367
Synthetic Mathematics in Modal Dependent Type Theories Dan Licata Wesleyan University Felix Wellen Carnegie Mellon University 1

Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Synthetic Mathematics in Modal Dependent Type Theories

Dan LicataWesleyan University

Felix WellenCarnegie Mellon University

1

Page 2: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Tutorial 1

2

Page 3: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Joint work with/work by

3

Lect 1,3,5: L., Mitchell Riley, Michael Shulman

Lect 2: W., Urs Schreiber, Egbert Rijke, Shulman, Bas Spitters

Lect 4: Shulman

Lect 6: W., Schreiber, Jacob Gross, L., Max S. New, Ian Orton, Jennifer Paykin, Shulman

Bas’s talk on Thursday: Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M. Pitts, Spitters; L., Pitts, Ian Orton, and Spitters

Page 4: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Motivation

4

Page 5: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

5

Synthetic homotopy theory

Page 6: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

5

Synthetic homotopy theoryUse types in HoTT to talk about ∞-groupoids:e.g. define S1 as higher inductive type with base : S1

loop : Path S1 base base

Page 7: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

5

Synthetic homotopy theoryUse types in HoTT to talk about ∞-groupoids:e.g. define S1 as higher inductive type with base : S1

loop : Path S1 base base

“Calculate” homotopy groups: e.g. prove Path S1 base base ≃ ℤ using S1-induction, univalence

Page 8: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

6

Limitations

Page 9: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

6

LimitationsSometimes homotopy theory is a lemma Brouwer’s fixed point theorem: any continuous map 𝔻2 → 𝔻2 has a fixed point

Page 10: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

6

LimitationsSometimes homotopy theory is a lemma Brouwer’s fixed point theorem: any continuous map 𝔻2 → 𝔻2 has a fixed point

Proof uses π1(D) ≆ π1(S1)

Page 11: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

6

LimitationsSometimes homotopy theory is a lemma Brouwer’s fixed point theorem: any continuous map 𝔻2 → 𝔻2 has a fixed point

Proof uses π1(D) ≆ π1(S1)

… but no “points” in HIT D ≅ 1boundary of 𝔻 is {(x,y) ∈ ℝ2 | x2 + y2 = 1} not S1

Page 12: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

6

LimitationsSometimes homotopy theory is a lemma Brouwer’s fixed point theorem: any continuous map 𝔻2 → 𝔻2 has a fixed point

Proof uses π1(D) ≆ π1(S1)

… but no “points” in HIT D ≅ 1boundary of 𝔻 is {(x,y) ∈ ℝ2 | x2 + y2 = 1} not S1

Internally “compile”:formalize syntax of TT as QIIT, simplicial or cubical model, initiality, topological spaces, Quillen equivalence, quote HoTT proofs as encoded syntax…

Page 13: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

7

Cohesive HoTT

synthetic homotopy theoryas in homotopy type theory types are ∞-groupoids

[Schreiber,Shulman]

Page 14: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

7

Cohesive HoTT

synthetic homotopy theoryas in homotopy type theory

also have topological structure on every level

types are ∞-groupoids

[Schreiber,Shulman]

+ synthetic topology

as in axiomatic cohesion

Page 15: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

7

Cohesive HoTT

synthetic homotopy theoryas in homotopy type theory

also have topological structure on every level

relate HIT circle to {(x,y) ∈ ℝ2 | x2 + y2 = 1} internally

types are ∞-groupoids

[Schreiber,Shulman]

+ synthetic topology

as in axiomatic cohesion

Page 16: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

8

Axiomatic cohesion

Sets

Spaces

[Lawvere]

Γ

Page 17: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

8

Axiomatic cohesion

Sets

Spaces x

y

z

{x,y,z}

[Lawvere]

Γ

Page 18: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

9

Axiomatic cohesion

Sets

Spaces

{x,y,z}

Γ

[Lawvere]

Page 19: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

9

Axiomatic cohesion

Sets

Spaces x

y

z

{x,y,z}

Γ∆

[Lawvere]

Page 20: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

9

Axiomatic cohesion

Sets

Spaces x

y

z

{x,y,z}

Γ∆ ⊣

[Lawvere]

∆ X →Spaces S

X →Sets Γ S

Page 21: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

10

Axiomatic cohesion

Sets

Spaces

{x,y,z}

Γ

[Lawvere]

Page 22: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

10

Axiomatic cohesion

Sets

Spaces x

y

z

{x,y,z}

Γ ∇

[Lawvere]

Page 23: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

10

Axiomatic cohesion

Sets

Spaces x

y

z

{x,y,z}

Γ ∇⊣

[Lawvere]

S →Spaces ∇ Y

Γ S →Sets Y

Page 24: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

11

Axiomatic cohesionx

y

zw

Sets

Spaces

Γ∆ ∇⊣ ⊣ u

[Lawvere]

Page 25: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

11

Axiomatic cohesionx

y

z

{xyz,wu}

w

Sets

Spaces

Γ∆ ∇⊣ ⊣Π0 u

[Lawvere]

Page 26: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

11

Axiomatic cohesionx

y

z

{xyz,wu}

w

Sets

Spaces

Γ∆ ∇⊣ ⊣⊣Π0 u

[Lawvere]

Π0 S →Sets Y S →Spaces ∆ Y

Page 27: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

12

∞-categorical Cohesion

∞-groupoids

Topological ∞-groupoids

Γ∆ ∇⊣ ⊣⊣Π

[Schreiber,Shulman]

Page 28: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

12

∞-categorical Cohesion

∞-groupoids

Topological ∞-groupoids

Γ∆ ∇⊣ ⊣⊣Π

fundamental ∞-groupoid! e.g. ∆Π(topological 𝕊1) = HIT S1

[Schreiber,Shulman]

Page 29: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

12

∞-categorical Cohesion

∞-groupoids

Topological ∞-groupoids

Γ∆ ∇⊣ ⊣⊣Π

fundamental ∞-groupoid! e.g. ∆Π(topological 𝕊1) = HIT S1

[Schreiber,Shulman]

∆ and ∇ full and faithful…

Page 30: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

13

∞-categorical cohesion

Topological ∞-groupoids

Topological ∞-groupoids

♭∫ #⊣ ⊣

∫ = ∆Π ♭ = ∆Γ # = ∇Γ

Page 31: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

13

∞-categorical cohesion

Topological ∞-groupoids

Topological ∞-groupoids

♭∫ #⊣ ⊣

∫ = ∆Π ♭ = ∆Γ # = ∇Γ

comonad

Page 32: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

13

∞-categorical cohesion

Topological ∞-groupoids

Topological ∞-groupoids

♭∫ #⊣ ⊣

∫ = ∆Π ♭ = ∆Γ # = ∇Γ

comonad

monad

Page 33: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

13

∞-categorical cohesion

Topological ∞-groupoids

Topological ∞-groupoids

♭∫ #⊣ ⊣

∫ = ∆Π ♭ = ∆Γ # = ∇Γ

comonad

monad

idempotent

Page 34: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

13

∞-categorical cohesion

Topological ∞-groupoids

Topological ∞-groupoids

♭∫ #⊣ ⊣

∫ = ∆Π ♭ = ∆Γ # = ∇Γ

comonad

monad

idempotent

monad

Page 35: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

13

∞-categorical cohesion

Topological ∞-groupoids

Topological ∞-groupoids

♭∫ #⊣ ⊣

∫ = ∆Π ♭ = ∆Γ # = ∇Γ

comonad

monad

idempotent

Modality: historically endofunctor on types/propositions ☐A A !A ?A

monad

Page 36: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

14

Cohesion in cubical models

Sets

Presheaves on C with terminal object 1

Γ∆ ∇⊣ ⊣

Γ(A) = set of objects (A1) /global sections∆(X) = constant presheaf on X

⊣Π

Page 37: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

15

Internal Universesin Cubical Models

[L.,Orton,Pitts,Spitters,‘18]

Thursday!

Γ → 𝕌fib ≅ ∑ (A : Γ → 𝕌). IsFib A

Page 38: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

15

Internal Universesin Cubical Models

[L.,Orton,Pitts,Spitters,‘18]

Thursday!

Γ → 𝕌fib ≅ ∑ (A : Γ → 𝕌). IsFib A

wrong: gives A(x) fibrant for all x:Γ implies A fibrant over Γ

Page 39: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

16

Internal Universesin Cubical Models

[L.,Orton,Pitts,Spitters,‘18]

♭( ) ♭( )

access to external statements in internal language of topos

Γ → 𝕌fib ≅ ∑ (A : Γ → 𝕌). IsFib A

Thursday!

Page 40: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

17

Parametricity [Nuyts,Vezzosi,Devriese]

SetsCube

SetsBPCube

Γ∆ ∇⊣ ⊣⊣Π

Page 41: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

17

Parametricity [Nuyts,Vezzosi,Devriese]

SetsCube

SetsBPCube

Γ∆ ∇⊣ ⊣⊣Π

two kinds of intervals, paths and “bridges”/relations

Page 42: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

17

Parametricity [Nuyts,Vezzosi,Devriese]

SetsCube

SetsBPCube

Γ∆ ∇⊣ ⊣⊣Π ⊣ ⊟

two kinds of intervals, paths and “bridges”/relations

Page 43: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

18

Bi-simplicial/cubical DirTT

Sets∆op

Sets

Γ∆ ∇⊣ ⊣

[Riehl,Shulman; Riehl,Sattler; L.-Weaver]

forget paths

Page 44: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

18

Bi-simplicial/cubical DirTTSets∆op x ∆op

Sets∆op

Sets

Γ∆ ∇⊣ ⊣

[Riehl,Shulman; Riehl,Sattler; L.-Weaver]

forget paths

Page 45: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

18

Bi-simplicial/cubical DirTTSets∆op x ∆op

Γ∆ ∇⊣ ⊣

Sets∆op

Sets

Γ∆ ∇⊣ ⊣

[Riehl,Shulman; Riehl,Sattler; L.-Weaver]

forget paths

forget morphisms

Page 46: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

18

Bi-simplicial/cubical DirTTSets∆op x ∆op

Γ∆ ∇⊣ ⊣

Sets∆op

Sets

Γ∆ ∇⊣ ⊣

[Riehl,Shulman; Riehl,Sattler; L.-Weaver]

forget paths

forget morphisms

also core, opposites (self-adjoint)?[Nuyts’15]

Page 47: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

19

Parametrized spectra[Finster,L.,Morehouse,Riley]

x

≃Ω… …

A

B(x) B0 B1

Page 48: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

19

Parametrized spectra[Finster,L.,Morehouse,Riley]

x

≃Ω… …

A

B(x) B0 B1

Page 49: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

19

Parametrized spectra[Finster,L.,Morehouse,Riley]

♭ ♭⊣

x

≃Ω… …

A

B(x) B0 B1

Page 50: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

19

Parametrized spectra[Finster,L.,Morehouse,Riley]

♭ ♭⊣

self-adjoint, idempotentmonad and comonad

x

≃Ω… …

A

B(x) B0 B1

Page 51: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

20

Parametrized spectra[Finster,L.,Morehouse,Riley]

x

≃Ω… …

A

B(x) B0 B1

x

≃Ω… …

♭A

1 1

Page 52: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Differential cohesion[Scheiber; W.; Gross,L.,New,Paykin,Riley,Shulman,W.]

