22
T-Matrix Approach to Heavy-Quark Diffusion and Quarkonia Hendrik van Hees Justus-Liebig Universit¨ at Gießen January 4, 2011 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 1 / 22

T-Matrix Approach to Heavy-Quark Diffusion and Quarkoniawxie/HF_workshop/slide/H_vanHees.pdfsQGP c q hard production ofHQs described by PDF's + pQCD (PYTHIA) Hadronization toD,B mesonsvia

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

  • T-Matrix Approach toHeavy-Quark Diffusion and Quarkonia

    Hendrik van Hees

    Justus-Liebig Universität Gießen

    January 4, 2011

    Institut für

    Theoretische Physik

    JUSTUS-LIEBIG-

    UNIVERSITÄT

    GIESSEN

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 1 / 22

  • Outline

    1 Heavy-quark interactions in the sQGPHeavy quarks in heavy-ion collisionsHeavy-quark diffusion: The Langevin EquationElastic pQCD heavy-quark scattering

    2 Microscopic model for non-perturbative HQ interactionsStatic heavy-quark potentials from lattice QCDT-matrix approach

    3 Non-photonic electrons at RHIC

    4 T-matrix approach to Quarkonium-Bound-State Problem

    5 Summary and Outlook

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 2 / 22

  • Heavy Quarks in Heavy-Ion collisions

    q

    K

    νe

    c,b quark

    cg

    sQGP

    c

    hard production of HQsdescribed by PDF’s + pQCD (PYTHIA)

    Hadronization to D,B mesons viaquark coalescence + fragmentationV. Greco, C. M. Ko, R. Rapp, PLB 595, 202 (2004)

    HQ rescattering in QGP: Langevin simulationdrag and diffusion coefficients frommicroscopic model for HQ interactions in the sQGP

    semileptonic decay ⇒“non-photonic” electron observablesRe

    +e−AA (pT ), v

    e+e−2 (pT )

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 3 / 22

  • Relativistic Langevin process

    Langevin process: friction force + Gaussian random force

    in the (local) rest frame of the heat bath

    d~x =~p

    Epdt,

    d~p = −A~pdt+√

    2dt[√B0P⊥ +

    √B1P‖]~w

    ~w: normal-distributed random variable

    A: friction (drag) coefficient

    B0,1: diffusion coefficients

    dependent on realization of stochastic process

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 4 / 22

  • Local-Equilibrium Limit

    to guarantee correct (local) equilibrium limit:

    use Hänggi-Klimontovich calculus, i.e., use B0/1(t, ~p+ d~p)Einstein dissipation-fluctuation relation B0 = B1 = EpTA.

    to implement flow of the mediumuse Lorentz boost to change into local “heat-bath frame”use update rule in heat-bath frameboost back into “lab frame”

    Realizes Milekhin-freeze-out distribution for t→∞dN

    d3xd3p=

    g

    (2π)3p · u(x)E

    exp

    [−p · u(x)

    T (x)

    ].

    E = p0 =√m2 + ~p2

    u(x): four-velocity-flow field of the mediumT (x): temperature field of the mediumthermal fireball adjusted such as to lead to correct light-meson andbaryon observablesusing the same coalescence/fragmentation model for hadronizationbulk v2 sensitive to freeze-out description (see next talk by P. Gossiaux)

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 5 / 22

  • Elastic pQCD processes

    Lowest-order matrix elements [Combridge 79]

    Debye-screening mass for t-channel gluon exch. µg = gT , αs = 0.4not sufficient to understand RHIC data on “non-photonic” electrons[Moore, Teaney 2005]Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 6 / 22

  • Microscopic model: Static potentials from lattice QCD

    V

    Kaczmarek et al

    lQCD

    color-singlet free energy from latticeuse internal energy

    U1(r, T ) = F1(r, T )− T∂F1(r, T )

    ∂T,

    V1(r, T ) = U1(r, T )− U1(r →∞, T )Casimir scaling for other color channels [Nakamura et al 05; Döring et al 07]

    V3̄ =1

    2V1, V6 = −

    1

    4V1, V8 = −

    1

    8V1

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 7 / 22

  • T-matrix

    Brueckner many-body approach for elastic Qq, Qq̄ scattering

    T= + VTc

    q, q̄V

    = Σglu + TΣ

    reduction scheme: 4D Bethe-Salpeter → 3D Lipmann-SchwingerS- and P waves

    same scheme for light quarks (self consistent!)

    Relation to invariant matrix elements∑|M(s)|2 ∝

    ∑q

    da(|Ta,l=0(s)|2 + 3|Ta,l=1(s)|2 cos θcm

    )Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 8 / 22

  • Microscopic justification for resonances: T-matrixcalculation

    0

    2

    4

    6

    8

    10

    12

    0 1 2 3 4

    -Im

    T (

    GeV

    -2)

    Ecm (GeV)

    s wave

    color singlet

    T=1.1 TcT=1.2 TcT=1.3 TcT=1.4 TcT=1.5 TcT=1.6 TcT=1.7 TcT=1.8 Tc

    0

    1

    2

    3

    0 1 2 3 4

    -Im

    T (

    GeV

    -2)

    Ecm (GeV)

    s wave

    color triplet

    T=1.1 TcT=1.2 TcT=1.3 TcT=1.4 TcT=1.5 TcT=1.6 TcT=1.7 TcT=1.8 Tc

    use static heavy-quark potentials from lQCD

    resonance formation at lower temperatures T ' Tcmelting of resonances at higher T ! ⇒ sQGPmodel-independent assessment of elastic Qq, Qq̄ scattering

    problems: uncertainties in extracting potential from lQCDin-medium potential V vs. F?

