprat, K. Hauschild, H. Hu¨bel, M. J.Joyce, A. Korichi, Y. Le Coz, M. Meyer, E. S. Paul, N. Perrin, N. Poffe, N. Redon, H. Sergolle,Sharpey-Schafer, J. Simpsons, A. G. Smith and R. Wadsworth, Acta Phys. Pol. B26, 275 (1995).

328 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 47: Table of Magnetic Dipole Rotational Bands

REFERENCES FOR TABLE continued

1995Mo01 E. F. Moore, M. P. Carpenter, Y. Liang, R. V. F. Janssens, I. Ahmad, I. G. Bearden, P. J. Daly, M. W. Drigert,ayer,

,, N.

on

Rossi

, M. J.M. A.Burde,

. Rossi468

r, A. N.hund R.

,hi, Y.mpsons,

,

t, G. de. C54,

Savajols,

ci,9 (1996).

.

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

B. Fornal, U. Garg, Z. W. Grabowski, H. L. Harrington, R. G. Henry, T. L. Khoo, T. Lauritsen, R. H. MD. Nisius, W. Reviol and M. Sterrazza, Phys. Rev. C51, 115 (1995).

1995Ne09 M. Neffgen, G. Baldsiefen, S. Frauendorf, H. Grawe, J. Heese, H. Hu¨bel, H. Kluge, A. Korichi, W. KortenK. H. Maier, D. Mehta, J. Meng, N. Nenoff, M. Piiparinen, M. Scho¨nhofer, R. Schubart, U. J. van SeverenSingh, G. Sletten, B. V. Thirumala Rao and P. Willsau, Nucl. Phys. A595, 499 (1995).

1995Sc04 R. Schwengner, G. Winter, J. Reif, H. Prade, L. Ka¨ubler, R. Wirowski, N. Nicolay, S. Albers, S. Eber, P. vBrentano and W. Andrejtscheff, Nucl. Phys. A584, 159 (1995).

1995Ta21 S. L. Tabor and J. Do¨ring, Phys. Scr. T56, 175 (1995).

1996Ba53 G. Baldsiefen, H. Hu¨bel, W. Korten, U. J. van Severen, J. A. Cizewski, N. H. Medina, D. R. Napoli, C.Alvarez, G. Lo Bianco and S. Signorelli, Z. Phys. A355, 337 (1996).

1996Ba54 G. Baldsiefen, M. A. Stoyer, J. A. Cizewski, D. P. McNabb, W. Younes, J. A. Becker, L. A. BernsteinBrinkman, L. P. Farris, E. A. Henry, J. R. Hughes, A. Kuhnert, T. F. Wang, B. Cederwall, R. M. Clark,Deleplanque, R. M. Diamond, P. Fallon, I. Y. Lee, A. O. Macchiavelli, J. Oliveira, F. S. Stephens, J.D. T. Vo and S. Frauendorf, Phys. Rev. C54, 1106 (1996).

1996Br33 F. Brandolini, M. Ionescu-Bujor, N. H. Medina, R. V. Ribas, D. Bazzacco, M. De Poli, P. Pavan, CAlvarez, G. de Angelis, S. Lunardi, D. De Acun˜a, D. R. Napoli and S. Frauendorf, Phys. Lett. B388,(1996).

1996Du18 L. Ducroux, A. Astier, R. Duffait, Y. Le Coz, M. Meyer, S. Perries, N. Redon, J. F. Sharpey-SchafeWilson, R. Lucas, V. Me´ot, R. Collatz, I. Deloncle, F. Hannachi, A. Lopez-Martens, M. G. Porquet, C. Sc¨ck,F. Azaiez, S. Bouneau, C. Bourgeois, A. Korichi, N. Poffe, H. Sergolle, B. J. P. Gall, I. Hibbert aWadsworth, Z. Phys. A356, 241 (1996).

