127
0 Synthesis of Tetrahydrofuran Designed for Claire and Charlie’s Chemicals, Inc. TIGER STYLE CHEMICAL December 7, 2011 Laura Chong, Cody Farinella, Andrew Nandor, Laura Musick, Jing Wang

Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

  • Upload
    vuthuy

  • View
    233

  • Download
    5

Embed Size (px)

Citation preview

Page 1: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

0

Synthesis of Tetrahydrofuran

Designed for Claire and Charlie’s Chemicals, Inc.

TIGER STYLE CHEMICAL

December 7, 2011

Laura Chong, Cody Farinella, Andrew Nandor, Laura Musick, Jing Wang

Page 2: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

1

Tiger Style Chemical

December 7, 2011

Tiger Style Chemical

W1225 Lafferre Hall

Columbia, MO 65211

Dear Claire and Charlie’s Chemicals, Inc.,

We would like to present to you our complete process design for the production of

tetrahydrofuran from n-butane. Our company prides itself in thorough, quality work that you

will find in the report we have created for you. If you have any questions please do not hesitate

to contact any of the members below.

Thank you for choosing Tiger Style Chemical for your design needs and we look forward to

working with you again.

Sincerely,

Laura Chong Jing Wang

Project Engineer Project Engineer

Cody Farinella Andrew Nandor

Process Engineer Process Engineer

Laura Musick

Chief Economic Analyst

Page 3: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

2

Contents

Executive Summary ........................................................................................................................ 3

Background ..................................................................................................................................... 4

Methods........................................................................................................................................... 5

Production of Maleic Anhydride from n-Butane ........................................................................ 7

Production of Tetrahydrofuran from Maleic Anhydride ............................................................ 8

Stream Table ............................................................................................................................... 9

Results ........................................................................................................................................... 19

Equipment Summary ................................................................................................................ 20

Capital and Manufacturing Costs.............................................................................................. 25

Optimization ................................................................................................................................. 30

Safety and Environmental ............................................................................................................. 32

Chemical Hazards ..................................................................................................................... 33

Process Hazards ........................................................................................................................ 33

Waste Treatment ....................................................................................................................... 33

Conclusion .................................................................................................................................... 34

References ..................................................................................................................................... 35

Appendix A – Sample Calculations .............................................................................................. 37

Mass and Energy Balances ....................................................................................................... 37

Overall................................................................................................................................... 37

Reboiler and Reflux Streams ................................................................................................ 40

Heat Integration .................................................................................................................... 42

Equipment Sizing ...................................................................................................................... 49

Capital and Manufacturing Costs.............................................................................................. 54

Appendix B – Aspen Input Summaries ........................................................................................ 74

Production of Maleic Anhydride from n-Butane ...................................................................... 74

Production of Tetrahydrofuran from Maleic Anhydride ........................................................ 101

Appendix C – Material Saftey Data Sheet .................................................................................. 126

Page 4: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

3

Executive Summary

The process designed produces pure Tetrahydrofuran from n-butane. The total grass roots cost

for the construction of the plant and process equipment is $54,936,336 with an operating cost of

$65,127,255 per year. After ten years, with a revenue of $47,523,000, the net present value is

-$67,659,173. This process, unfortunately, is not profitable. We have presented an optimization

case of purifying one of the purge streams which adds an additional $1.7 million to the cost of

manufacture and brings the net present value to -$52,369,898, over $15 million dollars closer to

a profitable process. We believe that this is not a profitable process because of the high cost of

pure hydrogen and suggest exploring further optimizations and more profitable end products.

Page 5: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

4

Background

This process is made up of two reactions. Initially maleic anhydride (MAH) is produced from n-

butane. A feed stream of n-butane and air is sent through a reactor feed preparation stage and

then to Reactor 101. The reactions for the production of maleic anhydride from n-butane are

shown below, (equations 1-4).20

N-butane has an 82.2% single pass conversion. Maleic

anhydride has a selectivity of 70% in Reactor 1 and the selectivities of reactions 2-4 are each

10%. These values were obtained using a vanadium and phosphorus oxide catalyst (V-P-O).3

Reactor 101:

(1)

(2)

(3)

(4)

After the first reaction, the mixture is sent to an absorption column where the light components

are vaporized, and separated. Water is added at this stage to condense the heavy liquid.

Reaction 5 is just the hydration of maleic anhydride to maleic acid. This change occurs in the

absorptions column as the water stream comes into contact with the input stream. The absorption

liquid will retain 99.9 mass% of the maleic acid.16

Absorption column:

(5)

The mixture exits the absorber and it sent to a flash drum that removes water and other

byproducts. Reactor 102 is then used to convert all of the maleic acid back to maleic anhydride

since that it what’s need for the second part of this process. Reaction 6 below shows just that.

Reactor 102:

(6)

Finally the mixture is sent through a distillation tower that further purifies the maleic anhydride.

At this point the final product stream will be approximately 99.7% maleic anhydride. The final

product stream of this half of the process becomes the feed stream into the second half of the

process.

Once maleic anhydride is produced from n-butane, tetrahydrofuran (THF) is then produced from

the maleic anhydride. The feed from Distillation Tower 103 goes into a reactor feed prep. The

mixture is then sent to Reactor 201. Within Reactor 201, Reactions 7-10 occur. There is a 100%

conversion of maleic anhydride with a 98% selectivity of THF.4

Page 6: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

5

Reactor 201:

(7)

(8)

(9)

(10)

The products of Reactor 201 are sent to an extraction tower where 99.9% of the hydrogen is

removed. In order to break the azeotrope between water and THF, a pressure swing distillation

will be used.12

Water will be removed from the bottoms of Distillation Tower 201 where the

distillate will contain 95% THF and will be sent to Distillation Tower 202. The bottoms of

Distillation Tower 202 will contain pure THF and the distillate will be recycled back to

Distillation Tower 201.

Methods

To simulate this process we used Aspen Plus. A picture of the Aspen simulation as well as the

stream table is shown on the following pages. For convenience, the first and second reaction

parts are separated. The input summaries may be found in Appendix B.

Sizing calculations were based off of values generated in Aspen.

Production of Maleic Anhydride from n-Butane.

The NRTL property method was used in the simulation. Indeed, Peng-Rob and NRTL both work

well, but in order to cooperate with the 2nd

part of the whole process, we choose NRTL.

In the real process, the reaction of MAH changing to maleic acid will occur. The Aspen

simulation does not show the reaction happening in an absorption tower, so we had to add a

reactor to simulate this process. For the absorption column, Aspen simulates this as a RadFrac

distillation column setting the reboiler and condenser to zero. The absorption tower allows the

MAH to be separated from the non-condensable gases.

For the reaction between MAH and water, we assume on the certain condition, the conversion is

100%, because MAH reacts readily with water, and when the condition changed, it can also very

easy to change back. We originally consider using a flash vessel to remove water, which works

better in the ASPEN simulation, but in the real process, it is not typically done. We changed this

to a distillation column which works just as well.

Page 7: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

6

For the distillation towers to remove water (T-102) and purify MAH (T-103), we first used the

DSTWU model to get the estimated relative data. Then apply the basic data to the more

sophisticated RadFrac model to obtain better results.

The reactor temperature and pressure, 410°F and 39.875 psia, were taken from established

patents.3

Production of Tetrahydrofuran from Maleic Anhydride

The property method used in the second half is the NRTL method. It was compared with the

Peng-Rob and Wilson and showed to estimate the conditions at the water THF azeotrope closest

to the values found in literature.

The RStoic Reactor was chosen to represent our reactor because it was able to accurately deliver

the results that the patent for the catalyst claimed. This patent also justifies the choices for the

reactor temperature and pressures.