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 9 / 22

  • Transport coefficients

    0

    0.05

    0.1

    0.15

    0 1 2 3 4 5

    Α (

    1/f

    m)

    p (GeV)

    T-matrix: 1.1 TcT-matrix: 1.4 TcT-matrix: 1.8 Tc

    pQCD: 1.1 TcpQCD: 1.4 TcpQCD: 1.8 Tc

    0

    10

    20

    30

    40

    0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

    T D

    s

    T (GeV)

    pQCD+T-matpQCD

    from non-pert. interactions reach Anon−pert ' 1/(7 fm/c) ' 4ApQCDA decreases with higher temperature

    higher density (over)compensated by melting of resonances!

    spatial diffusion coefficient

    Ds =T

    mA

    increases with temperatureHendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 10 / 22

  • Time evolution of the fire ball

    Elliptic fire-ball parameterizationfitted to hydrodynamical flow pattern [Kolb ’00]

    V (t) = π(z0 + vzt)a(t)b(t), a, b: semi-axes of ellipse,

    va,b = v∞[1− exp(−αt)]∓∆v[1− exp(−βt)]

    Isentropic expansion: S = const (fixed from Nch)

    QGP Equation of state:

    s =S

    V (t)=

    4π2

    90T 3(16 + 10.5n∗f ), n

    ∗f = 2.5

    obtain T (t) ⇒ A(t, p), B0(t, p) and B1 = TEAfor semicentral collisions (b = 7 fm): T0 = 340 MeV,QGP lifetime ' 5 fm/c.simulate FP equation as relativistic Langevin process

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 11 / 22

  • Initial conditions

    need initial pT -spectra of charm and bottom quarks

    (modified) PYTHIA to describe exp. D meson spectra, assumingδ-function fragmentationexp. non-photonic single-e± spectra: Fix bottom/charm ratio

    0 1 2 3 4 5 6 7 8p

    T[GeV]

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    1/(

    2 π

    pT)

    d2N

    /dp

    T d

    y [a

    .u.]

    STAR D0

    STAR prelim. D* (×2.5)

    c-quark (mod. PYTHIA)

    c-quark (CompHEP)

    d+Au √sNN

    =200 GeV

    0 1 2 3 4 5 6 7 8p

    T [GeV]

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    1/(

    pT)

    dN

    /dp

    T [

    a.u.]

    STAR (prel, pp)

    STAR (prel, d+Au/7.5)

    STAR (pp)

    D → e

    B → esum

    σbb

    /σcc

    = 4.9 x10-3

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 12 / 22

  • Spectra and elliptic flow for heavy quarks

    0 1 2 3 4 5p

    T [GeV]

    0

    0.5

    1

    1.5

    RA

    A

    c, reso (Γ=0.4-0.75 GeV) c, pQCD, α

    s=0.4

    b, reso (Γ=0.4-0.75 GeV)

    Au-Au √s=200 GeV (b=7 fm)

    0 1 2 3 4 5p

    T [GeV]

    0

    5

    10

    15

    20

    v2 [

    %]

    c, reso (Γ=0.4-0.75 GeV) c, pQCD, α

    s=0.4

    b, reso (Γ=0.4-0.75 GeV)

    Au-Au √s=200 GeV (b=7 fm)

    µD = gT , αs = g2/(4π) = 0.4

    resonances ⇒ c-quark thermalizationwithout upscaling of cross sections

    Fireball parametrization consistent with hydro

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 13 / 22

  • Non-photonic electrons at RHICsame model for bottomquark coalescence+fragmentation → D/B → e+X

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 1 2 3 4 5

    RA

    A

    pT (GeV)

    Au-Au √s=200 GeV (central)

    pQCD, αs=0.4T-matrix

    0

    5

    10

    15

    0 1 2 3 4 5

    v2 (

    %)

    pT (GeV)

    Au-Au √s=200 GeV

    b=7 fm

    pQCD, αs=0.4T-matrix 0

    0.5

    1

    1.5

    RA

    A

    theory [Wo]

    frag. only [Wo]

    theory [SZ]

    PHENIX

    STAR

    0 1 2 3 4 5p

    T [GeV]

    0

    0.05

    0.1

    0.15

    v2

    PHENIXPHENIX QM08

    0-10% central

    minimum bias

    Au+Au √s=200 AGeV

    coalescence crucial for description of dataincreases both, RAA and v2 ⇔ “momentum kick” from light quarks!“resonance formation” towards Tc ⇒ coalescence natural [Ravagli, Rapp 07]

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 14 / 22

  • Transport properties of the sQGP

    spatial diffusion coefficient: Fokker-Planck ⇒ Ds = TmA = T2

    Dmeasure for coupling strength in plasma: η/s

    η

    s' 1

    2TDs (AdS/CFT),

    η

    s' 1

    5TDs (wQGP)

    -0.5

    0

    0.5

    1

    1.5

    2

    0.2 0.25 0.3 0.35 0.4

    η/s

    T (GeV)

    charm quarks

    T-mat + pQCDreso + pQCDpQCDpQCD run. αsKSS bound

    [Lacey, Taranenko (2006)]

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 15 / 22

  • T-matrix approach for quarkonium-bound-state problemT-matrix Brückner approach for heavy quarkonia as for HQ diffusionconsistency between HQ diffusion and Q̄Q suppression!