[Friday!]

21

Page 53: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

22

Page 54: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

QuestionsHow do we extend type theory (MLTT, HoTT) to synthetically handle these situations? How to add modalities like ∆A, ∇A, ∫A, ♭A, #A, … representing adoint functors (full and faithful?), self-adoint functor, monads, comonads (idempotent?), both … What can we do with them once we have them?

23

Page 55: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Frameworks, Doctrines, Theories, Models

24

[see Shulman n-Theory on n-Category Cafe, Type 2-Theories HoTTEST, April’18]

Page 56: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Doctrine, theory, model

25

Page 57: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Doctrine, theory, modelDoctrine:

type constructors/logical connectivessemantically specifies categorical structure of models(2-category where models are 1-morphisms)

25

Page 58: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Doctrine, theory, modelDoctrine:

type constructors/logical connectivessemantically specifies categorical structure of models(2-category where models are 1-morphisms)

25

Theory in a Doctrine: axioms/signature using those connectivessemantically specifies an “internal something” in a category with doctrine’s structure

Page 59: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Doctrine, theory, modelDoctrine:

type constructors/logical connectivessemantically specifies categorical structure of models(2-category where models are 1-morphisms)

25

Theory in a Doctrine: axioms/signature using those connectivessemantically specifies an “internal something” in a category with doctrine’s structure

Model of a Theory (syntactic presentation):implementation of that signature bysome other types/terms

Page 60: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

26

Doctrine, theory, model

Page 61: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Doctrine:simple type theory with ×,1categories with finite products

26

Doctrine, theory, model

Page 62: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Doctrine:simple type theory with ×,1categories with finite products

26

Theory in a Doctrine: monoid: p type, ⊙ : p × p → p, x ⊙ (y ⊙ z) = (x ⊙ y) ⊙ z, …

Doctrine, theory, model

Page 63: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Doctrine:simple type theory with ×,1categories with finite products

26

Theory in a Doctrine: monoid: p type, ⊙ : p × p → p, x ⊙ (y ⊙ z) = (x ⊙ y) ⊙ z, …

Model of a Theory (syntactic presentation):(ℤ,+,0), (ℚ,x,1), etc.

Doctrine, theory, model

Page 64: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Theory of monadic modalityin doctrine of Book HoTT

[Rijke,Shulman,Spitters]

27

Page 65: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Theory of monadic modalityin doctrine of Book HoTT

(idempotent, monadic)

[Rijke,Shulman,Spitters]

27

Page 66: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Theory of monadic modalityin doctrine of Book HoTT

(idempotent, monadic)

[Rijke,Shulman,Spitters]

[tomorrow!]

27

Page 67: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Modalities as theory, models

28

Page 68: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Modalities as theory, modelsTheory:

Let J be an unknown monadic modality…

Models (syntactically presented): ||A||n defined as a HIT∫A as nullification HIT making ∫A ≅ (ℝ → ∫A)

28

Page 69: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Modalities as theory, modelsTheory:

Let J be an unknown monadic modality…

Models (syntactically presented): ||A||n defined as a HIT∫A as nullification HIT making ∫A ≅ (ℝ → ∫A)

assumption or definition! no new metatheory

28

Page 70: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Modalities in the doctrine

29

Page 71: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Modalities in the doctrine

29

add modalities as new type constructors to the syntax of type theory (doctrine) itselfchanges the structure of categories considered in semantics

Page 72: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Modalities in the doctrine

29

add modalities as new type constructors to the syntax of type theory (doctrine) itselfchanges the structure of categories considered in semantics

Why? comonadic modalities of interest (♭) are not internal functions 𝕌 → 𝕌 [Shulman’15]multiple categories (∆, ∇ : Sets → Spaces)= multiple modes of types proof theory that’s easier to use?

Page 73: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Goals

30

Page 74: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Goalsbe able to extend HoTT with wide class of modalities, especially ones that involve changing the doctrine

30

Page 75: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Goalsbe able to extend HoTT with wide class of modalities, especially ones that involve changing the doctrine

extend categorical semantics: internal language of several (∞-)categories with functors between them, rather than just one

30

Page 76: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Goalsbe able to extend HoTT with wide class of modalities, especially ones that involve changing the doctrine

extend categorical semantics: internal language of several (∞-)categories with functors between them, rather than just one

good proof-theoretic properties(e.g. canonicity, normalization)

30

Page 77: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Goalsbe able to extend HoTT with wide class of modalities, especially ones that involve changing the doctrine

extend categorical semantics: internal language of several (∞-)categories with functors between them, rather than just one

good proof-theoretic properties(e.g. canonicity, normalization)

30

how to do this without fixing a doctrine?

Page 78: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

31

Framework

Page 79: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

31

doctrines are (2-)theories in a framework (3-theory) (1-theory=theory)

Framework

Page 80: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

31

doctrines are (2-)theories in a framework (3-theory) (1-theory=theory)

clarify what is general to all modal type theories, what is specific to instances

Framework

Page 81: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

31

doctrines are (2-)theories in a framework (3-theory) (1-theory=theory)

clarify what is general to all modal type theories, what is specific to instances

metatheory: prove initiality, cut elimination/normalization once for all doctrines

Framework

Page 82: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

31

doctrines are (2-)theories in a framework (3-theory) (1-theory=theory)

clarify what is general to all modal type theories, what is specific to instances

metatheory: prove initiality, cut elimination/normalization once for all doctrines

use framework as a bridge between semantics and more pleasant “surface” type theories by “WLOGing” framework rules

Framework

Page 83: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

32

Multiple kinds of assumptions/multi-zoned contexts: Andreoli’92; Wadler’93; Plotkin’93;Barber’96; Benton’94; Pfenning,Davies’01

Tree-structured contexts:Display logic: BelnapBunched contexts: O’Hearn,Pym’99,Resource separation: Atkey,’04

Multiple modes: Benton’94; Benton,Wadler’96, Reed’09

Fibrational perspective: Melliès,Zeilberger’15

Related Work

[Friday!]

[see L.,Shulman’16, L.,Shulman,Riley’17 bibliography]

Page 84: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

33

Today: functors in unary modal type theories

Wed: adjunctions in unary modal type theories [L., Shulman, ’16]

Wed: simple modal and substructural type theories [L., Shulman, Riley, ’17]

Thurs: dependent modal and substructuraltype theories [L., Riley, Shulman, ongoing]

Fibrational Frameworks for

Page 85: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Being judgey about judgements

34

Page 86: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Good doctrines

35

Page 87: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Good doctrinesinterpretable in intended semantics

35

Page 88: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Good doctrinesinterpretable in intended semantics

cut elimination/normalization/operational semantics

35

Page 89: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Good doctrinesinterpretable in intended semantics

cut elimination/normalization/operational semantics

subformula property:proof of A⊢B only uses subformulas of A and B (fails for inductives in MLTT: induction, universes)

35

Page 90: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Good doctrinesinterpretable in intended semantics

cut elimination/normalization/operational semantics

subformula property:proof of A⊢B only uses subformulas of A and B (fails for inductives in MLTT: induction, universes)

judgemental: types given by intro&elim / universal properties relative to judgements; one type constructor per rule.

35

[Martin-Löf, Pfenning]

cf. generalized-multicategorical perspective [Shulman]

Page 91: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Non-judgemental Monoid T.T.

A ⊢ A A ⊢ C

A ⊢ B B ⊢ C

36

Page 92: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Non-judgemental Monoid T.T.

A⊗B ⊢ A’⊗B’A ⊢ A’ B ⊢ B’

A ⊢ A A ⊢ C

A ⊢ B B ⊢ C

36

Page 93: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Non-judgemental Monoid T.T.

A⊗B ⊢ A’⊗B’A ⊢ A’ B ⊢ B’

A⊗1 ⊢ A

A ⊢ A A ⊢ C

A ⊢ B B ⊢ C

36

Page 94: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Non-judgemental Monoid T.T.

A⊗B ⊢ A’⊗B’A ⊢ A’ B ⊢ B’

A⊗1 ⊢ A A ⊢ A⊗1

A ⊢ A A ⊢ C

A ⊢ B B ⊢ C

36

Page 95: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Non-judgemental Monoid T.T.

A⊗B ⊢ A’⊗B’A ⊢ A’ B ⊢ B’

A⊗1 ⊢ A A ⊢ A⊗1A ⊢ 1⊗A

A ⊢ A A ⊢ C

A ⊢ B B ⊢ C

36

Page 96: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Non-judgemental Monoid T.T.

A⊗B ⊢ A’⊗B’A ⊢ A’ B ⊢ B’

A⊗1 ⊢ A A ⊢ A⊗11⊗A ⊢ A A ⊢ 1⊗A

A ⊢ A A ⊢ C

A ⊢ B B ⊢ C

36

Page 97: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Non-judgemental Monoid T.T.

A⊗B ⊢ A’⊗B’A ⊢ A’ B ⊢ B’

A⊗1 ⊢ A A ⊢ A⊗11⊗A ⊢ A A ⊢ 1⊗A(A⊗B)⊗C ⊢ A⊗(B⊗C)

A ⊢ A A ⊢ C

A ⊢ B B ⊢ C

36

Page 98: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Non-judgemental Monoid T.T.