The pressure swing distillation configuration was based on the literature describing the process

for breaking the water and THF azeotrope. It described the pressures of each tower and the need

mole fractions desired at the tops and bottoms of each.

There were originally turbines in the places that a pressure drop was needed but after economic

analysis it was found to be more efficient to just have valves in their place.

Page 8: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

7

Production of Maleic Anhydride from n-Butane

7

8

2

1

9

12

13

15A

15 17

22

2627

28

33

37

10

11

R-101

M-101

E-102 T-101

H-103

T-101R

R-102E-105

T-103

E-101P-101

T -101 & T -101R are in

the same one block in

the real process.

Vent t o Flare

Use V-O-P catalyst

in this reactor.

n-But ane

Air

Purif ied Process Water

T o PrimaryWaste

Wat er Treatment

T-102P-103

16

C-101

H-102

5

6

P-102

H-101

34

MAH to 2nd part

Figure 1. Aspen simulation of the production of maleic anhydride from n-butane.

Page 9: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

8

Production of Tetrahydrofuran from Maleic Anhydride

Figure 2. Aspen simulation of the production of tetrahydrofuran from maleic anhydride.

36

42

49

43

44

51

52

78

56

60

61

66

74

73

45

50

46

47

48

77

70 71 72

62

M-201R-201

E-203

E-205T-201

S-202

V-201

S-201

E-204

V-204

T-202

CV-203E-211

C-201

C-202

C-203

Hydrogen

E-21075

76

39

T-103P

37

E-20238

E-201

41

CV-201

40

CV-202

CV-204

Note: T-103Prepresents T-103Bottoms Pump from 1st half

MAH from 1st Half

Page 10: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

9

Stream Table

Table 1. Complete stream table.

Stream No. 1 2 3 4 5 6 7 8

Temperature °F 70 68 70 770 320 770 770 770

Pressure psia 31 15 40 40 40 40 40 40

Vapor Frac 0.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

Mole Flow lbmol/hr 95 2946 95 95 2946 2946 3041 3116

Mass Flow lb/hr 5500 84736 5500 5500 84736 84736 90237 90237

Volume Flow cuft/hr 152 1128860 152 31310 618018 974741 1006050 1030930

Enthalpy MMBtu/hr -6.00 -3.24 -6.00 -2.85 1.97 11.58 8.73 -46.56

Mass Flow lb/hr

THF

MAH 7627.86

BUTANE 5500.45 5500.45 5500.45 5500.45 5.52

OXYGEN

N2 64436.36 64436.36 64436.36 64436.36 64436.36

CO 775.69

CO2 50.33 50.33 50.33 50.33 1435.49

WATER 495.20 495.20 495.20 495.20 7512.83

MA

FORMIC 20.19

ACRYLIC 177.61

H2

BUTANOL

PROPANOL

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Mass Frac

THF

MAH 0.085

BUTANE 1.000 1.000 1.000 0.061

OXYGEN 0.233 0.233 0.233 0.219 0.091

N2

CO 0.009

CO2 594 PPM 594 PPM 594 PPM 558 PPM 0.016

WATER 0.006 0.006 0.006 0.005 0.083

MA

FORMIC 224 PPM

ACRYLIC 0.002

H2

BUTANOL

PROPANOL

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Page 11: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

10

Stream No. 9 10 11 12 13 15 15a 16

Temperature °F 203 59 59 203 158 203 155 203

Pressure psia 25 15 25 25 25 25 25 29

Vapor Frac 0.98 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Mole Flow lbmol/hr 3116 1715 1715 1715 3206 1547 1624 1547

Mass Flow lb/hr 90237 30887 30887 30887 85468 35656 35656 35656

Volume Flow cuft/hr 881515 493 493 536 862148 588 558 588

Enthalpy MMBtu/hr -62.16 -211.08 -211.08 -206.75 -66.25 -202.51 -202.66 -202.51

Mass Flow lb/hr

THF

MAH 7627.86 0.00 7627.85

BUTANE 5.52 4.89 0.63 0.63 0.63

OXYGEN 8245.20 8238.82 6.38 6.38 6.38

N2 64436.36 64393.97 42.40 42.40 42.40

CO 775.69 775.15 0.54 0.54 0.54

CO2 1435.49 1427.22 8.27 8.27 8.27

WATER 7512.83 30887.20 30887.20 30887.20 10623.85 26374.79 27776.18 26374.79

MA 9029.24 9029.24

FORMIC 20.19 0.79 19.40 19.40 19.40

ACRYLIC 177.61 3.66 173.95 173.95 173.95

H2

BUTANOL

PROPANOL

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Mass Frac

THF

MAH 0.085 47 PPB 0.214

BUTANE 57 PPM 18 PPM 18 PPM 18 PPM

OXYGEN 0.091 0.096 179 PPM 179 PPM 179 PPM

N2 0.714 0.753 0.001 0.001 0.001

CO 0.009 0.009 15 PPM 15 PPM 15 PPM

CO2 0.016 0.017 232 PPM 232 PPM 232 PPM

WATER 0.083 1.000 1.000 1.000 0.124 0.740 0.779 0.740

MA 0.253 0.253

FORMIC 224 PPM 9 PPM 544 PPM 544 PPM 544 PPM

ACRYLIC 0.002 43 PPM 0.005 0.005 0.005

H2

BUTANOL

PROPANOL

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Page 12: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

11

Stream No. 17 18 19 20 21 22 23 24

Temperature °F 572 248 165 165 165 165 260 448

Pressure psia 29 26 24.5 24.5 29 29 26 24.5

Vapor Frac 0.00 0.94 0.00 0.00 0.00 0.00 0.35 0.62

Mole Flow lbmol/hr 1547 1551 1551 1551 1551 1463 1371 1371

Mass Flow lb/hr 35656 28093 28093 28093 28093 26503 37472 37472

Volume Flow cuft/hr 837 476 476 476 476 449 635 635

Enthalpy MMBtu/hr -186.23 -148.37 -177.36 -177.36 -177.36 -177.36 -355.25 -278.09

Mass Flow lb/hr

THF

MAH

BUTANE 0.63 0.63

OXYGEN 6.38 6.38

N2 42.40 56.19 56.19 56.19 56.19 42.40

CO 0.54 0.54

CO2 8.27 8.27

WATER 26374.79 27868.23 27868.23 27868.23 27868.23 26278.65 23785.44 23785.44

MA 9029.24 0.02 11272.79 11272.79

FORMIC 19.40 18.21 184.84 184.84

ACRYLIC 173.95 168.56 168.56 168.56 168.56 147.70 2229.13 2229.13

H2

BUTANOL

PROPANOL

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Mass Frac

THF

MAH

BUTANE 18 PPM 24 PPM 24 PPM 24 PPM 24 PPM 24 PPM

OXYGEN 179 PPM 241 PPM 241 PPM 241 PPM 241 PPM 241 PPM

N2 0.001 0.002 0.002 0.002 0.002 0.002

CO 15 PPM 20 PPM 20 PPM 20 PPM 20 PPM 20 PPM

CO2 232 PPM 312 PPM 312 PPM 312 PPM 312 PPM 312 PPM

WATER 0.740 0.992 0.992 0.992 0.992 0.992 0.635 0.635

MA 0.253 884 PPB 884 PPB 884 PPB 884 PPB 884 PPB 0.301 0.301

FORMIC 544 PPM 687 PPM 687 PPM 687 PPM 687 PPM 687 PPM 0.005 0.005

ACRYLIC 0.005 0.006 0.006 0.006 0.006 0.006 0.059 0.059

H2

BUTANOL

PROPANOL

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Page 13: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