1996Ka15 M. Kaci, M. G. Porquet, F. Hannachi, M. Aı¨che, G. Bastin, I. Deloncle, B. J. P. Gall, C. Schu¨ck, F. AzaiezC. W. Beausang, C. Bourgeois, R. M. Clark, R. Duffait, J. Duprat, K. Hauschild, M. J. Joyce, A. KoricLe Coz, M. Meyer, E. S. Paul, N. Perrin, N. Poffe, N. Redon, H. Sergolle, J. F. Sharpey-Schafer, J. SiA. G. Smith and R. Wadsworth, Z. Phys. A354, 267 (1996).

1996Pe06 C. M. Petrache, Y. Sun, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, R. Venturelli, D. De Acun˜a, G. MaronM. N. Rao, Z. Podolyak and J. R. B. Oliveira, Phys. Rev. C53, R2581 (1996).

1996Ro04 C. Rossi Alvarez, D. Vretenar, Zs. Podolyak, D. Bazzacco, G. Bonsignori, F. Brandolini, S. BranAngelis, M. De Poli, M. Ionescu-Bujor, Y. Li, S. Lunardi, N. H. Medina and C. M. Petrache, Phys. Rev57 (1996).

1996Sm07 D. H. Smalley, R. Chapman, P. J. Dagnall, C. Finck, B. Haas, M. J. Leddy, J. C. Lisle, D. Prevost, H.A. G. Smith, Nucl. Phys. A611, 96 (1996).

1996Wi09 P. Willsau, M. Neffgen, Y. Le Coz, H. Hu¨bel, W. Korten, F. Hannachi, A. Korichi, M. G. Porquet, M. KaN. Redon, M. Meyer, C. W. Beausang, E. S. Paul, J. Simpson and J. R. Hughes, Z. Phys. A355, 12

1997Ch01 R. S. Chakrawarthy and R. G. Pillay, Phys. Rev. C55, 155 (1997).

1997Ch33 S. Chmel, F. Brandolini, R. V. Ribas, G. Baldsiefen, A. Go¨rgen, M. de Poli, P. Pavan and H. Hu¨bel, Phys. RevLett. 79, 2002 (1997).

329 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 48: Table of Magnetic Dipole Rotational Bands

REFERENCES FOR TABLE continued

1997Cl03 R. M. Clark, S. J. Asztalos, G. Baldsiefen, J. A. Becker, L. Bernstein, M. A. Deleplanque, R. M. Diamond, P.. S.

laore, D.errazza,.ev. C55,

ardona,

izzutto,

n, D. R.

kawa,

mond,d,440, 251

in, K.. Rev.

F. Smith,s. Lett.

Krus. Rev.

sio,and H.

Lee,ys. Rev.

E. S. Paul,sson,

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

Fallon, I. M. Hibbert, H. Hu¨bel, R. Krucken, I. Y. Lee, A. O. Macchiavelli, R. W. MacLeod, G. Schmid, FStephens, K. Vetter, R. Wadsworth and S. Frauendorf, Phys. Rev. Lett. 78, 1868 (1997).

1997Ga01 A. Gadea, G. de Angelis, C. Fahlander, M. De Poli, E. Farnea, Y. Li, D. R. Napoli, Q. Pan, P. SpoBazzacco, S. M. Lenzi, S. Lunardi, C. M. Petrache, F. Brandolini, P. Pavan, C. Rossi Alvarez, M. SfP. G. Bizetti, A. M. Bizetti Sona, J. Nyberg, M. Lypoglavsek, J. Persson, J. Cederka¨ll, D. Seweryniak, AJohnson, H. Grawe, F. Soramel, M. Ogawa, A. Makishima, R. Schubart and S. Frauendorf, Phys. RR1 (1997).

1997Lo12 G. Lo Bianco, Ch. Protochristov, G. Falconi, N. Blasi, D. Bazzaco, G. de Angelis, D. R. Napoli, M. A. CA. J. Kreiner and H. Somacal, Z. Phys. A359, 347 (1997).