A⊗B ⊢ A’⊗B’A ⊢ A’ B ⊢ B’

A⊗1 ⊢ A A ⊢ A⊗11⊗A ⊢ A A ⊢ 1⊗A(A⊗B)⊗C ⊢ A⊗(B⊗C)A⊗(B⊗C) ⊢(A⊗B)⊗C

A ⊢ A A ⊢ C

A ⊢ B B ⊢ C

36

Page 99: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Non-judgemental Monoid T.T.

A⊗B ⊢ A’⊗B’A ⊢ A’ B ⊢ B’

A⊗1 ⊢ A A ⊢ A⊗11⊗A ⊢ A A ⊢ 1⊗A(A⊗B)⊗C ⊢ A⊗(B⊗C)A⊗(B⊗C) ⊢(A⊗B)⊗C

[+ a lot of equations!]

A ⊢ A A ⊢ C

A ⊢ B B ⊢ C

36

Page 100: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Judgemental Monoid T.T.A1, … , An ⊢ C the , is a strict monoid/

“unbiased” composition

37

Page 101: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Judgemental Monoid T.T.A1, … , An ⊢ C the , is a strict monoid/

“unbiased” composition

A ⊢ A Γ,Δ,Γ’ ⊢ C

Δ ⊢ A Γ,A,Γ’ ⊢ C

37

Page 102: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Judgemental Monoid T.T.A1, … , An ⊢ C the , is a strict monoid/

“unbiased” composition

A,B ⊢ A ⊗ B Γ,A⊗B,Γ’ ⊢ CΓ,A,B,Γ’ ⊢ C

A ⊢ A Γ,Δ,Γ’ ⊢ C

Δ ⊢ A Γ,A,Γ’ ⊢ C

37

Page 103: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Judgemental Monoid T.T.A1, … , An ⊢ C the , is a strict monoid/

“unbiased” composition

A,B ⊢ A ⊗ B Γ,A⊗B,Γ’ ⊢ CΓ,A,B,Γ’ ⊢ C

[+ βη!]

A ⊢ A Γ,Δ,Γ’ ⊢ C

Δ ⊢ A Γ,A,Γ’ ⊢ C

37

Page 104: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Judgemental Monoid T.T.A1, … , An ⊢ C the , is a strict monoid/

“unbiased” composition

A,B ⊢ A ⊗ B Γ,A⊗B,Γ’ ⊢ CΓ,A,B,Γ’ ⊢ C

[+ βη!]

A ⊢ A Γ,Δ,Γ’ ⊢ C

Δ ⊢ A Γ,A,Γ’ ⊢ C

37

[+ substitution equations]

Page 105: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Weak from strict

A⊗(B⊗C) ⊢ (A⊗B)⊗C

Page 106: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Weak from strict

A,(B⊗C) ⊢ (A⊗B)⊗CA⊗(B⊗C) ⊢ (A⊗B)⊗C

Page 107: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Weak from strict

A,(B⊗C) ⊢ (A⊗B)⊗CA⊗(B⊗C) ⊢ (A⊗B)⊗C

A,B,C ⊢ (A⊗B)⊗C

Page 108: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Weak from strict

A,(B⊗C) ⊢ (A⊗B)⊗CA⊗(B⊗C) ⊢ (A⊗B)⊗C

A,B,C ⊢ (A⊗B)⊗CA,B ⊢ A ⊗ B C ⊢ C

Page 109: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Judgemental presentationsmodularity: add/remove types from doctrine without affecting others

communication: judgement structureis a short-hand for the types

easier to spot problems with cut elim/normalization/…

manipulate weak structures bypassing to stricter judgemental ones

39

Page 110: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

40

Page 111: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Tutorial 3

41

Page 112: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

42

Previously on Modal Dependent Type Theories…

Page 113: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

43

Page 114: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

44

Real-cohesion [Shulman]

Page 115: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

44

Real-cohesionIntended model: interpretation of every type A has both homotopy structure and topological structureon every level (“non-standard” model of Book HoTT)

[Shulman]

Page 116: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

44

Real-cohesionIntended model: interpretation of every type A has both homotopy structure and topological structureon every level (“non-standard” model of Book HoTT)

homotopy structure detected by IdA as usual

[Shulman]

Page 117: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

44

Real-cohesionIntended model: interpretation of every type A has both homotopy structure and topological structureon every level (“non-standard” model of Book HoTT)

homotopy structure detected by IdA as usual

topological structure detected by ℝ → A, e.g.

[Shulman]

Page 118: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

44

Real-cohesionIntended model: interpretation of every type A has both homotopy structure and topological structureon every level (“non-standard” model of Book HoTT)

homotopy structure detected by IdA as usual

topological structure detected by ℝ → A, e.g.

use type constructor (“modality”) ∫ to relate the two

[Shulman]

Page 119: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

45

Real-cohesion

Page 120: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

45

Real-cohesion𝕊1 := {(x,y) ∈ ℝ2 | x2 + y2 = 1} has topological paths but is an hset

Page 121: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

45

Real-cohesion𝕊1 := {(x,y) ∈ ℝ2 | x2 + y2 = 1} has topological paths but is an hset

S1 := HIT{base,loop} has homotopical pathsbut is topologically discrete

Page 122: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

45

Real-cohesion𝕊1 := {(x,y) ∈ ℝ2 | x2 + y2 = 1} has topological paths but is an hset

S1 := HIT{base,loop} has homotopical pathsbut is topologically discrete

∫𝕊1 ≃ S1

Page 123: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

45

Real-cohesion𝕊1 := {(x,y) ∈ ℝ2 | x2 + y2 = 1} has topological paths but is an hset

S1 := HIT{base,loop} has homotopical pathsbut is topologically discrete

∫𝕊1 ≃ S1

Yesterday: Felix used ∫ to give a syntheticformulation of the relation between covering spaces and actions of the topological fundamental group

Page 124: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

46

Shape

Page 125: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

46

Shape∫A can be defined as localization/nullification HIT making ∫A ≃ (ℝ → ∫A) c.f. ||A||0 ≃ (S1 → ||A||0)

Page 126: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

46

Shape∫A can be defined as localization/nullification HIT making ∫A ≃ (ℝ → ∫A) c.f. ||A||0 ≃ (S1 → ||A||0)

Examples of (idempotent) monadic modalities

Page 127: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

46

Shape∫A can be defined as localization/nullification HIT making ∫A ≃ (ℝ → ∫A) c.f. ||A||0 ≃ (S1 → ||A||0)

Examples of (idempotent) monadic modalities

Page 128: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

47

Monadic ModalitiesLots of lemmas can be proved for the theory ofany monadic modality [Rijke,Shulman,Spitters]: ◦(∑x:A.B(η(x))) = ∑ x:◦A.◦B(x)

Page 129: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

48

Monadic ModalitiesFelix and Egbert’s covering space constructionworks for any monadic modality ◦ : one theorem interpreted in many settings!

Page 130: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

49

Real-cohesion

Topological ∞-groupoids

Topological ∞-groupoids

♭∫ #⊣ ⊣

∫ ♭#

comonad

monad

monad

Page 131: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

50

Theory of comonadic modality?[Shulman]

Not what we want:

Page 132: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

50

Theory of comonadic modality?[Shulman]

Not what we want:

Idea: (4) can be applied in any context: ◦A restricts all (one) conclusions to be modal ☐A doesn’t restrict all assumptions

Page 133: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

51

Real-cohesion

Topological ∞-groupoids

Topological ∞-groupoids

♭∫ #⊣ ⊣

∫ ♭#

comonad

monad

monad

Today: how to add ♭ and # to the doctrine what can we do with them?

Page 134: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

52

Page 135: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

A Framework for Functors in

Unary Type Theory

53

Page 136: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

54

♭ #⊣

Example instances (doctrines)Cohesive Spaces

Cohesive Spaces

♭ idempotent comonad# idempotent monad

Spaces

Cohesive Spaces

Γ∆ ∇⊣ ⊣

Page 137: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

55

Mode theory Needs:

Theory in framework, specifying a doctrine

Page 138: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

55

Mode theory Needs:

multiple “modes” of types representing different categories, morphisms in each

Theory in framework, specifying a doctrine

Page 139: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

55

Mode theory Needs:

multiple “modes” of types representing different categories, morphisms in each

some functors between them

Theory in framework, specifying a doctrine

Page 140: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

55

Mode theory Needs:

multiple “modes” of types representing different categories, morphisms in each

some functors between them

some natural transformations: unit, counit of adjunction, (co)multiplication

Theory in framework, specifying a doctrine

Page 141: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

55

Mode theory

q

p

f gs⟹

A mode theory 𝓜 isa 2-category

Needs:

multiple “modes” of types representing different categories, morphisms in each

some functors between them

some natural transformations: unit, counit of adjunction, (co)multiplication

Theory in framework, specifying a doctrine

Page 142: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

56

Doctrine of a mode theory

q

p

f gs⟹

Specifies doctrine of a pseudofunctor 𝓜 → Cat

A mode theory 𝓜 isa 2-category

Page 143: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

56

Doctrine of a mode theory

q

p

f gs⟹

Specifies doctrine of a pseudofunctor 𝓜 → Cateach 0-cell p is a category,objects are types of mode p,morphisms terms A ⊢p A’