12

Stream No. 25 26 27 28 29 30 31 32

Temperature °F 448 448 104 104 248 248 248 249

Pressure psia 26.0 29.0 29.0 29.0 26.0 26.0 26.0 29.0

Vapor Frac 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00

Mole Flow lbmol/hr 84 84 84 161 92 92 92 92

Mass Flow lb/hr 9153 9153 9153 9153 1661 1661 1661 1661

Volume Flow cuft/hr 129 129 107 111 28 28 28 28

Enthalpy MMBtu/hr -25.064 -25.064 -26.598 -25.259 -8.39 -9.96 -9.96 -9.96

Mass Flow lb/hr

THF

MAH 7627.83

BUTANE TRACE TRACE TRACE

OXYGEN TRACE TRACE TRACE

N2 TRACE TRACE TRACE

CO TRACE TRACE TRACE

CO2 TRACE TRACE TRACE

WATER 96.13 96.13 96.13 1497.52 1650.83 1651.03 1651.03 1651.03

MA 9029.22 9029.22 9029.22

FORMIC 1.19 1.19 1.19 1.19

ACRYLIC 26.25 26.25 26.25 26.25 8.30 8.31 8.31 8.31

H2

BUTANOL

PROPANOL

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Mass Frac

THF

MAH 0.833 453 PPB 453 PPB 453 PPB 453 PPB

BUTANE TRACE TRACE

OXYGEN TRACE TRACE TRACE

N2 TRACE TRACE TRACE

CO TRACE TRACE TRACE

CO2 TRACE TRACE TRACE

WATER 0.011 0.011 0.011 0.164 0.994 0.994 0.994 0.994

MA 0.986 0.986 0.986

FORMIC 130 PPM 130 PPM 130 PPM 130 PPM 765 PPM 765 PPM 765 PPM 765 PPM

ACRYLIC 0.003 0.003 0.003 0.003 0.005 0.005 0.005 0.005

H2

BUTANOL

PROPANOL

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Page 14: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

13

Stream No. 33 34 35 36 37 38 39 40

Temperature °F 249 433 444 444 445 464 70 70

Pressure psia 29 26 24.5 500 615 615 3500 614.7

Vapor Frac 0.00 0.37 0.64 0.00 0.00 0.00 1.00 1.00

Mole Flow lbmol/hr 83 220 220 78 78 78 426 426

Mass Flow lb/hr 1505 21286 21286 7648 7648 7648 858 858

Volume Flow cuft/hr 27 361 361 111 111 112 691 3937

Enthalpy MMBtu/hr -9.96 -1.06E+10 -7.17E+09 -13.984 -13.981 -13.909 -0.02 -0.02

Mass Flow lb/hr

THF

MAH 0.00 21071.51 21071.51 7627.81 7627.8 7627.81

BUTANE

OXYGEN

N2

CO

CO2

WATER 1495.87 42.65 42.65 1.621 1.621 1.621

MA

FORMIC 1.15 0.046 0.046 0.046

ACRYLIC 7.81 171.20 171.20 18.448 18.448 18.448

H2 858.233 858.233

BUTANOL

PROPANOL

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Mass Frac

THF

MAH 453 PPB 0.990 0.990 0.997 0.997 0.997

BUTANE

OXYGEN

N2

CO

CO2

WATER 0.994 0.002 0.002

212

PPM 212 PPM 212 PPM

MA

FORMIC 765 PPM 6 PPM 6 PPM 6 PPM

ACRYLIC 0.005 0.008 0.008 0.002 0.002 0.002

H2 1 1

BUTANOL

PROPANOL

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Page 15: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

14

Stream No. 41 42 43 44 45 46 47 48

Temperature °F 464 420 464 104 104 104 104 229

Pressure psia 614.7 614.7 614.7 362.6 362.6 362.6 362.6 616.2

Vapor Frac 1.00 0.87 1.00 0.75 1.00 1.00 1.00 1.00

Mole Flow lbmol/hr 426 504 928 928 694 35 660 660

Mass Flow lb/hr 858 8506 10447 10447 2043 102 1941 1941

Volume Flow cuft/hr 6865 6849 14972 11728 11584 579 11005 7909

Enthalpy MMBtu/hr 1.147 -12.762 -20.093 -27.074 -0.767 -0.038 -0.729 -0.142

Mass Flow lb/hr

THF 6079.498 6079.498 626.115 31.306 594.809 594.809

MAH 7627.813

BUTANE 1.749 1.749 0.291 0.015 0.276 0.276

OXYGEN

N2

CO

CO2 3.164 3.164 2.609 0.13 2.479 2.479

WATER 1.621 2837.164 2837.164 34.606 1.73 32.876 32.876

MA

FORMIC 0.046 0.046 0.046 <0.001 <0.001 <0.001 <0.001

ACRYLIC 18.448 18.463 18.463 0.016 0.001 0.015 0.015

H2 858.233 858.233 1380.055 1380.055 1378.238 68.912 1309.326 1309.326

BUTANOL 125.556 125.556 0.785 0.039 0.746 0.746

PROPANOL 0.949 0.949 0.015 0.001 0.014 0.014

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Mass Frac

THF 0.582 0.582 0.307 0.307 0.307 0.307

MAH 0.897

BUTANE 167 PPM 167 PPM 142 PPM 142 PPM 142 PPM 142 PPM

OXYGEN

N2

CO

CO2 303 PPM 303 PPM 0.001 0.001 0.001 0.001

WATER 191 PPM 0.272 0.272 0.017 0.017 0.017 0.017

MA

FORMIC 5 PPM 4 PPM 4 PPM 134 PPB 134 PPB 134 PPB 134 PPB

ACRYLIC 0.002 0.002 0.002 8 PPM 8 PPM 8 PPM 8 PPM

H2 1 0.101 0.132 0.132 0.675 0.675 0.675 0.675

BUTANOL 0.012 0.012 384 PPM 384 PPM 384 PPM 384 PPM

PROPANOL 91 PPM 91 PPM 7 PPM 7 PPM 7 PPM 7 PPM

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Page 16: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

15

Stream No. 49 50 51 52 53 54 55 56

Temperature °F 464 104 103 176 145 145 145 145

Pressure psia 614.7 362.6 16.0 14.5 13.5 12.0 12.0 14.5

Vapor Frac 1.00 0.00 0.01 0.62 0.60 0.33 0.60 1.00

Mole Flow lbmol/hr 660 234 234 234 1637 1637 1637 617

Mass Flow lb/hr 1940 8404 8404 8404 116082 116082 116082 38712

Volume Flow cuft/hr 10637 144 643 67820 28 1968 1968 276220

Enthalpy MMBtu/hr 0.985 -26.307 -26.307 -23.732 -33.665 -50.65 -50.65 -50.65

Mass Flow lb/hr

THF 594.758 5453.38 5453.38 5453.38 110277.9 110277.9 110277.9 36781.756

MAH

BUTANE 0.276 1.459 1.459 1.459 24.983

OXYGEN

N2

CO

CO2 2.479 0.554 0.554 0.554 2.739

WATER 32.876 2802.56 2802.56 2802.56 5688.02 5688.02 5688.018 1900.213

MA

FORMIC <0.001 0.046 0.046 0.046 <0.001

ACRYLIC 0.015 18.447 18.447 18.447 TRACE

H2 1309.32 1.818 1.818 1.818 1.88

BUTANOL 0.746 124.771 124.771 124.771 0.027

PROPANOL 0.014 0.934 0.934 0.934 0.006

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Mass Frac

THF 0.306 0.649 0.649 0.649 0.95 0.95 0.95 0.95

MAH

BUTANE 142 PPM 174PPM 174PPM 174PPM 645PPM 645PPM 645 PPM 645 PPM

OXYGEN

N2

CO

CO2 0.001 66 PPM 66 PPM 66 PPM 71 PPM 71 PPM 71 PPM 71 PPM

WATER 0.017 0.333 0.333 0.333 0.049 0.049 0.049 0.049

MA

FORMIC 134 PPB 5 PPM 5 PPM 5 PPM TRACE TRACE TRACE TRACE

ACRYLIC 8 PPM 0.002 0.002 0.002 TRACE TRACE TRACE TRACE

H2 0.675 216PPM 216PPM 216PPM 49 PPM 49 PPM 49 PPM 49 PPM

BUTANOL 384 PPM 0.015 0.015 0.015 706 PPB 706 PPB 706 PPB 706 PPB

PROPANOL 7 PPM 111PPM 111PPM 11 PPM 165 PPB 165 PPB 165 PPB 165 PPB

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Page 17: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