1997Pe06 C. M. Petrache, R. Venturelli, D. Vretenar, D. Bazzacco, G. Bonsignori, S. Brant, S. Lunardi, M. A. RC. Rossi Alvarez, G. de Angelis, M. De Poli and D. R. Napoli, Nucl. Phys. A617, 228 (1997).

1997Pe07 C. M. Petrache, Y. Sun, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. Falconi, R. Venturelli, G. MaroNapoli, Zs. Podolyak and P. M. Walker, Nucl. Phys. A617, 249 (1997).

1997Su11 M. Sugawara, H. Kusakari, Y. Igari, K. Terui, K. Myojin, D. Nishimiya, S. Mitarai, M. Oshima, T. HayaM. Kidera, K. Furutaka and Y. Hatsukawa, Z. Phys. A358, 1 (1997).

1998Cl06 R. M. Clark, R. Kru¨cken, S. J. Asztalos, J. A. Becker, B. Busse, S. Chmel, M. A. Deleplanque, R. M. DiaP. Fallon, D. Jenkins, K. Hauschild, I. M. Hibbert, H. Hu¨bel, I. Y. Lee, A. O. Macchiavelli, R. W. MacLeoG. Schmid, F. S. Stephens, U. J. van Severen, K. Vetter, R. Wadsworth and S. Wan, Phys. Lett. B(1998).

1998Fo02 N. Fotiades, J. A. Cizewski, D. P. McNabb, K. Y. Ding, D. E. Archer, J. A. Becker, L. A. BernsteHauschild, W. Younes, R. M. Clark, P. Fallon, I. Y. Lee, A. O. Macchiavelli and R. W. MacLeod, PhysC57, 1624 (1998).

1998Je03 D. G. Jenkins, I. M. Hibbert, C. M. Parry, R. Wadsworth, D. B. Fossan, G. J. Lane, J. M. Sears, J.R. M. Clark, R. Krucken, I. Y. Lee, A. O. Macchiavelli, V. P. Janzen, J. Cameron and S. Frauendorf, PhyB428, 23 (1998).

1998Je09 D. G. Jenkins, R. Wadsworth, J. Cameron, R. M. Clark, D. B. Fossan, I. M. Hibbert, V. P. Janzen, R.¨cken,G. J. Lane, I. Y. Lee, A. O. Macchiavelli, C. M. Parry, J. M. Sears, J. F. Smith and S. Frauendorf, PhyC58, 2703 (1998).

1998Ka59 M. Kaci, M-G. Porquet, Ch. Vieu, C. Schu¨ck, A. Astier, F. Azaiez, C. Bourgeois, I. Deloncle, J. S. DioniJ. Duprat, F. Farget, B. J. P. Gall, D. Han, A. Korichi, Y. Le Coz, M. Pautrat, N. Perrin, D. SantosSergolle, Eur. Phys. J. A3, 201 (1998).

1998Kr20 R. Krucken, R. M. Clark, A. Dewald, M. A. Deleplanque, R. M. Diamond, P. Fallon, K. Hauschild, I. Y.A. O. Macchiavelli, R. Peusquens, G. J. Schmid, F. S. Stephens, K. Vetter and P. von Brentano, PhC58, R1876 (1998).

1998La14 G. J. Lane, D. B. Fossan, C. J. Chiara, H. Schnare, J. M. Sears, J. F. Smith, I. Thorslund, P. Vaska,A. N. Wilson, J. N. Wilson, K. Hauschild, I. M. Hibbert, R. Wadsworth, A. V. Afanasjev and I. RagnarPhys. Rev. C58, 127 (1998).

330 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000

Page 49: Table of Magnetic Dipole Rotational Bands

REFERENCES FOR TABLE continued

1998Ne01 N. Nenoff, G. Baldsiefen, H. Hu¨bel, A. Gorgen, W. Korten, M. A. Deleplanque, R. M. Diamond, P. Fallon,

Pre98).