A mode theory 𝓜 isa 2-category

Page 144: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

56

Doctrine of a mode theory

q

p

f gs⟹

Specifies doctrine of a pseudofunctor 𝓜 → Cateach 0-cell p is a category,objects are types of mode p,morphisms terms A ⊢p A’

each 1-cell f is a functor Ff : p → q

A mode theory 𝓜 isa 2-category

Page 145: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

56

Doctrine of a mode theory

q

p

f gs⟹

Specifies doctrine of a pseudofunctor 𝓜 → Cateach 0-cell p is a category,objects are types of mode p,morphisms terms A ⊢p A’

each 1-cell f is a functor Ff : p → q

each 2-cell s : f ⇒ g is anat. trans. Ff ⇒ Fg

A mode theory 𝓜 isa 2-category

Page 146: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

57

Example mode theory 1

♭ #⊣

Cohesive Spaces

Cohesive Spaces♭ idempotent comonad# idempotent monad

Page 147: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

57

Example mode theory 1

♭ #⊣

Cohesive Spaces

Cohesive Spaces

c mode

♭ idempotent comonad# idempotent monad

Page 148: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

57

Example mode theory 1

♭ #⊣

Cohesive Spaces

Cohesive Spaces

c mode♭,# : c → c

♭ idempotent comonad# idempotent monad

Page 149: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

57

Example mode theory 1

♭ #⊣

Cohesive Spaces

Cohesive Spaces

c mode♭,# : c → ccounit : ♭ ⟹ 1c

♭ idempotent comonad# idempotent monad

Page 150: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

57

Example mode theory 1

♭ #⊣

Cohesive Spaces

Cohesive Spaces

c mode♭,# : c → ccounit : ♭ ⟹ 1c

unit : 1c ⟹ #

♭ idempotent comonad# idempotent monad

Page 151: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

57

Example mode theory 1

♭ #⊣

Cohesive Spaces

Cohesive Spaces

c mode♭,# : c → ccounit : ♭ ⟹ 1c

unit : 1c ⟹ #♭♭ = ♭

♭ idempotent comonad# idempotent monad

Page 152: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

57

Example mode theory 1

♭ #⊣

Cohesive Spaces

Cohesive Spaces

c mode♭,# : c → ccounit : ♭ ⟹ 1c

unit : 1c ⟹ #♭♭ = ♭## = #

♭ idempotent comonad# idempotent monad

Page 153: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

57

Example mode theory 1

♭ #⊣

Cohesive Spaces

Cohesive Spaces

c mode♭,# : c → ccounit : ♭ ⟹ 1c

unit : 1c ⟹ #♭♭ = ♭## = #

♭ idempotent comonad# idempotent monad

♭# = ♭

Page 154: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

57

Example mode theory 1

♭ #⊣

Cohesive Spaces

Cohesive Spaces

c mode♭,# : c → ccounit : ♭ ⟹ 1c

unit : 1c ⟹ #♭♭ = ♭## = #

♭ idempotent comonad# idempotent monad

♭# = ♭#♭ = #

Page 155: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

57

Example mode theory 1

♭ #⊣

Cohesive Spaces

Cohesive Spaces

c mode♭,# : c → ccounit : ♭ ⟹ 1c

unit : 1c ⟹ #♭♭ = ♭## = #

[+ triangle] ♭ idempotent comonad# idempotent monad

♭# = ♭#♭ = #

Page 156: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

57

Example mode theory 1

♭ #⊣

Cohesive Spaces

Cohesive Spaces

c mode♭,# : c → ccounit : ♭ ⟹ 1c

unit : 1c ⟹ #♭♭ = ♭## = #

[+ triangle]

contexts stricter than types!

♭ idempotent comonad# idempotent monad

♭# = ♭#♭ = #

Page 157: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

58

Example mode theory 2

Δ ⊣

Cohesive Spaces

Spaces

c,s modeΔ : s → c

counit : ΔΓ ⟹ 1c

unit : 1s ⟹ ΓΔ[+ triangle equations]

ΓΓ : c → s

Page 158: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

59

Framework (non-judgemental)

F1 A ⊢ A A ⊢ F1 A Fg◦f A ⊢ Fg Ff A Fg Ff A ⊢ Fg◦f A

A ⊢p A

f ⟹ gFf A ⊢ Fg A

A ⊢p CA ⊢p B B ⊢p C

Ff A ⊢q Ff A’A ⊢p A’f : p → q

Ff A typeq

A typep

[+ a lot of equations!]

Page 159: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

“Good” proof theory?

60

Page 160: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

“Good” proof theory?interpretable in intended semantics: OK

60

Page 161: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

“Good” proof theory?interpretable in intended semantics: OK

cut elimination: hard to see redexes: Ff(d); Ff(d’) reduces to Ff(d;d’) but e;Ff(d’) stuck otherwise

60

Page 162: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

“Good” proof theory?interpretable in intended semantics: OK

cut elimination: hard to see redexes: Ff(d); Ff(d’) reduces to Ff(d;d’) but e;Ff(d’) stuck otherwise

subformula property fails: given h ⟹ g◦f in theory, only map Fh A ⊢ Fg Ff A requires Fg◦f A

60

Page 163: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

“Good” proof theory?interpretable in intended semantics: OK

cut elimination: hard to see redexes: Ff(d); Ff(d’) reduces to Ff(d;d’) but e;Ff(d’) stuck otherwise

subformula property fails: given h ⟹ g◦f in theory, only map Fh A ⊢ Fg Ff A requires Fg◦f A

not judgemental: hard to “predict” F types from judgements, lots of equations

60

Page 164: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

61

Fibrational FrameworkSpecifies doctrine of a

local discrete(1-op)fibration π : 𝒟 → 𝓜

𝒟 is Groth. construction of

previous pseudofunctor 𝓜 → Cat

A mode theory 𝓜 isa 2-category

q

p

f gs⟹

Page 165: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

61

Fibrational FrameworkSpecifies doctrine of a

local discrete(1-op)fibration π : 𝒟 → 𝓜

𝒟 is Groth. construction of

previous pseudofunctor 𝓜 → Cat

A mode theory 𝓜 isa 2-category

q

p

f gs⟹

[Hermida,Buckley]

Page 166: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

62

Fibrational Framework

qp

π

𝓜

𝒟

f

A Cd

Page 167: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

62

Fibrational Framework

qp

π

𝓜

𝒟

f

A Cd

d : A ⊢f C means d in 𝒟(A,C) with π(d) = f

Page 168: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

62

Fibrational Framework

qp

π

𝓜

𝒟

f

A Cd

d : A ⊢f C means d in 𝒟(A,C) with π(d) = f

morphism over a morphism; c.f. pathovers and Melliès,Zeilberger’15

Page 169: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

63

Identity and Cut/Composition

π

𝓜

𝒟

A ⊢1 A A ⊢g◦f C

A ⊢f B B ⊢g C

(strict) functoriality of

Page 170: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

64

Action of mode 2-cells

π

𝓜(p,q)

𝒟(A,B)

A ⊢f C

A ⊢g C s : f ⟹ g

discrete fibration of 1-categories

Page 171: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

65

F types: opfibration

qp

π

𝓜

𝒟

f

A

Ff AR

Page 172: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

65

F types: opfibration

qp

π

𝓜

𝒟

f

A

Ff AR

Cd

Page 173: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

65

F types: opfibration

qp

π

𝓜

𝒟

f

A

Ff AR

Cd

L(d)

Page 174: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

66

qpf𝓜

Page 175: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

66

qpf

Ff A typeq

A typep

𝓜

Page 176: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

66

qpf

Ff A typeq

A typep π(Ff A) = q

𝓜

Page 177: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

66

A ⊢f Ff A R

qpf

Ff A typeq

A typep π(Ff A) = q

𝓜

Page 178: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

66

A ⊢f Ff A R 𝒟f(A,FfA)

qpf

Ff A typeq

A typep π(Ff A) = q

𝓜

Page 179: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

66

A ⊢f Ff A

Ff A ⊢g C

R

A ⊢g◦f C L

𝒟f(A,FfA)

qpf

Ff A typeq

A typep π(Ff A) = q

𝓜

Page 180: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

66

A ⊢f Ff A

Ff A ⊢g C

R

A ⊢g◦f C L𝒟(FfA,C)

𝓜(q,r)

𝒟(A,C)

𝒟f(A,FfA)

𝓜(p,r)-◦f

qpf

-◦R

Ff A typeq

A typep π(Ff A) = q

𝓜

(of 1-cats)

Page 181: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

67

A ⊢1 A A ⊢g◦f CA ⊢f B B ⊢g C

A ⊢f C

A ⊢g C f ⟹ g

A ⊢f Ff A

Ff A ⊢g C

R

A ⊢g◦f C L

a;id = a = id;a(a;b);c = (a;b);c

1*(a) = a(s;t)*(a) = s*(t*a)(s[t])*(a;b) = t*a;s*b

R;L(d) = d

d = L(R;d)

β

η

Page 182: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

68

Theorems

F1 A ⊢ A A ⊢ F1 A Fg◦f A ⊢ Fg Ff A Fg Ff A ⊢ Fg◦f A

f ⟹ gFf A ⊢ Fg AFf A ⊢q Ff A’

A ⊢p A’

[+ a lot of equations!]

Ff A ⊢g CA ⊢g◦f C

Page 183: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

69

Example mode theory

♭ #⊣

Cohesive Spaces

Cohesive Spaces

c mode♭,# : c → ccounit : ♭ ⟹ 1c

unit : 1c ⟹ #♭♭ = ♭## = #

[+ triangle]

weak types from strict contexts!

♭ idempotent comonad# idempotent monad

♭# = ♭#♭ = #

Page 184: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

70

Examples of derivations

F♭F♭A ⊢1 F♭ A

Page 185: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

70

Examples of derivations

F♭ A ⊢♭ F♭ AF♭F♭A ⊢1 F♭ A

Page 186: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

70

Examples of derivations

F♭ A ⊢♭ F♭ AF♭F♭A ⊢1 F♭ A

F♭ A ⊢1 F♭ A counit : ♭ ⟹ 1

Page 187: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

70

Examples of derivations

F♭ A ⊢♭ F♭ AF♭F♭A ⊢1 F♭ A

F♭ A ⊢1 F♭ A counit : ♭ ⟹ 1

F♭ A ⊢♭ F♭ AF♭F♭A ⊢1 F♭ A

Page 188: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

70

Examples of derivations

F♭ A ⊢♭ F♭ AF♭F♭A ⊢1 F♭ A

F♭ A ⊢1 F♭ A counit : ♭ ⟹ 1

F♭ A ⊢♭ F♭ AF♭F♭A ⊢1 F♭ A

A ⊢♭♭ = ♭ F♭ A

Page 189: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

70

Examples of derivations

F♭ A ⊢♭ F♭ AF♭F♭A ⊢1 F♭ A

F♭ A ⊢1 F♭ A counit : ♭ ⟹ 1

F♭ A ⊢♭ F♭ AF♭F♭A ⊢1 F♭ A

A ⊢♭♭ = ♭ F♭ Aequal in equational theory using triangle law

Page 190: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

A Framework for Adjunctions in

Unary Type Theory

71

[L., Shulman, ’16, 2-categorification of Reed’09]