16

Stream No. 57 58 59 60 61 62 63 64

Temperature °F 151 174 174 174 241 328 291 284

Pressure psia 13.5 12.0 13.5 14.5 43.5 117.5 116.0 114.5

Vapor Frac 0.50 0.91 0 0 1 1 0.55 0.23

Mole Flow lbmol/hr 1637 1637 155 155 617 617 2272 2272

Mass Flow lb/hr 74701 74701 3058 3058 38712 38712 152630 152630

Volume Flow cuft/hr 1266 1266 53 53 106681 44387 2588 2588

Enthalpy MMBtu/hr -633.94 -346.34 -18.742 -18.742 -49.452 -48.214 -25.828 -45.218

Mass Flow lb/hr

THF 54337.4 54337.4 207.735 207.735 36781.76 36781.76 144235.8 144235.8

MAH

BUTANE 0.001 0.001 24.983 24.983

OXYGEN

N2

CO

CO2 TRACE TRACE 2.739 2.739

WATER 14388.3 14388.3 2705.84 2705.84 1900.213 1900.213 8242.045 8242.045

MA

FORMIC 0.046 0.046 <0.001 <0.001

ACRYLIC 65.5628 65.5628 18.447 18.447 TRACE TRACE

H2 TRACE TRACE 1.88 1.88

BUTANOL 5861.76 5861.76 124.744 124.744 0.027 0.027

PROPANOL

47.7289

8

47.7289

8 0.931 0.931 0.006 0.006

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Mass Frac

THF 0.727 0.727 0.068 0.068 0.95 0.95 0.945 0.945

MAH

BUTANE 311PPB 311PPB 345 PPM 645 PPM 710 PPM 710 PPM

OXYGEN

N2

CO

CO2 TRACE TRACE 71 PPM 71 PPM 78 PPM 78 PPM

WATER 0.193 0.193 0.885 0.885 0.049 0.049 0.054 0.054

MA

FORMIC 15 PPM 15 PPM TRACE TRACE TRACE TRACE

ACRYLIC 0.001 0.001 0.006 0.006 TRACE TRACE TRACE TRACE

H2 TRACE TRACE 49 PPM 49 PPM 53 PPM 53 PPM

BUTANOL 0.078 0.078 0.041 0.041 706 PPB 706 PPB TRACE TRACE

PROPANOL 0.001 0.001 304PPM 304PPM 165 PPB 165 PPB 93 PPB 93 PPB

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Page 18: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

17

Stream No. 65 66 67 68 69 70 71 72

Temperature °F 284 284 298 298 298 298 151 96

Pressure psia 114.5 116.0 114.0 112.5 114.0 116.0 14.7 14.7

Vapor Frac 0.23 1 0.49 0.97 0.00 0.00 0.45 0.00

Mole Flow lbmol/hr 2272 568 1772 1772 49 49 49 49

Mass Flow lb/hr 152630 35185 127779 127779 3526 3526 3526 3526

Volume Flow cuft/hr 2588 39054 2166 2166 78 78 9838 65

Enthalpy MMBtu/hr -45.218 -45.218 -555.774 -281.775 -4.147 -4.147 -4.147 -4.516

Mass Flow lb/hr

THF 144235.8 33255.34 127779.4 127779.4 3526.421 3526.421 3526.421 3526.421

MAH

BUTANE 24.983 TRACE TRACE TRACE TRACE

OXYGEN

N2

CO

CO2 2.739 TRACE TRACE TRACE TRACE

WATER 8242.045 1900.213 TRACE TRACE TRACE TRACE

MA

FORMIC TRACE <0.001 <0.001 <0.001 <0.001

ACRYLIC TRACE TRACE TRACE TRACE TRACE

H2 1.88 TRACE TRACE TRACE TRACE

BUTANOL 0.027 0.027 0.027 0.027

PROPANOL 0.003 0.003 0.003 0.003 0.003

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Mass Frac

THF 0.945 0.945 1 1 1 1 1 1

MAH

BUTANE 710 PPM 710 PPM TRACE TRACE TRACE TRACE

OXYGEN

N2

CO

CO2 78 PPM 78 PPM TRACE TRACE TRACE TRACE

WATER 0.054 0.054 TRACE TRACE TRACE TRACE

MA

FORMIC TRACE TRACE 9 PPB 9 PPB 9 PPB 9 PPB

ACRYLIC TRACE TRACE TRACE TRACE TRACE TRACE

H2 53 PPM 53 PPM TRACE TRACE TRACE TRACE

BUTANOL TRACE TRACE 8 PPM 8 PPM 8 PPM 8 PPM

PROPANOL 93 PPB 93 PPB 886 PPB 886 PPB 886 PPB 886 PPB

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Page 19: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

18

Stream No. 73 74 75 76 77 78

Temperature °F 284 284 284 113 113 113

Pressure psia 116.0 116.0 16.0 14.5 14.5 14.5

Vapor Frac 1.00 1.00 1.00 0.00 1.00 0.00

Mole Flow lbmol/hr 28 540 540 540 2 538

Mass Flow lb/hr 1759 33426 33426 33426 60 33365

Volume Flow cuft/hr 1953 37102 269831 1358 751 608

Enthalpy MMBtu/hr -2.261 -42.957 -42.957 -52.462 -0.076 -52.387

Mass Flow lb/hr

THF 1662.767 31592.57 31592.57 31592.57 55.753 31536.108

MAH

BUTANE 1.249 23.734 23.734 23.734 0.197 23.526

OXYGEN

N2

CO

CO2 0.137 2.602 2.602 2.602 0.418 2.185

WATER 95.011 1805.202 1805.202 1805.202 2.346 1803.493

MA

FORMIC TRACE TRACE TRACE TRACE TRACE TRACE

ACRYLIC TRACE TRACE TRACE TRACE

H2 0.094 1.786 1.786 1.786 1.724 0.062

BUTANOL TRACE <0.001 <0.001 <0.001 TRACE <0.001

PROPANOL <0.001 0.003 0.003 0.003 TRACE 0.003

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Mass Frac

THF 0.945 0.945 0.945 0.945 0.922 0.945

MAH

BUTANE 710 PPM 710 PPM 710 PPM 710 PPM 0.003 705 PPM

OXYGEN

N2

CO

CO2 78 PPM 78 PPM 78 PPM 78 PPM 0.007 65 PPM

WATER 0.054 0.054 0.054 0.054 0.039 0.054

MA

FORMIC TRACE TRACE TRACE TRACE TRACE TRACE

ACRYLIC TRACE TRACE TRACE TRACE

H2 53 PPM 53 PPM 53 PPM 53 PPM 0.029 2 PPM

BUTANOL TRACE TRACE TRACE TRACE TRACE TRACE

PROPANOL 93 PPM 93 PPM 93 PPM 93 PPM 17 PPM 91 PPB

METHANOL

GAMMA-01

1:4-B-01

METHANE

PROPANE

SUCCI-02

Page 20: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

19

Results

Based on our Aspen simulation we have created a standard PFD for your process. Again the

process was broken up into two pieces, the first ending with the production of maleic anhydride

and the second converting the maleic anhydride to tetrahydrofuran.