. Fallon,, R. W.uendorf,

zen, R.endorf,

er, P. T.

ng-ye

J. F.

gk,ys. Rev.

vonergstro

AMITA, A. K. JAIN, and B. SINGH M1 Rotational Bands

I. Y. Lee, A. O. Macchiavelli and F. S. Stephens, Nucl. Phys. A629, 621 (1998).

1998Va03 P. Vaska, D. B. Fossan, D. R. LaFosse, H. Schnare, M. P. Waring, S. M. Mullins, G. Hackman, D.´vost,J. C. Waddington, V. P. Janzen, D. Ward, R. Wadsworth and E. S. Paul, Phys. Rev. C57, 1634 (19

1999Cl03 R. M. Clark, S. J. Asztalos, B. Busse, C. J. Chiara, M. Cromaz, M. A. Deleplanque, R. M. Diamond, PD. B. Fossan, D. G. Jenkins, S. Juutinen, N. Kelsall, R. Kruken, G. J. Lane, I. Y. Lee, A. O. MacchiavelliMacLeod, G. Schmid, J. M. Sears, J. F. Smith, F. S. Stephens, K. Vetter, R. Wadsworth and S. FraPhys. Rev. Lett. 82, 3220 (1999).

1999Do02 J. Do¨ring, D. Ulrich, G. D. Johns, M. A. Riley and S. L. Tabor, Phys. Rev. C59, 71 (1999).

1999Je07 D. G. Jenkins, R. Wadsworth, J. A. Cameron, R. M. Clark, D. B. Fossan, I. M. Hibbert, V. P. JanKrucken, G. J. Lane, I. Y. Lee, A. O. Macchiavelli, C. M. Perry, J. M. Sears, J. F. Smith and S. FrauPhys. Rev. Lett. 83, 500 (1999).

1999JeAA D. G. Jenkins, Private Communication (1999).

1999No03 J. R. Novak, C. W. Beausang, N. Amzal, R. F. Casten, G. Cata Danil, J. F. C. Cocks, J. R. CoopGreenlees, F. Hannachi, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kankaanpa¨a, H. Kettunen, R. Kru¨cken,P. Kuusiniemi, M. Leino, Benyuan Liu, M. Muikku, A. Savelius, T. Socci, J. T. Thomas, N. V. Zamfir, JiZhang and S. Frauendorf, Phys. Rev. C59, R2989 (1999).

1999Po13 W. Pohler, G. Baldsiefen, H. Hu¨bel, W. Korten, E. Mergel, D. Robbach, B. Aengenvoort, S. Chmel, A. Go¨rgen,N. Nenoff, R. Julin, P. Jones, H. Kanakaanpa¨a, P. A. Butler, K. J. Cann, P. T. Greenlees, G. D. Jones andSmith, Eur. Phys. J. A5, 257 (1999).

1999Sc14 H. Schnare, R. Schwengner, S. Frauendorf, F. Do¨nau, L. Kaubler, H. Prade, A. Jungclaus, K. P. Lieb, C. LinS. Skoda, J. Eberth, G. de Angelis, A. Gadea, E. Farnea, D. R. Napoli, C. A. Ur and G. Lo Bianco, PhLett. 82, 4408 (1999).

1999Sc20 I. Schneider, R. S. Chakrawarthy, I. Wiedenho¨ver, A. Schmidt, H. Meise, P. Petkov, A. Dewald, P.Brentano, O. Stuch, K. Jessen, D. Weisshaar, C. Schumacher, O. Vogel, G. Sletten, B. Herskind, M. B¨mand J. Wrzesinski, Phys. Rev. C60, 014312-1 (1999).

331 Atomic Data and Nuclear Data Tables, Vol. 74, No. 2, March 2000