    T= + VT

    c

    V

    = Σglu +Σ

    T

    q k q′

    4D Bethe-Salpeter equation → 3D Lippmann-Schwinger equationrelativistic interaction → static heavy-quark potential (lQCD)Tα(E; q

    ′, q) =Vα(q′, q) +

    2

    π

    ∫ ∞0

    dk k2Vα(q′, k)GQQ̄(E; k)Tα(E; k, q)

    × {1− nF [ω1(~k)]− nF [ω2(k)]}q, q′, k relative 3-momentum of initial, final, intermediate Q̄Q state[F. Riek, R. Rapp, PRC 82, 035201 (2010)]

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 16 / 22

  • The potential

    Q

    Q̄ Q̄

    Q

    non-perturbative static gluon propagator

    D00(~k) = 1/(~k2 + µ2D) +m

    2G/(

    ~k2 + m̃2D)2

    finite-T HQ color-singlet-free energy from Polyakov loops

    exp[−F1(r, T )/T ] =〈

    Tr[Ω(x)Ω†(y)]/Nc

    〉= exp

    [g2

    2NcT 2〈A0,α(x)A0,α(y)−A20,α(x)

    〉]+O(g6)

    identify 〈A0,α(x)A0,α(y)〉 = D00(x− y)color-singlet free energy

    F1(r, T ) = −4

    3αs

    {exp(−mDr)

    r+

    m2G2m̃D

    [exp(−m̃Dr)− 1] +mD}

    in vacuo mD, m̃D → 0F1(r) = −

    4

    3

    αsr

    + σr, σ =2αsm

    2G

    3[F. Riek, R. Rapp, arXiv:1005.0769 [hep-ph]]

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 17 / 22

  • Heavy quarkonia

    fit parameters, αs(T ), mD(T ), m̃D(T ), m̃G(T ) to lQCDcalculate internal energy U(r, T ) = F (r, T )− T ∂∂T F (r, T )solve Lippmann-Schwinger equation ⇒ adjust mQ to get s-wavecharmonia/bottomonia masses in vacuumin the following

    potential 1: Nf = 2 + 1 [O. Kaczmarek]potential 2: Nf = 3 [P. Petreczky]BbS: Blancenblecler-Sugar reduction schemeTh: Thompson reduction scheme

    vacuum-mass splittingsuncertainty for charmonia 50-100 MeVuncertainty for bottomonia 30-70 MeVoverall uncertainty ' 10%

    melting temperatures with U and F

    s-wave (ηc, J/ψ): 2-2.5Tc, & 1.3Tc,Υ: > 2Tc, & 1.7Tc, 1Tc, & 2Tc, 1Tc, 1Tcp-wave (χc): & 1.2Tc, & 1Tc, χb: & 1.7Tc, 1.2Tc, all & 1Tc

    [F. Riek, R. Rapp, arXiv:1005.0769 [hep-ph]]

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 18 / 22

  • Quarkonium-spectral functions in the vacuum

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 19 / 22

  • In-medium charmonium-spectral functions (s states)

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 20 / 22

  • In-medium charmonium-spectral functions (p states)

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 21 / 22

  • Summary and Outlook

    SummaryHeavy quarks in the sQGPnon-perturbative interactions

    mechanism for strong coupling: resonance formation at T & TclQCD potentials parameter freeres. melt at higher temperatures ⇔ consistency betw. RAA and v2!same model also used for quarkonia in medium

    also provides “natural” mechanism for quark coalescenceresonance-recombination model [L. Ravagli, HvH, R. Rapp, Phys. Rev. C 79, 064902 (2009)]problems

    potential approach at finite T : F , V or combination?

    Outlookuse more realistic bulk-medium description (→ following talks by P.Gossiaux and M. He)include inelastic heavy-quark processes (gluo-radiative processes)take into account D/B-meson rescattering in the hadronic phaseother heavy-quark observables like charmoniumsuppression/regeneration (→ talk by X. Zhao on Thursday)

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics January 4, 2011 22 / 22

    Heavy-quark interactions in the sQGPHeavy quarks in heavy-ion collisionsHeavy-quark diffusion: The Langevin EquationElastic pQCD heavy-quark scattering

    Microscopic model for non-perturbative HQ interactionsStatic heavy-quark potentials from lattice QCDT-matrix approach

    Non-photonic electrons at RHICT-matrix approach to Quarkonium-Bound-State ProblemSummary and Outlook