The selectivities generated in the Aspen simulation were different from the values found in

patent no. 4,317,778. This is probably due to thermodynamic model limitation. Multiple models

were evaluated an each gave the selectivity results. The process simulation values are shown

below.

Maleic Anhydride 82.3%

Carbon Monoxide 14.6%

Acrylic Acid 2.6%

Formic Acid 0.5%

The final process flow diagram is presented along with the equipment summary and economic

analysis. These can be found on the proceeding pages.

Page 21: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

20

Equipment Summary

The following tables present the equipment summary for the entirety of the process of the

production of tetrahydrofuran from n-butane with maleic anhydride as the reaction intermediate.

Each piece of equipment is specifically sized based upon information taken from the attached

Aspen Plus Simulation, and heuristics found in Chapter 11 of Analysis, Synthesis and Design of

Chemical Processes. There are several key portions of the equipment summary to take note of,

which will be discussed in more detail below.

1. Certain pieces of equipment are either 316 SS plated, or their primary material of

construction is 316 SS.

Equipment such as pumps, heat exchangers, compressors, and towers that are 316

SS plated have been manufactured this way because they come into contact with

maleic anhydride or maleic acid.

Maleic anhydride and maleic acid are extremely corrosive to carbon steel, and

thus any equipment manufactured with carbon steel that comes in contact with

these chemicals will become a severe process safety hazard.

Equipment such as fired heaters and reactors are completely constructed of 316

SS. This is due to the large amount of heat and high temperatures that these

pieces of equipment must withstand. Weaker materials such as carbon steel will

not be able to hold up under these conditions and will eventually become a severe

process safety hazard.

2. Certain heat exchangers are floating head heat exchangers, while others are double pipe

heat exchangers.

Most heat exchangers in this process require a large heat transfer area due to the

large heat duties. Floating head heat exchangers, while more expensive than

double pipe heat exchangers, can accommodate this large area.

When possible, double pipe heat exchangers are used when the heat transfer area

is small enough.

3. All distillation towers and vertical vessels are priced with demisters included in the cost.

4. All trays in distillation towers are valve type trays. This decision was made to reduce the

cost of the distillation towers, as valve trays are less expensive than sieve trays.

5. More detailed explanations of equipment sizing calculations can be found in Appendix A.

Page 22: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

21

Table 2. Equipment Summary.

Compressors and Drives

C-101 A/B C-201 A/B

Carbon Steel 316 SS

Centrifugal Centrifugal

Power =2408 hp Power = 271 hp

72% Efficiency 72% Efficiency

C-202 A/B C-203 A/B

Carbon Steel Carbon Steel

Centrifugal Centrifugal

Power = 554 hp Power = 573 hp

72% Efficiency 72% Efficiency

Fired Heaters

H-101 H-102

Required heat load = 3,150,000 btu/hr Required heat load = 9,610,000 btu/hr

Tubes = Stainless Steel Tubes = Stainless Steel

80% thermal efficiency 80% thermal efficiency

Maximum pressure rating of 40 psi Maximum pressure rating of 40 psi

H-103

Required heat load = 16,300,000 btu/hr

Tubes = Stainless Steel

80% thermal efficiency

Maximum pressure rating of 30 psi

Heat Exchangers

E-101 E-102

A = 1229 ft2 A = 207 ft

2

1-2 exchanger, floating head, carbon steel 1-2 exchanger, floating head, 316 SS Plated

Q = 4,330,000 btu/hr Q = -6,370,000 btu/hr

Maximum pressure rating of 15 psi Maximum pressure rating of 40 psi

E-103 E-104

A = 11846 ft2 A =1782 ft

2

1-2 exchanger, floating head, 316 SS Plated 1-2 exchanger, floating head, 316 SS Plated

Q = 12,800,000 btu/hr Q = -29,000,000 btu/hr

Maximum pressure rating of 40 psi Maximum pressure rating of 35 psi

E-105 E-106

A = 93 ft2 A = 5854 ft

2

1-2 exchanger, double pipe, 316 SS Plated 1-2 exchanger, floating head, 316 SS Plated

Q = -1,540,000 btu/hr Q = 2,890,000 btu/hr

Maximum pressure rating of 30 psi Maximum pressure rating of 30 psi

Page 23: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

22

Heat Exchangers (Continued)

E-107 E-201

A = 3633.2 ft2 A = 1964 ft

2

1-2 exchanger, floating head, 316 SS Plated 1-2 exchanger, floating head, carbon steel

Q = -1,570,000 btu/hr Q = 1,170,000 btu/hr

Maximum pressure rating of 30 psi Maximum pressure rating of 615 psi

E-202 E-203

A = 190 ft2 A = 408 ft

2

1-2 exchanger, floating head, 316 SS Plated 1-2 exchanger, floating head, carbon steel

Q = 59,000 btu/hr Q = -6,980,000 btu/hr

Maximum pressure rating of 615 psi Maximum pressure rating of 365 psi

E-204 E-205

A = 2282 ft2 A = 743 ft

2

1-2 exchanger, floating head, carbon steel 1-2 exchanger, floating head, carbon steel

Q = 1,130,000 btu/hr Q = 2,580,000 btu/hr

Maximum pressure rating of 615 psi Maximum pressure rating of 15 psi

E-206 E-207

A = 7281 ft2 A = 2271 ft

2

1-2 exchanger, floating head, carbon steel 1-2 exchanger, floating head, carbon steel

Q = 23,700,000 btu/hr Q = -17,000,000 btu/hr

Maximum pressure rating of 15 psi Maximum pressure rating of 15 psi

E-208 E-209

A = 9777 ft2 A = 672 ft

2

1-2 exchanger, floating head, carbon steel 1-2 exchanger, floating head, carbon steel

Q = 18,600,000 btu/hr Q = -19,400,000 btu/hr

Maximum pressure rating of 120 psi Maximum pressure rating of 120 psi

E-210 E-211

A = 1079 ft2 A = 104 ft

2

1-2 exchanger, floating head, carbon steel 1-2 exchanger, floating head, carbon steel

Q = -8,470,000 btu/hr Q = -370,000 btu/hr

Maximum pressure rating of 15 psi Maximum pressure rating of 15 psi

Reactors

R-101 R-201

Stainless Steel, V5P6O50 Catalyst Stainless Steel, CuO/ZnO/Al2O3/Cr2O3 Catalyst

V = 1400 ft3 V = 42 ft

3

Maximum Pressure Rating of 40 psi Maximum Pressure Rating of 610 psi

Maximum catalyst temperature of 1030 oF Maximum catalyst temperature of 700

oF

Page 24: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

23

Pumps

P-101 A/B P-102 A/B

Centrifugal/Electric drive Centrifugal/Electric drive

Carbon Steel Carbon Steel

Actual power = 0.443 hp Actual power = 0.13 hp

Efficiency 85% Efficiency 85%

P-103 A/B P-104 A/B

Centrifugal/Electric drive Centrifugal/Electric drive

316 SS 316 SS

Actual power = 0.233 hp Actual power = 0.603 hp

Efficiency 85% Efficiency 85%

P-105 A/B P-106 A/B

Centrifugal/Electric drive Centrifugal/Electric drive

316 SS 316 SS

Actual power = 0..434 hp Actual power = 0.04 hp

Efficiency 85% Efficiency 85%

P-107 A/B P-201 A/B

Centrifugal/Electric drive Centrifugal/Electric drive

316 SS Stainless steel

Actual power = 0.0.334 hp Actual power = 2.81 hp

Efficiency 85% Efficiency 85%

P-202 A/B P-203 A/B

Centrifugal/Electric drive Centrifugal/Electric drive

Carbon Steel Carbon Steel

Actual power = 1.8 hp Actual power = 3.1 hp

Efficiency 85% Efficiency 85%

P-204 A/B

Centrifugal/Electric drive

Carbon Steel

Actual power = 0.2.41 hp

Efficiency 85%

Towers

T-101 T-102

Stainless Steel Clad Stainless Steel Clad

3 SS sieve trays plus reboiler and condenser 30 SS sieve trays plus reboiler and condenser

70% efficient trays 70% efficient trays

Additional feed ports on tray 3 Reflux ratio 0.06

24-in tray spacing 24-in tray spacing

Column height 7 ft Column height 70 ft

Diameter 0.3 ft Diameter 3 ft

Maximum Pressure Rating 35 psi Maximum Pressure Rating 35 psi

Page 25: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

24

Towers (Continued)

