Author
ledat
View
702
Download
28
Embed Size (px)
scuola internazionale europea statale “Altiero Spinelli” – Torino – a.s. 2007-2008
TABELLA DERIVATE FONDAMENTALI e DERIVATE di FUNZIONI COMPOSTE
y(x) y'(x) y(x) = g f (x)[ ] y'(x) = g' f (x)[ ] ! f '(x) esempio
k 0 x 1 kx k k ! f (x) k ! f '(x) xn nx
n!1 f (x)[ ]n n f (x)[ ]
n!1" f '(x) y = sin
2x! y ' = 2 sin x cos x
es : . x = x12
1
2x!12 =
1
2 x
f (x) 1
2 f (x)! f '(x) y = ln x ! y ' =
1
2 ln x"1
x
sin x cos x sin f x( ) cos f x( ) ! f ' x( ) y = sin x2( )! y ' = cos x2( ) " 2x
cos x !sin x cos f x( ) !sin f x( ) " f ' x( ) y = cos 2ex( )! y ' = "sin 2ex( ) # 2ex
tgx 1
cos2x
=1+ tg2x tg f x( ) 1
cos2x! f ' x( ) oppure 1+tg
2 f x( )"
#$%! f ' x( ) y = tg(2x +
!
3)" y ' =
1
cos2(2x +
!
3)
# 2
cotgx !1
sin2 x= !(1+ cotg2x) cotg f (x) !
1
sin2f (x)
" f '(x)
arcsenx 1
1! x2
arcsen f (x) 1
1! f (x)[ ]2" f ' x( ) y = arcsen(x
2)! y ' =
1
1" (x2)2# 2x
arcosx !1
1! x2
arcos f (x) !1
1! f (x)[ ]2" f ' x( )
artgx 1
1+ x2
artgf (x) 1
1+ f (x)[ ]2! f '(x) y = artg(ln x)! y ' =
1
1+ ln2x"1
x
arcotgx !1
1+ x2
arcotgf (x) !1
1+ f (x)[ ]2" f '(x)
ax a
xln a a
f (x) af (x)
ln a ! f '(x)
ex e
x ef (x) e
f (x)f '(x) y = e
sin x! y ' = e
sin x" cos x
logax 1
x ln a=1
xlog
ae loga f (x)
1
f (x) ln a! f '(x)
ln x 1
x ln f (x) 1
f (x)! f '(x) y = ln x
2 +1( )! y ' =1
x2 +1
2x