Page 191: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

72

F types: opfibration

qp

π

𝓜

𝒟

f

A

Ff AR

Cd

L(d)

Page 192: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

73

U types: fibration

qp

π

𝓜

𝒟

f

A

Uf A UL

Page 193: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

73

U types: fibration

qp

π

𝓜

𝒟

f

A

Uf A UL

C d

Page 194: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

73

U types: fibration

qp

π

𝓜

𝒟

f

A

Uf A UL

C d

UR(d)

Page 195: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

74

A ⊢f Ff A

Ff A ⊢g C

FR

A ⊢g◦f C FLFR;FL(d) = d

d = FL(FR;d)

β

η

U types: fibration

Page 196: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

74

A ⊢f Ff A

Ff A ⊢g C

FR

A ⊢g◦f C FLFR;FL(d) = d

d = FL(FR;d)

Uf A ⊢f A

C ⊢g Uf A

UL

C ⊢f◦g A URUR(d);UL = d

d = UR(d;UL)

β

η

β

η

U types: fibration

Page 197: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

74

A ⊢f Ff A

Ff A ⊢g C

FR

A ⊢g◦f C FLFR;FL(d) = d

d = FL(FR;d)

Uf A ⊢f A

C ⊢g Uf A

UL

C ⊢f◦g A URUR(d);UL = d

d = UR(d;UL)

β

η

β

η

U types: fibration “Fitch-style” — see Bas’s talk on Thursday

Page 198: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

75

Adjoint

Ff A ⊢q CA ⊢f C

A ⊢p Uf C

qpf𝓜

Ff AA

Uf C C

Page 199: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

76

Fibrational Framework

Specifies doctrine of a local discrete

bifibration π : 𝒟 → 𝓜

A mode theory 𝓜 isa 2-category

q

p

f gs⟹ or a pseudofunctor

𝓜 → Adj

Page 200: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

77

Theorems

F1 A ⊢ A A ⊢ F1 A Fg◦f A ⊢ Fg Ff A Fg Ff A ⊢ Fg◦f A

f ⟹ gFf A ⊢ Fg AFf A ⊢q Ff A’

A ⊢p A’

[+ 2x a lot of equations!]

U1 A ⊢ A A ⊢ U1 A Ug◦f A ⊢ Uf Ug A Ug Uf A ⊢ Ug◦f A

f ⟹ gUg A ⊢ Uf AUf A ⊢q Uf A’

A ⊢p A’

Page 201: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

78

A ⊢f Ff A

Ff A ⊢g C

FR

A ⊢g◦f C FLFR;FL(d) = d

d = FL(FR;d)

Uf A ⊢f A

C ⊢g Uf A

UL

C ⊢f◦g A URUR(d);UL = d

d = UR(d;UL)

β

η

β

η

U types: fibration

Page 202: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

79

c mode♭,# : c → ccounit : ♭ ⟹ 1c

unit : 1c ⟹ #♭♭ = ♭## = #

[+ triangle]

♭# = ♭#♭ = #

Functorframework

♭ #⊣ ♭ idem comonad# idem monad

Page 203: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

79

c mode♭,# : c → ccounit : ♭ ⟹ 1c

unit : 1c ⟹ #♭♭ = ♭## = #

[+ triangle]

♭# = ♭#♭ = #

Functorframework

c mode♭ : c → ccounit : ♭ ⟹ 1c

♭♭ = ♭[+ triangle]

Adjunction framework

♭ #⊣ ♭ idem comonad# idem monad

Page 204: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

80

♭ #⊣ ♭ idem comonad# idem monad

c mode♭ : c → ccounit : ♭ ⟹ 1c

♭♭ = ♭[+ triangle]

Adjunction framework

Page 205: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

80

♭ #⊣ ♭ idem comonad# idem monad

c mode♭ : c → ccounit : ♭ ⟹ 1c

♭♭ = ♭[+ triangle]

Adjunction framework♭ A := F♭ A# A := U♭ A

Page 206: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

80

♭ #⊣ ♭ idem comonad# idem monad

c mode♭ : c → ccounit : ♭ ⟹ 1c

♭♭ = ♭[+ triangle]

Adjunction framework♭ A := F♭ A# A := U♭ A

♭ A ⊢ AA ⊢ # A

Page 207: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

WLOG

81

Page 208: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

82

WLOG

Page 209: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

82

For a particular mode theory, can often prove “without loss of generality” simplified rules are sound and complete (for equivalence classes)

WLOG

Page 210: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

82

For a particular mode theory, can often prove “without loss of generality” simplified rules are sound and complete (for equivalence classes)

Eagerly reduce mode morphisms using =

WLOG

Page 211: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

82

For a particular mode theory, can often prove “without loss of generality” simplified rules are sound and complete (for equivalence classes)

Eagerly reduce mode morphisms using =

Only allow certain cuts into

A ⊢f Ff A Uf A ⊢f A

WLOG

Page 212: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

82

For a particular mode theory, can often prove “without loss of generality” simplified rules are sound and complete (for equivalence classes)

Eagerly reduce mode morphisms using =

Only allow certain cuts into

Restrict use of n.t.’s to certain points in a term

A ⊢f Ff A Uf A ⊢f A

A ⊢f CA ⊢g B f ⟹ g

WLOG

Page 213: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

83

x : A ⊢x A

Variable rules

can use either kind of variable(projection, or projection + counit)

Page 214: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

83

x : A ⊢x A x : A ⊢♭(x) A

Variable rules

can use either kind of variable(projection, or projection + counit)

Page 215: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

83

x : A ⊢x A x : A ⊢♭(x) A♭ ⟹ 1c

Variable rules

can use either kind of variable(projection, or projection + counit)

Page 216: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

83

x : A ⊢x A x : A ⊢♭(x) Ax : A ⊢x A ♭ ⟹ 1c

Variable rules

can use either kind of variable(projection, or projection + counit)

Page 217: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

83

x : A ⊢x A x : A ⊢♭(x) Ax : A ⊢x A ♭ ⟹ 1c

Variable rules

Δ | Γ,x:A,Γ’ ⊢ x : A

♭ variables non-♭ variables

can use either kind of variable(projection, or projection + counit)

Page 218: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

83

x : A ⊢x A x : A ⊢♭(x) Ax : A ⊢x A ♭ ⟹ 1c

Variable rules

Δ | Γ,x:A,Γ’ ⊢ x : A

♭ variables non-♭ variables

Δ,x:A,Δ’ | Γ ⊢ x : A

can use either kind of variable(projection, or projection + counit)

Page 219: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

84

x : C ⊢x F♭ A

♭-intro

Page 220: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

84

x : C ⊢x F♭ A

x : C ⊢x A A ⊢♭ F♭ Ax : C ⊢♭(x) F♭ A

♭-intro

Page 221: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

84

x : C ⊢x F♭ Ax : C ⊢- A

x : C ⊢x A A ⊢♭ F♭ Ax : C ⊢♭(x) F♭ A

♭-intro

Page 222: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

85

x : C ⊢♭(x) F♭ A

x : C ⊢x A A ⊢♭ F♭ Ax : C ⊢♭(x) F♭ A

♭-intro

Page 223: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

85

x : C ⊢♭(x) F♭ Ax : C ⊢x A

x : C ⊢x A A ⊢♭ F♭ Ax : C ⊢♭(x) F♭ A

♭-intro

Page 224: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

86

x : C ⊢♭(x) F♭ A

x : C ⊢ x A A ⊢♭ F♭ Ax : C ⊢♭ (x) F♭ A

counit : ♭ ⟹ 1c means ♭ stronger than 1

♭-intro

Page 225: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

86

x : C ⊢♭(x) F♭ Ax : C ⊢♭(x) A

x : C ⊢ x A A ⊢♭ F♭ Ax : C ⊢♭ (x) F♭ A

counit : ♭ ⟹ 1c means ♭ stronger than 1

♭-intro

Page 226: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

86

x : C ⊢♭(x) F♭ Ax : C ⊢♭(x) A

x : C ⊢ x A A ⊢♭ F♭ Ax : C ⊢♭ (x) F♭ A

counit : ♭ ⟹ 1c means ♭ stronger than 1

♭( )

♭-intro

Page 227: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

86

x : C ⊢♭(x) F♭ Ax : C ⊢♭(x) A

x : C ⊢ x A A ⊢♭ F♭ Ax : C ⊢♭ (x) F♭ A

counit : ♭ ⟹ 1c means ♭ stronger than 1

♭( )

♭-intro

Page 228: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

86

x : C ⊢♭(x) F♭ Ax : C ⊢♭(x) A

x : C ⊢ x A A ⊢♭ F♭ Ax : C ⊢♭ (x) F♭ A

♭♭ = ♭counit : ♭ ⟹ 1c means ♭ stronger than 1

♭( )

♭-intro

Page 229: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

87

make a map into ♭A from a map into A that uses only ♭ variables (and they stay ♭ in the premise)

♭ variables non-♭ variables

♭-intro

[Pfenning-Davies]

Page 230: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

87

make a map into ♭A from a map into A that uses only ♭ variables (and they stay ♭ in the premise)

♭ variables non-♭ variables

(assumes ♭ preserves products — tomorrow!)