T-103 T-201

Stainless Steel Clad Carbon Steel

30 SS sieve trays plus reboiler and condenser 10 CS sieve trays plus reboiler and condenser

70% efficient trays 70% efficient trays

Reflux ratio 0.104 Reflux ratio 2

24-in tray spacing 24-in tray spacing

Column height 70 ft Column height 23 ft

Diameter 3 ft Diameter 1 ft

Maximum Pressure Rating 35 psi Maximum Pressure Rating 35 psi

T-202

Carbon Steel

20 CS sieve trays plus reboiler and condenser

70% efficient trays

Reflux ratio 3

24-in tray spacing

Column height 47 ft

Diameter 2 ft

Maximum Pressure Rating 35 psi

Vessels

V-101 V-102

Horizontal Horizontal

316 SS Clad 316 SS Clad

L/D=3 L/D=4

Volume=75 ft3 Volume=5 ft

3

V-201 V-202

Vertical Horizontal

Carbon Steel Carbon Steel

L/D=3 L/D=3

Volume=1955 ft3 Volume=350 ft

3

V-203

Horizontal

Carbon Steel

L/D=3

Volume=380 ft3

Page 26: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

25

Capital and Manufacturing Costs

The economic analysis of this process was completed with the goal of finding the net present

value of the project after 10 years of operation. The cost of land for the facility is estimated at

$455,000.10

CAPCOST was used for the bare module cost of the equipment needed. The bare

module total was then scaled to the total module cost by multiplying by a factor of 1.18. The

total module cost could then be scaled to the desired grassroots cost by adding a grassroots factor

of .5 times the bare module cost. This lead to a grassroots cost, and therefore fixed capital

investment, of approximately $54,936,336.00. It is assumed that 60% of the FCI will be spent in

year 1 of construction and the other 40% will be spent in year 2. There are 33 non-particulate

processing steps in the process meaning 17 operators will be needed. At an approximate salary

of $52,900 per year, the cost of labor will be $899,300.00. Chemical costs were found from

several sources and the prices are summarized in Table 3 below. For the oxygen needed in this

process, air will be pumped in and therefore oxygen did not have a cost associated with it. Also,

there is a catalyst present in Reactor R-101 that was not considered in the raw material.

Table 3. Chemical Pricing

Component Price per lb

N-butane $ 0.33

Water $ 0.00003

Hydrogen $ 2.66

Oxygen $ -

Tetrahydrofuran $ 1.55 References 2,6, 9, 15

Using the prices from the table above, the raw material costs for this process are about

$36,103,813.05. The calculation of utilities has already been explained and results in a yearly

utility cost of $6,804,298.76. The only other cost needed to calculate the yearly cost of

manufacture is the cost of waste treatment. The majority of the waste streams in the process are

inert gases. These will be sent to a flare and burned. It was assumed that there is not a gas

associated with this. Two of the waste water streams were greater than 99% pure water. For this

reason, primary waste water treatment was priced for these streams. A third waste water stream

contained enough contaminates that it was assumed secondary waste water treatment would be

needed. The total for waste treatment came to $5,400 per year. Using all of above values, the

cost of manufacture without deprecation is approximately $65,127,254.50 per year.

A standard MACRS deprecation schedule was used starting in year 3. Tax is approximated at

40% based on a net taxable income of over $18 million and an interest rate of 10% p.a.19

It was

also assumed that the salvage value would be zero at the end of this process lifetime.

Page 27: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

26

Table 4 below is an overall summary of the economic analysis of the base case design for this

process. All calculations are shown in Appendix A. The grassroots cost of this facility will be

approximately $54,936,336.00. The land will cost $455,000. Working capital for this project is

assumed to be 10% of the fixed capital investment which is $5,493,633.60. There will not be

salvage at the end of this project. Tax is assumed to be 40% and the interested rate used is 10%.

The net present value of this project, after 2 years of construction and 10 years of operation is

-$67,659,173.42. Assuming the 10% interest rate, it would be more profitable to invest the

grassroots cost than it would be to build this facility. Figures 3-6, show the after tax cash flow,

cumulative cash flow, discounted cash flow, and discounted cumulative cash flow respectively.

Page 28: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

27

Table 4. Economic Analysis (in millions of dollars).

End of

Year Investment dk R COMd

After Tax

Profit

After Tax

Cash Flow

Cumulative

Cash Flow

Discounted

Cash Flow

Discounted

Cumulative Cash Flow

0.00 (0.46) 0.00 0.00 0.00 0.00 (0.46) (0.46) (0.46) (0.46)

1.00 (32.96) 0.00 0.00 0.00 0.00 (32.96) (32.96) (29.97) (30.42)

2.00 (27.47) 0.00 0.00 0.00 0.00 (27.47) (27.47) (22.70) (53.12)

3.00 0.00 10.99 47.60 65.13 (11.41) (0.42) (27.89) (0.31) (53.44)

4.00 0.00 17.58 47.60 65.13 (14.04) 3.54 (24.35) 2.42 (51.02)

5.00 0.00 10.55 47.60 65.13 (11.23) (0.68) (25.03) (0.42) (51.44)

6.00 0.00 6.33 47.60 65.13 (9.54) (3.21) (28.25) (1.81) (53.26)

7.00 0.00 6.33 47.60 65.13 (9.54) (3.21) (31.46) (1.65) (54.91)

8.00 0.00 3.16 47.60 65.13 (8.28) (5.11) (36.57) (2.38) (57.29)

9.00 0.00 0.00 47.60 65.13 (7.01) (7.01) (43.58) (2.97) (60.26)

10.00 0.00 0.00 47.60 65.13 (7.01) (7.01) (50.59) (2.70) (62.97)

11.00 0.00 0.00 47.60 65.13 (7.01) (7.01) (57.60) (2.46) (65.43)

12.00 5.95 0.00 47.60 65.13 (7.01) (7.01) (64.62) (2.23) (67.66)

Page 29: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

28

Figure 3. Base case after tax cash flow (in millions of dollars).

Figure 4. Base case cumulative cash flow (in millions of dollars).

(35,000,000.00)

(30,000,000.00)

(25,000,000.00)

(20,000,000.00)

(15,000,000.00)

(10,000,000.00)

(5,000,000.00)

0.00

5,000,000.00

10,000,000.00

1 2 3 4 5 6 7 8 9 10 11 12 13

(70,000,000.00)

(60,000,000.00)

(50,000,000.00)

(40,000,000.00)

(30,000,000.00)

(20,000,000.00)

(10,000,000.00)

0.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Page 30: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

29

Figure 5. Base case discounted cash flow (in millions of dollars).

Figure 6. Base case discounted cumulative cash flow (in millions of dollars).

(35,000,000.00)

(30,000,000.00)

(25,000,000.00)

(20,000,000.00)

(15,000,000.00)

(10,000,000.00)

(5,000,000.00)

0.00

5,000,000.00

1 2 3 4 5 6 7 8 9 10 11 12 13

(80,000,000.00)

(70,000,000.00)

(60,000,000.00)

(50,000,000.00)

(40,000,000.00)

(30,000,000.00)

(20,000,000.00)

(10,000,000.00)

0.00

1 2 3 4 5 6 7 8 9 10 11 12 13

Page 31: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

30

Optimization

After inspection of the waste streams surrounding the pressure swing distillation columns it was

decided that it was worthwhile economically to attempt to recover some of the THF that is sent

to waste. The main sources of waste were the top of the flash vessel in the recycle, the purge

stream, and the bottoms of the first tower.

It was decided to eliminate the flash vessel and add a small distillation column to purify some of

the THF in the purge stream. This column was designed with a similar temperature and pressure

of the second tower in the pressure swing. This helps to eliminate the need to heat exchangers

and pressure changers. The original towers were optimized by adjusting the reflux ratios and the

reboiler/condenser conditions. This eliminated most of the THF out of the bottoms of the first

and increased the mass flow of THF out of the second bottoms stream. A list of the streams that

exit the pressure swing system in the two scenarios are in the following charts. They show the

increase in product given the same initial feed.

Page 32: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

31

Figure 7. Optimization simulation.

52

5954

53

57

58

60

56

63 64 65

55

61

62

T-201

S-202

T-202

CV-203 E-211

C-202

C-203

CV-204

T-203

Page 33: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

32

Table 5. Purge stream flow rates before optimization.

Stream # 60 72 73 77

Description Waste Product Waste Waste

Bottoms T-201 Bottoms T-202 Purge Top V-204

THF

(lb/hr) 207.74 3526.42 1662.77 55.75

Waste = 1926.25

Product = 3526.42073

Table 6. Purge stream flow rates after optimization.

Stream # 53 65 61 62

Description Waste Product Waste Product

Bottoms T-201 Bottoms T-202 Distillate T-203 Bottoms T-203

THF

(lb/hr) 0.0049 4169.68 742.87 514.37

Waste = 742.88

Product = 4169.68

This optimization adds another operator to work the additional distillation column per shift, and

the capital cost of buying the tower. It also lowered the capital cost of the other two towers and

increased the product flow. The following chart summarizes the changes in the various cost and

increased revenue. It was decided that the optimization would ultimately increase our future net

value versus the base case design.

Table 7. Base case costs vs optimized costs.

Base Case Optimized

FCI $ 54,936,336.00 $ 46,174,094.40

CUT $ 6,804,298.76 $ 9,445,033.20

COL $ 899,300.00 $ 952,200.00

COMd $ 65,127,254.50 $ 66,988,807.65

CCP $ (64,615,384.39) $ (45,309,357.73)

NPV $ (67,659,173.42) $ (52,369,898.26)

Safety and Environmental

It is suggested that all personal wear appropriate clothing for protection. Long pants and steel

toed shoes are best. Also a hard hat, safety glasses, and ear plugs are strongly recommended.

Page 34: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

33

Chemical Hazards

No part in this process is meant for human consumption and therefore should not be ingested by

any living creature. Many of the raw materials and products are toxic and potentially poisonous

if eaten. Another caution must be taken around exposing the streams to too much heat, flame, or

oxidizers.10

For the products that are present in the greatest quantities the National Fire Protection

Association values are included in Appendix C.

Process Hazards

The process is operated at the temperatures between 104°F and 500°F, and pressures between

14.5 psi and 145 psi, which will not cause severe processing difficulties and hazards, with the

exception of R-101 and R-201.

The first reactor, R-101, producing MAH operates at a high temperature. The reaction takes

place in the vapor phase, so the high temperature is required to maintain all species in the vapor

phase. Also, the selectivity and reaction rates are higher at high temperature. In R-201, the

reaction is operated at a high pressure. This is from the favorable equilibrium conversion and

increased reaction rate.

MAH is corrosive, maleic acid is harmful, and THF is flammable. The corrosion of the piping

and equipment over time may occur. Routine inspection should be practiced.

Extra care must be taken into providing proper containment, pressure reliefs, and temperature

control for the process.

Waste Treatment

This process has a large amount of waste streams. Conveniently, most of the waste streams are

vapor and inert gases with a small amount of unreacted material. All of these waste streams can

be burned to reduce the components to more environmentally friendly components. It may be

necessary to obtain EPA certifications on this exhaust but is a viable method of waste treatment

on these streams. There are 3 other waste streams that are composed mainly of water. The

distillate out of T-103 as well as the distillate out of T-102 are both over 99% water. For that

reason, they have been sent to a primary waste water treatment operation to filter these streams.

The bottoms of T-201 are about 84% water with a more significant amount of THF. It will be

sent through secondary waste water treatment. This includes filtration and processing through

activated sludge to clean up this waste water.

Page 35: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

34

Conclusion

The optimization presented does not make the process profitable however it reduces the deficit.

We suggest that further optimization be explored before construction of the plant begins. After

the process is running fine tuning and final optimization may be determined. The main reason

this process is not profitable is because of the high cost of hydrogen. We suggest exploring more

profitable final products using Tetrahydrofuran.

Page 36: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

35

References

1. Acrylic Acid: MSDS No. A1562 [Online]: Avantor Performance Materials, Inc.: Center

Valley, PA, Feb 28, 2011. http://www.avantormaterials.com/documents/MSDS/usa/

English/A1562_msds_us_Default.pdf (accessed Dec 02, 2011).

2. Amos, W.A.; Costs of Storing and Transporting Hydrogen; DE-AC36-83CH10093;

National Renewable Energy Laboratory, Golden, CO, 1998.

3. Blum, P. R.; Nicholas, M. L. Preparation of Maleic Anhydride Using Fluidized Catalysts.

U.S. Patent 4,317,778, Dec 29,1980.

4. Budge, J. R.; Attig, T. G. Vapor-phase Hyrdogenation of Maleic Anhydride to

Tetrahydrofuran and Gamma-butyrolactone. U.S. Patent 5,072,009, Dec 10, 1991.

5. Butane; MSDS No. 1807 [Online]: Hovensa LLC: Christainsted, VI, May 1, 2006.

http://www.hovensa.com/pdf/butane.pdf (accessed Dec 02, 2011)

6. CW Price Report. Chemical Week [Online] May 3, 2010; 172(10):69. Academic Search

Premier. http:/ http://web.ebscohost.com.proxy.mul.missouri.edu (accessed November 7,

2011).

7. Formic Acid; MSDS No. F5956 [Online]: Avantor Performance Materials, Inc.: Center

Valley, PA, Aug 24, 2011. http://www.avantormaterials.com/documents/MSDS/usa/

English/F5956_msds_us_Default.pdf (accessed Dec 02, 2011).

8. Hydrogen, compressed; MSDS No. 1009 [Online]: Air Products and Chemicals, Inc.:

Allentown, PA, June 1994. http://avogadro.chem.iastate.edu/MSDS/hydrogen.pdf

(accessed Dec 02, 2011).

9. ICIS. http://www.icis.com/chemicals/channel-info-chemicals-a-z/ (accessed Dec 03,

2011).

10. Land Watch. http://www.landwatch.com/Pike-County-Missouri-Land-for-sale/ pid/

146300329 (accessed Dec 03, 2011).

11. Lewis, R. J., Sr. Hazardous Chemicals Desk Reference, 5th

ed.; John Wiley & Sons, Inc.:

New York, 2002; pp 24-1132.

12. Luyben, W.L,; Chien, I.L. Pressure-Swing Azeotropic Distillation. Design and Control of

Distillation Systems for Separating Azeotropes; John Wiley & Sons, Inc.: New Jersey, pp

149-162.

13. Maleic Acid; MSDS No. M0325 [Online]: Avantor Performance Materials, Inc.: Center

Valley, PA, March 08, 2011. http://www.avantormaterials.com/documents/MSDS/usa/

English/M0325_msds_us_Default.pdf (accessed Dec 02,2011).