♭-intro

[Pfenning-Davies]

Page 231: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

88

x : F♭ A ⊢x Cx : A ⊢♭(x) C

make a map from the ♭A typefrom a map that uses x flatly/“crisply”

♭-induction

Page 232: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

88

x : F♭ A ⊢x Cx : A ⊢♭(x) C

make a map from the ♭A typefrom a map that uses x flatly/“crisply”

♭-induction

Page 233: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

89

x : A ⊢x U♭ C

# intro

Page 234: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

89

x : A ⊢x U♭ Cx : A ⊢♭(x) C

# intro

Page 235: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

89

x : A ⊢x U♭ Cx : A ⊢♭(x) C

x : A ⊢♭(x) U♭ C

# intro

Page 236: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

89

x : A ⊢x U♭ Cx : A ⊢♭(x) C

x : A ⊢♭(x) U♭ Cx : A ⊢♭♭(x) C

# intro

Page 237: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

89

x : A ⊢x U♭ Cx : A ⊢♭(x) C

x : A ⊢♭(x) U♭ Cx : A ⊢♭♭(x) C=♭(x)

# intro

Page 238: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

89

x : A ⊢x U♭ Cx : A ⊢♭(x) C

x : A ⊢♭(x) U♭ Cx : A ⊢♭♭(x) C=♭(x)

a map into the #A type can use all variables flatly

# intro

Page 239: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

90

U♭ A ⊢♭ Ax:C ⊢♭(x) U♭ Ax:C ⊢♭♭(x) A

# elim

Page 240: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

90

U♭ A ⊢♭ Ax:C ⊢♭(x) U♭ Ax:C ⊢♭♭(x) A=♭(x)

make a map into A from a map into #A that uses each variable flatly

# elim

Page 241: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

91

Dependency

Page 242: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

91

Dependency

Page 243: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

92

Main ideas

Page 244: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

92

Main ideasMethodology:1. intended semantics → mode theory 2. that instance of framework is a calculus3. simplify by WLOG reasoning

Page 245: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

92

Main ideasMethodology:1. intended semantics → mode theory 2. that instance of framework is a calculus3. simplify by WLOG reasoning

Individual modal type theories look weird, but only step 3 is ad-hoc!

Page 246: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

92

Main ideasMethodology:1. intended semantics → mode theory 2. that instance of framework is a calculus3. simplify by WLOG reasoning

Individual modal type theories look weird, but only step 3 is ad-hoc!

Fibrational/judgemental nicer than pseudofunctorial/combinator-logic

Page 247: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

93

TomorrowInteraction between modalities and other connectives

Unary to simple types (multiple assumptions)

Dependent types

NextHow to use ♭ and # in real-cohesive HoTT

Page 248: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

94

Page 249: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Tutorial 5

95

Page 250: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

A Framework for Adjunctions in

Simple Type Theory

96

[L., Shulman, Riley, ’17]

Page 251: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

97

A ⊢♭ F♭ A x : F♭ A ⊢x Cx : A ⊢♭(x) C

Analogy

Page 252: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

97

A ⊢♭ F♭ A x : F♭ A ⊢x Cx : A ⊢♭(x) C

A,B ⊢ A ⊗ B Γ,A⊗B ⊢ CΓ,A,B ⊢ C

Analogy

Page 253: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

98

Unary type theory

π

𝓜

𝒟

diagram of adjunctions

derivations

local discretebifibration of 2-categories

Page 254: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

99

Simple type theory

π

𝓜

𝒟

diagram ofmulti-variableadjunctions

derivationslocal discretebifibration ofcartesian 2-multicategories

Page 255: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

100

Unary type theory

qp f

A Cd

A ⊢f C

π

𝓜

𝒟

Page 256: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

101

Simple type theory

qpnf

An Cd

d : x1:A1, …, xn:An ⊢f C

p1

A1 …

π

𝓜

𝒟

Page 257: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

102

Structural Rules

Γ,x:A,Γ’ ⊢x A

Γ⊢g[f/x] CΓ,x:A ⊢g C

Projection

CompositionΓ ⊢f A

Page 258: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

103

Structural Rules

Γ,x:A ⊢f BΓ ⊢f B

Γ,x:A,y:B ⊢f CΓ,y:B,x:A ⊢f C

Γ,x:A,y:A ⊢f BΓ,x:A ⊢f[y/x] B

Weakening

Exchange

Contraction

Page 259: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

104

Mode theories

Page 260: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

104

Mode theoriesx:p, y:p ⊢ x ⊗ y : p magma

Page 261: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

104

Mode theoriesx:p, y:p ⊢ x ⊗ y : p

x ⊗ 1 = x = 1 ⊗ x⋅ ⊢ 1 : p

magma

with unit

Page 262: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

104

Mode theoriesx:p, y:p ⊢ x ⊗ y : p

x ⊗ 1 = x = 1 ⊗ x⋅ ⊢ 1 : p

x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z monoid

magma

with unit

Page 263: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

104

Mode theoriesx:p, y:p ⊢ x ⊗ y : p

x ⊗ 1 = x = 1 ⊗ x⋅ ⊢ 1 : p

x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z monoid

x ⊗ y = y ⊗ x commutative monoid

magma

with unit

Page 264: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

104

Mode theoriesx:p, y:p ⊢ x ⊗ y : p

x ⊗ 1 = x = 1 ⊗ x⋅ ⊢ 1 : p

x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z monoid

x ⊗ y = y ⊗ x commutative monoid

x ⟹ 1 semicartiesian monoid

magma

with unit

Page 265: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

104

Mode theoriesx:p, y:p ⊢ x ⊗ y : p

x ⊗ 1 = x = 1 ⊗ x⋅ ⊢ 1 : p

x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z monoid

x ⊗ y = y ⊗ x commutative monoid

x ⟹ 1 semicartiesian monoid

x ⟹ x ⊗ x cartesian monoid

magma

with unit

Page 266: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

104

Mode theoriesx:p, y:p ⊢ x ⊗ y : p

x ⊗ 1 = x = 1 ⊗ x⋅ ⊢ 1 : p

x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z monoid

x ⊗ y = y ⊗ x commutative monoid

x ⟹ 1 semicartiesian monoid

x ⟹ x ⊗ x cartesian monoid

magma

with unit

microcosm: using cartesiannessof the setting

id ⟹ (λ_.1) : p → p

Page 267: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

105

Linear logic

Page 268: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

105

Linear logicLet (p,⊗,1) be a commutative monoid in 𝓜

Page 269: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

105

Linear logicLet (p,⊗,1) be a commutative monoid in 𝓜

x:A,y:B,z:C ⊢x⨂(y⨂z) D uses all three

Page 270: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

105

Linear logicLet (p,⊗,1) be a commutative monoid in 𝓜

x:A,y:B,z:C ⊢x⨂(y⨂z) D uses all three

x:A,y:B,z:C ⊢(x⨂y)⨂z D same derivations

Page 271: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

105

Linear logicLet (p,⊗,1) be a commutative monoid in 𝓜

x:A,y:B,z:C ⊢x⨂(y⨂z) D uses all three

x:A,y:B,z:C ⊢x⨂y D uses x and y

x:A,y:B,z:C ⊢(x⨂y)⨂z D same derivations

Page 272: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

105

Linear logicLet (p,⊗,1) be a commutative monoid in 𝓜

x:A,y:B,z:C ⊢x⨂(y⨂z) D uses all three

x:A,y:B,z:C ⊢x⨂y D uses x and y

x:A,y:B,z:C ⊢(x⨂y)⨂z D same derivations

x:A,y:B,z:C ⊢y⨂x D same derivations

Page 273: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

105

Linear logicLet (p,⊗,1) be a commutative monoid in 𝓜

x:A,y:B,z:C ⊢x⨂(y⨂z) D uses all three

x:A,y:B,z:C ⊢x⨂y D uses x and y

x:A,y:B,z:C ⊢1 D uses none

x:A,y:B,z:C ⊢(x⨂y)⨂z D same derivations

x:A,y:B,z:C ⊢y⨂x D same derivations

Page 274: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

105

Linear logicLet (p,⊗,1) be a commutative monoid in 𝓜

x:A,y:B,z:C ⊢x⨂(y⨂z) D uses all three

x:A,y:B,z:C ⊢x⨂y D uses x and y

x:A,y:B,z:C ⊢1 D uses none

x:A,y:B,z:C ⊢x⨂x D uses x twice

x:A,y:B,z:C ⊢(x⨂y)⨂z D same derivations

x:A,y:B,z:C ⊢y⨂x D same derivations

Page 275: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

106

♭ #⊣ ♭ idem comonad# idem monad

c mode♭ : c → ccounit : ♭ ⟹ 1c

♭♭ = ♭[+ triangle]

Adjunction framework♭ A := F♭ A# A := U♭ A

♭ A ⊢ AA ⊢ # A

Page 276: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

107

c mode⊗ : c,c → c

… commutative monoid laws …

Adjunction framework

1 : ⋅ → c

Page 277: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

107

c mode⊗ : c,c → c

… commutative monoid laws …

Adjunction framework

A⊗B := F⊗(A,B)A⊸B := U⊗(A|B)

1 : ⋅ → c

Page 278: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

107

A⊗- A⊸-⊣

c mode⊗ : c,c → c

… commutative monoid laws …

Adjunction framework

A⊗B := F⊗(A,B)A⊸B := U⊗(A|B)

1 : ⋅ → c

Page 279: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

108

F types: opfibration

qp

π

𝓜

𝒟

f

A

Ff AR

Cd

L(d)

Page 280: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

109

F types

qpnf

An

Ff(xi:Ai)R

p1

A1 …

π

𝓜

𝒟

Page 281: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

109

F types

qpnf

An

Ff(xi:Ai)R

p1

A1 …

π

𝓜

𝒟Cd

Page 282: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

109

F types

qpnf

An

Ff(xi:Ai)R

p1

A1 …

π

𝓜

𝒟CL(d)

d

Page 283: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

110

F types

Ff(A) ⊢g CA ⊢g◦f C

A ⊢f Ff A

Page 284: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

111

F types

Ff(A) ⊢g CA ⊢g◦f C

x1:A1,…,xn:An ⊢f Ff(x1:A1,…,xn:An)FR

Page 285: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

112

F types

x1:A1,…,xn:An ⊢f Ff(x1:A1,…,xn:An)

Γ,y:Ff(x1:A1,…,xn:An) ⊢g C

FR

FLΓ,x1:A1,…,xn:An ⊢g[f/y] C

Page 286: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

113

a : A,b : B ⊢a⊗b Fa⊗b(a:A,b:B)

⊗ right

Page 287: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

113

a : A,b : B ⊢a⊗b Fa⊗b(a:A,b:B)

⊗ rightΓ⊢x1⊗…⊗xn A

Page 288: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

113

a : A,b : B ⊢a⊗b Fa⊗b(a:A,b:B)

⊗ rightΓ⊢x1⊗…⊗xn AΓ⊢y1⊗…⊗ym B

Page 289: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

113

Γ ⊢(x1⊗…⊗xn)⊗(y1⊗…⊗ym) Fa⊗b(a:A,b:B)a : A,b : B ⊢a⊗b Fa⊗b(a:A,b:B)

⊗ rightΓ⊢x1⊗…⊗xn AΓ⊢y1⊗…⊗ym B

Page 290: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

113

Γ ⊢(x1⊗…⊗xn)⊗(y1⊗…⊗ym) Fa⊗b(a:A,b:B)a : A,b : B ⊢a⊗b Fa⊗b(a:A,b:B)

⊗ rightΓ⊢x1⊗…⊗xn AΓ⊢y1⊗…⊗ym B

z1⊗…⊗zk = (x1⊗…⊗xn)⊗(y1⊗…⊗ym)

Page 291: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

113

Γ ⊢(x1⊗…⊗xn)⊗(y1⊗…⊗ym) Fa⊗b(a:A,b:B)a : A,b : B ⊢a⊗b Fa⊗b(a:A,b:B)

⊗ rightΓ⊢x1⊗…⊗xn AΓ⊢y1⊗…⊗ym B

Γ ⊢z1⊗…⊗zk F⊗(a:A,b:B)z1⊗…⊗zk = (x1⊗…⊗xn)⊗(y1⊗…⊗ym)

Page 292: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

114

Γ ⊢A⊗BΔ1 ⊢ A Δ2 ⊢ B

⊗ right

Γ = Δ1,Δ2

Page 293: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

115

Γ,z:Fx⊗y(x:A,y:B) ⊢z1⊗…⊗z CΓ,x:A,y:B ⊢z1⊗…⊗(x⊗y) C

⊗ left

Page 294: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

115

Γ,z:Fx⊗y(x:A,y:B) ⊢z1⊗…⊗z CΓ,x:A,y:B ⊢z1⊗…⊗(x⊗y) C

⊗ left

Γ,A⊗B ⊢ CΓ,A,B ⊢ C

Page 295: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

116

Γ,z:F⊗(A,B) ⊢z1…zk CΓ,x:A,y:B ⊢z1…zk C

⊗ left

Page 296: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

116

Γ,z:F⊗(A,B) ⊢z1…zk CΓ,x:A,y:B ⊢z1…zk C

⊗ left

subtlety: FL lets you pattern-match z even if it doesn’t occur in the subscript… we proved a strengthening lemma that deletes such steps

Page 297: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

117

Γ ⊢(x1⊗…⊗xn)⊗(y1⊗…⊗ym) Fa⊗b(a:A,b:B)a : A,b : B ⊢a⊗b Fa⊗b(a:A,b:B)

Γ⊢x1⊗…⊗xn AΓ⊢y1⊗…⊗ym B

Γ ⊢z1⊗…⊗zk F⊗(a:A,b:B)

Relevant ⊗ Let (p,⊗,1) be a comm. monoidwith contraction x ⟹ x ⊗ x

Page 298: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

117

Γ ⊢(x1⊗…⊗xn)⊗(y1⊗…⊗ym) Fa⊗b(a:A,b:B)a : A,b : B ⊢a⊗b Fa⊗b(a:A,b:B)

Γ⊢x1⊗…⊗xn AΓ⊢y1⊗…⊗ym B

z1⊗…⊗zk ⟹ (x1⊗…⊗xn)⊗(y1⊗…⊗ym) Γ ⊢z1⊗…⊗zk F⊗(a:A,b:B)

Relevant ⊗ Let (p,⊗,1) be a comm. monoidwith contraction x ⟹ x ⊗ x

Page 299: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

118

Relevant ⊗

Γ⊢x⊗y AΓ⊢y⊗z Bx⊗y⊗z ⟹ (x⊗y)⊗(y⊗z) Γ ⊢x⊗y⊗z F⊗(a:A,b:B)

Let (p,⊗,1) be a comm. monoidwith contraction x ⟹ x ⊗ x

Page 300: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

119

Parametrized spectra[Finster,L.,Morehouse,Riley]

C ∧ C’ := product in base, smash product of spectrain the fiber

x

≃Ω… …

A

B0 B1

C

Page 301: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

120

Parametrized spectra[Finster,L.,Morehouse,Riley]

Let (p,⊗,1) be comm. monoid

Page 302: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

120

Parametrized spectra[Finster,L.,Morehouse,Riley]

Let (p,⊗,1) be comm. monoid

Let (p,×,⊤) be acartesian monoid

Page 303: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

120

Parametrized spectra[Finster,L.,Morehouse,Riley]

Let (p,⊗,1) be comm. monoid

Let (p,×,⊤) be acartesian monoid

×

a:A b:B

c:C⊗

d:D e:E

×

Page 304: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

121

Parametrized spectra[Finster,L.,Morehouse,Riley]

×

a:A b:B

c:C⊗

d:D e:E

×

a:A,b:B,c:C,d:D,e:E ⊢(a×b)⊗(c×(d⊗e)) F

Page 305: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Benton’s LNL

Monoidal

Cartesian

c mode

f : c → m

m mode(m,⊗,1) comm. monoid

(m,×,⊤) cart. monoid

f(x × y) = f(x) ⊗ f(y)

F G

!A := FG A

Page 306: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

123

x: Ff A ⊗ Ff B ⊢x Ff (A × B)

A⊗B := Fy⊗z(y:A,z:B) A×B := Fy×z(y:A,z:B)

Page 307: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

123

x: Ff A ⊗ Ff B ⊢x Ff (A × B)

A⊗B := Fy⊗z(y:A,z:B) A×B := Fy×z(y:A,z:B)

y:Ff A, z:Ff B ⊢y⊗z Ff (A × B)

Page 308: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

123

x: Ff A ⊗ Ff B ⊢x Ff (A × B)

A⊗B := Fy⊗z(y:A,z:B) A×B := Fy×z(y:A,z:B)

y:Ff A, z:Ff B ⊢y⊗z Ff (A × B)

y:A, z:Ff B ⊢f(y)⊗z Ff (A × B)

Page 309: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

123

x: Ff A ⊗ Ff B ⊢x Ff (A × B)

A⊗B := Fy⊗z(y:A,z:B) A×B := Fy×z(y:A,z:B)

y:Ff A, z:Ff B ⊢y⊗z Ff (A × B)

y:A, z:Ff B ⊢f(y)⊗z Ff (A × B)y:A, z:B ⊢f(y)⊗f(z) Ff (A × B)

Page 310: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

123

x: Ff A ⊗ Ff B ⊢x Ff (A × B)

A⊗B := Fy⊗z(y:A,z:B) A×B := Fy×z(y:A,z:B)

y:Ff A, z:Ff B ⊢y⊗z Ff (A × B)

y:A, z:Ff B ⊢f(y)⊗z Ff (A × B)y:A, z:B ⊢f(y)⊗f(z) Ff (A × B)

f(y)⊗f(z)=f(?)

Page 311: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

123

x: Ff A ⊗ Ff B ⊢x Ff (A × B)

A⊗B := Fy⊗z(y:A,z:B) A×B := Fy×z(y:A,z:B)

y:Ff A, z:Ff B ⊢y⊗z Ff (A × B)

y:A, z:Ff B ⊢f(y)⊗z Ff (A × B)y:A, z:B ⊢f(y)⊗f(z) Ff (A × B)

Page 312: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

123

x: Ff A ⊗ Ff B ⊢x Ff (A × B)

A⊗B := Fy⊗z(y:A,z:B) A×B := Fy×z(y:A,z:B)

y:Ff A, z:Ff B ⊢y⊗z Ff (A × B)

y:A, z:Ff B ⊢f(y)⊗z Ff (A × B)y:A, z:B ⊢f(y)⊗f(z) Ff (A × B)

f(y)⊗f(z)=f(y×z)

Page 313: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

123

x: Ff A ⊗ Ff B ⊢x Ff (A × B)

A⊗B := Fy⊗z(y:A,z:B) A×B := Fy×z(y:A,z:B)

y:Ff A, z:Ff B ⊢y⊗z Ff (A × B)

y:A, z:Ff B ⊢f(y)⊗z Ff (A × B)y:A, z:B ⊢f(y)⊗f(z) Ff (A × B)

y:A,z:B ⊢y×z A × Bf(y)⊗f(z)=f(y×z)

Page 314: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

123

x: Ff A ⊗ Ff B ⊢x Ff (A × B)

A⊗B := Fy⊗z(y:A,z:B) A×B := Fy×z(y:A,z:B)

y:Ff A, z:Ff B ⊢y⊗z Ff (A × B)

y:A, z:Ff B ⊢f(y)⊗z Ff (A × B)y:A, z:B ⊢f(y)⊗f(z) Ff (A × B)

y:A,z:B ⊢y×z A × Bf(y)⊗f(z)=f(y×z)

mode theory axiomatizes whether F preserves ⊗ (strictly,iso,laxly, not at all)

Page 315: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

Benton’s LNL

Monoidal

Cartesian

c mode

f : c → m

m mode(m,⊗,1) comm. monoid

(m,×,⊤) cart. monoid

f(x × y) = f(x) ⊗ f(y)

F G

!A := FG A

Page 316: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

125

U types: fibration

qp

π

𝓜

𝒟

f

A

Uf A UL

C d

UR(d)

Page 317: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

126

U types

Γ ⊢y1 × … x yn Uf(A)

Page 318: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

126

U types

Γ ⊢y1 × … x yn Uf(A) Γ ⊢f(y1 × … x yn) A

Page 319: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

126

U types

Γ ⊢y1 × … x yn Uf(A) Γ ⊢f(y1 × … x yn) A Γ ⊢f(y1) ⊗ … ⊗ f(yn) A

Page 320: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

126

U types

Γ ⊢y1 × … x yn Uf(A) Γ ⊢f(y1 × … x yn) A Γ ⊢f(y1) ⊗ … ⊗ f(yn) A

non-monoidal: stop here, see Bas’s talk next!

Page 321: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

127

a map into the #A type can use each variable flatly

# intro

Page 322: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

128

♭ #⊣ ♭ idem comonad# idem monad

c mode♭ : c → ccounit : ♭ ⟹ 1c

♭♭ = ♭ [+ triangle]

Mode theory

Page 323: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

128

♭ #⊣ ♭ idem comonad# idem monad

c mode♭ : c → ccounit : ♭ ⟹ 1c

♭♭ = ♭ [+ triangle]

Mode theory

(c,×,⊤) cart. monoid

♭(y × z) = ♭(y) × ♭(z)

Page 324: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

129

Γ ⊢y × ♭(z) U♭ C

a map into the #A type can use each variable flatly

# intro

Page 325: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

129

Γ ⊢y × ♭(z) U♭ CΓ ⊢♭(y×♭(z)) = ♭(y)×♭♭(z) = ♭(y)×♭(z) C

a map into the #A type can use each variable flatly

# intro

Page 326: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

130

U types: fibration

qp

π

𝓜

𝒟

f

A

Uf A UL

C d

UR(d)

Page 327: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

131

U types

rq

π

𝓜

𝒟

f

B

Uf (A|B)

d

p

A C

[Atkey’04]

,

Page 328: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

132

U types

x:A, y:Uy.f (x:A | B) ⊢f B

Page 329: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

132

U types

x:A, y:Uy.f (x:A | B) ⊢f B

e.g. A⊸B := Uy.y⊗x(x:A | B)

Page 330: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

132

U types

x:A, y:Uy.f (x:A | B) ⊢f B

e.g. A⊸B := Uy.y⊗x(x:A | B)

A→B := Uy.y×♭(x)(x:A | B) ♭

Page 331: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

132

U types

x:A, y:Uy.f (x:A | B) ⊢f B

e.g. A⊸B := Uy.y⊗x(x:A | B)

A→B := Uy.y×♭(x)(x:A | B)

“crisp-argument functions” implemented by Vezzosi in agda-flat

Page 332: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

133

Multiplicatives and exponentialsare the same connective

Ff(x1 : A1, … , xn : An) unifies ♭ and ⊗

Uf(x1 : A1, … , xn : An | B) unifies # and ⊸

Cut-free sequent calculus with subformula property

Sound and complete for local discrete bifibrations of cartesian 2-multicategories

Soundness of usual rules for lots of examples, completeness for some [L., Shulman, Riley, ’17]

Page 333: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

A Framework for Modal Dependent

Type Theories

134

[L., Riley, Shulman]

Page 334: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

135

Dependency

x:A, y:B(x) ⊢ c(x,y) : C(x,y)

Page 335: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

135

Dependency

x:A, y:B(x) ⊢ c(x,y) : C(x,y)v1.7(x)

Page 336: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

135

Dependency

x:A, y:B(x) ⊢ c(x,y) : C(x,y)

v2.0(x), (y)

v1.7(x)

Page 337: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

135

Dependency

x:A, y:B(x) ⊢ c(x,y) : C(x,y)

v2.0(x), (y)

s : v2.0(x) ⟹ v1.7(x)

v1.7(x)

Page 338: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

135

Dependency

x:A, y:B(x) ⊢ c(x,y) : C(x,y)

v2.0(x), (y)

s : v2.0(x) ⟹ v1.7(x)

v1.7(x)

s+

Page 339: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

135

Dependency

x:A, y:B(x) ⊢ c(x,y) : C(x,y)

v1.8(x),t+(y)

v2.0(x), (y)

s : v2.0(x) ⟹ v1.7(x)

v1.7(x)

s+

Page 340: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

135

Dependency

x:A, y:B(x) ⊢ c(x,y) : C(x,y)

v1.8(x),t+(y)

v2.0(x), (y)

s : v2.0(x) ⟹ v1.7(x)t : v1.8(x) ⟹ v1.7(x)

v1.7(x)

s+

Page 341: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

135

Dependency

x:A, y:B(x) ⊢ c(x,y) : C(x,y)

v1.8(x),t+(y)

v2.0(x), (y)

s : v2.0(x) ⟹ v1.7(x)t : v1.8(x) ⟹ v1.7(x)

v1.7(x)

s+

Page 342: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

135

Dependency

x:A, y:B(x) ⊢ c(x,y) : C(x,y)

v1.8(x),t+(y)

v2.0(x), (y)

s : v2.0(x) ⟹ v1.7(x)t : v1.8(x) ⟹ v1.7(x)

v2.0(x) ⟹ v1.8(x)

v1.7(x)⟹ ⟹

s t

v1.7(x)

s+

Page 343: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

136

Dependency

x:A, y:B(x) ⊢ c(x,y) : C(x,y)

R(x),t+(y)

♭(x), (y)

s : ♭(x) ⟹ xt : R(x) ⟹ x

♭(x) ⟹ R(x)

x⟹

⟹s t

x

s+

Page 344: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

137

Unary type theory

π

𝓜

𝒟local discretebifibration of 2-categories

base is 2-categorical(natural transformaitions)

Page 345: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

138

Simple type theory

π

𝓜

𝒟local discretebifibration ofcartesian 2-multicategories

base is 2-categorical(natural transformaitions)

top includes ordinary simple type theory

Page 346: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

139

Dependent type theory

π

𝓜

𝒟local discretebifibration ofcomprehension bicategories

top is a dependenttype theory

base is 2-categorical

Page 347: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

140

F Types (Opfibrations)

Γ,x:A ⊢μ F(x) : Fμ A

γ,x:p ⊢ μ : q

Γ ⊢p A Type

γ ⊢ p, q type

A

p q

Fμ A

μ

F(x)

Page 348: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

140

F Types (Opfibrations)

Γ,x:A ⊢μ F(x) : Fμ A

γ,x:p ⊢ μ : q

Γ ⊢p A Type

γ ⊢ p, q type

A

p q

Fμ A

μ

F(x)

Γ

Page 349: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

γ

140

F Types (Opfibrations)

Γ,x:A ⊢μ F(x) : Fμ A

γ,x:p ⊢ μ : q

Γ ⊢p A Type

γ ⊢ p, q type

A

p q

Fμ A

μ

F(x)

Γ

Page 350: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

γ

141

U Types (Fibrations)

Γ,x: Uμ A ⊢μ U(x) : A

γ,x:p ⊢ μ : q

Γ ⊢q A Type

γ ⊢ p, q type

A

p q

Uμ A

μ

U(x)

Γ

μ

Page 351: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

142

Subtle Parts

Action of 2-cells on upstairs types

Action of 2-cells inside the mode theory itself(basic directed dependent type theory)

What mode theories should be

Page 352: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

143

Mode Theory for Simple Typesdescribes the “algebra” of contexts

Linear: (p,⨂,1) a symmetric monoid object in 𝓜 Cartesian: (q,×,⊤) a monoid object in 𝓜 Comonads: ♭:p→p a idempotent comonad in 𝓜

Page 353: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

144

Mode Theory for Dependent TypesLet (p,T,∅,.) be a comprehension object with Σ,= in 𝓜:

Page 354: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

144

Mode Theory for Dependent Types

a type p of contextsa dependent type T(α : p) of dependent typesfor α:p and x:T(α), a comprehensionα.x : p with a projection 2-cell α.x ⟹ α“substitution” along projection T(α) → T(α.x)with 1, Σ types left adjoint to projectionΣα(x) : T(α.x) → T(α)

Let (p,T,∅,.) be a comprehension object with Σ,= in 𝓜:

Page 355: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

145

Mode Theory for Dependent Types

x:A,y:B,z:C ⊢x⨂(y⨂z) D uses all three

Page 356: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

146

Mode Theory for Dependent Types

x:A,y:B(x),z:C(y) ⊢ D(x,y,z) type

Page 357: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

146

Mode Theory for Dependent Types

x:A, y:B(x), z:C(x,y) ⊢T(∅.x.y.z) D(x,y,z) type

x:A,y:B(x),z:C(y) ⊢ D(x,y,z) type

Page 358: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

146

Mode Theory for Dependent Types

x:A, y:B(x), z:C(x,y) ⊢T(∅.x.y.z) D(x,y,z) type

x:T(∅),y:T(∅.x),z:T(∅.x.y) ⊢T(∅.x.y.z) mode

x:A,y:B(x),z:C(y) ⊢ D(x,y,z) type

Page 359: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

147

Mode Theory for Dependent Types

x:A,y:B(x),z:C(x,y) ⊢ d(x,y,z) : D(x,y,z)

Page 360: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

147

Mode Theory for Dependent Types

x:A,y:B(x),z:C(x,y) ⊢1 d(x,y,z) : D(x,y,z)

x:A,y:B(x),z:C(x,y) ⊢ d(x,y,z) : D(x,y,z)

Page 361: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

147

Mode Theory for Dependent Types

x:A,y:B(x),z:C(x,y) ⊢1 d(x,y,z) : D(x,y,z)x:T(∅),y:T(∅.x),z:T(∅.x.y) ⊢1 : T(∅.x.y.z)

x:A,y:B(x),z:C(x,y) ⊢ d(x,y,z) : D(x,y,z)

Page 362: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

147

Mode Theory for Dependent Types

x:A,y:B(x),z:C(x,y) ⊢1 d(x,y,z) : D(x,y,z)x:T(∅),y:T(∅.x),z:T(∅.x.y) ⊢1 : T(∅.x.y.z)

x:A,y:B(x),z:C(x,y) ⊢ d(x,y,z) : D(x,y,z)

strict monoid ≈ α.1 = α

Page 363: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

148

ModalitiesLet ♭ : p → p idempotent comonad ♭’ : (α : p) → T(α) → T(♭ α)be a morphism of comprehension objects

Page 364: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

148

ModalitiesLet ♭ : p → p idempotent comonad ♭’ : (α : p) → T(α) → T(♭ α)be a morphism of comprehension objects

Page 365: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

148

ModalitiesLet ♭ : p → p idempotent comonad ♭’ : (α : p) → T(α) → T(♭ α)be a morphism of comprehension objects

Γ ⊢T(α) U♭’(α,-) A TypeΓ ⊢T(♭ α) A Type

Page 366: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

148

ModalitiesLet ♭ : p → p idempotent comonad ♭’ : (α : p) → T(α) → T(♭ α)be a morphism of comprehension objects

Γ ⊢T(α) U♭’(α,-) A TypeΓ ⊢T(♭ α) A Type

Γ ⊢T(♭ α) F♭’(α,-) A TypeΓ ⊢T(♭ α) A Type

Page 367: Synthetic Mathematics in Modal Dependent Type Theoriesdlicata.web.wesleyan.edu/pubs/lsr17multi/him-tutorial.pdf · type constructors/logical connectives semantically specifies categorical

149

Modal dependent type theories

π

𝓜

𝒟local discretebifibration ofcomprehension bicategories

top is a dependenttype theory

base is 2-categoricaldependent type theory