14. Maleic Anhydride; MSDS No. M0364 [Online]: Avantor Performance Materials, Inc.:

Center Valley, PA, March 03, 2011. http://www.avantormaterials.com/documents/

MSDS/usa/English/M0364_msds_us_Default.pdf (accessed Dec 02 2011).

15. Matheson Home Page. http://www.mathesongas.com (accessed Nov 10, 2011).

16. n-Butyl Alcohol; MSDS No. B5860 [Online]: Avantor Performance Materials, Inc.:

Center Valley, PA, Aug 26, 2011. http://www.avantormaterials.com/documents/MSDS/

usa/English/B5860_msds_us_cov_Default.pdf (accessed Dec 02, 2011).

Page 37: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

36

17. Ninagawa, S. Recovery of Maleic Acid from its Gaseous Mixtures with Acetic Acid. U.S.

Patent 3,624,148, Nov 30, 1971.

18. Tetrahydrofuran; MSDS No. T1222 [Online]: Avantor Performance Materials, Inc.:

Center Valley, PA, Aug 30, 2011. http://www.avantormaterials.com/documents/MSDS/

usa/English/T1222_msds_us_cov_Default.pdf (accessed Dec 02, 2011).

19. Turton, R.; Bailie, R.; et. al. Analysis, Synthesis, and Design of Chemical Processes;

Pearson Education: Boston, 2009; pp 5-1043.

20. Slinkard, W. E.; Baylis, A. B. Vapor Phase Oxidation of Butane Producing Maleic

Anhydride and Acetic Acid. U.S. Patent 4,052,417, Nov 6, 1975.

Page 38: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

37

Appendix A – Sample Calculations

Mass and Energy Balances

Overall

An inspection of all the mass flowing into and out of the system was performed to ensure that the

process did not break the law of conservation of mass. The following charts show that the

system does indeed preserve this law.

(11)

Table A.1. Mass flow of input streams.

Stream # 1 2 10 39 SUM

Component Mass Flow lb/hr

Water 0.00 495.20 30887.20 858.23 32240.63

Butane 5500.45 0.00 0.00 0.00 5500.45

Oxygen 0.00 19754.40 0.00 0.00 19754.40

CO2 0.00 50.33 0.00 0.00 50.33

N2 0.00 64436.36 0.00 0.00 64436.36

Total 121982 lb/hr

Page 39: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

38

Table A.2. Mass flow of output streams.

Stream # 13 22 33 46 60 72 73

Component Mass Flow lb/hr

Water 10623.85 26278.65 1495.87 1.73 2705.84 0.00 95.01

Butane 4.89 0.63 0.00 0.01 0.00 0.00 1.25

Oxygen 8238.82 6.38 0.00 0.00 0.00 0.00 0.00

MAH 0.00 0.54 0.00 0.00 0.00 0.00 0.00

CO 775.15 8.27 0.00 0.13 0.00 0.00 0.00

CO2 1427.22 18.21 0.00 0.00 0.00 0.00 0.14

Formic 0.79 147.70 1.15 0.00 0.05 0.00 0.00

Acrylic 3.66 42.40 7.81 0.00 18.45 0.00 0.00

N2 64393.97 0.02 0.00 0.00 0.00 0.00 0.00

THF 0.00 0.00 0.00 31.31 207.74 3526.42 1662.77

Butanol 0.00 0.00 0.00 0.04 124.74 0.03 0.00

Propanol 0.00 0.00 0.00 0.00 0.93 0.00 0.00

Methanol 0.00 0.00 0.00 0.00 0.00 0.00 0.00

H2 0.00 0.00 0.00 68.91 0.00 0.00 0.09

Stream # 77 SUM

Component Mass Flow lb/hr

Water 2.35 41203.30

Butane 0.20 6.98

Oxygen 0.00 8245.20

MAH 0.00 0.54

CO 0.42 783.97

CO2 0.00 1445.57

Formic 0.00 149.69

Acrylic 0.00 72.32

N2 55.75 64449.74

THF 0.00 5428.23

Butanol 0.00 124.81

Propanol 0.00 0.93

Methanol 1.72 1.72

H2 0.00 69.01 Total 121982 lb/hr

An inspection of all the energy flowing into and out of the system was preformed to ensure that

the process did not break the law of conservation of energy. The energy values were found using

the aspen stream results and equipment results. The net energy show in the chart does equal zero

however. This can be explained by Aspen having pump and compressor efficiencies of around

85%. This energy loss accounts for the difference.

Page 40: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

39

(12)

Table. A.3. Energy balance for the process.

Stream #

Energy

(MMBTU/hr) Source

Net Energy

(MMBTU/ hr)

IN Heat Exchangers 4.32

1 -6.00 Towers -9.31

2 -3.24 Reactors -62.12

10 -211.08 Pumps/Compressors 9.69

39 -0.02

SUM = -220.33 NET = -57.42

OUT

13 -66.25

22 -177.36

33 -9.96

46 -0.04

60 -18.74

72 -4.52

73 -2.26

77 -0.08

SUM = -279.21 NET = -1.45

Page 41: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

40

Reboiler and Reflux Streams

T-102

Table A.4. T-102 data from Aspen Plus.

Stage Temp Press.

Heat

duty

Liquid

enthalpy

Vapor

enthalpy Liquid Vapor Liquid Vapor

F psia

MMBt

u/hr

MMBtu

lbmol

MMBtu

lbmol

lbmol/

hr

lbmol/

hr lb/hr lb/hr

1 164.6 29.01 -28.99 -0.12 -0.02 1550.9 0.00 28093 0.00

2 248.5 29.01 0.00 -0.12 -0.10 91.03 1550.9 1652.6 28093.0

… … … … … … … … …

29 259.7 29.01 0.00 -0.16 -0.10 671.84 698.96 24332 13140

30 447.7 29.01 12.80 -0.30 -0.11 83.52 588.32 9152.8 15179.3

Table A.5. T-102 mass fractopm data from Aspen Plus.

Stage WATER BUTANE OXYGEN CO CO2 FORMIC ACRYLIC N2 MA

30 0.400 0.000 0.000 0.000 0.000 0.003 0.038 0.000 0.559

Stream 18

T18 = Tstage 2

18

(13)

(14)

Total mass flow from stage 1

Total mole flow from stage 1

(15)

(16)

Mass fractions same as stream 22

(17)

Stream 19

T19 = Tstage 1

18

(18)

Page 42: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

41

(19)

Total mass flow from stage 1

Total mole flow from stage 1

Volumetric flow rate, see stream 18

Enthalpy same as stream 22

Stream 20

Same as stream 19

Stream 21

Same as 22 expect mass, mole, and volumetric flow rate

Mass, mole, and volumetric flow rate, see stream 18

Stream 23

T23 = Tstage 29

(20)

(21)

Total mass flow from stage 30

Total mole flow from stage 30

Volumetric flow, see stream 18

( ) ( )

( )

(22)

Mass fraction determined form Aspen Plus, stream 30.

Stream 24

T24 = Tstage 30

18

(23)

(24)

Total mass flow from stage 30

Total mole flow from stage 30

Volumetric flow, see stream 18

Page 43: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

42

( ) ( )

( )

(25)

Mass fraction same as 23

Stream 25

T25 = T26

18

(26)

Composition and flow rates are the same at stream 26

Heat Integration

In this process, there are a total of 10 process streams that require heating or cooling. These are

listed in Table A.6.

Table A.6. Heat exchange stream data.

Stream Condition Tin (°F) Tout (°F) Qavailable

(BTU/hr)

8 Hot 770 203 15600633

26 Hot 447.7 104 1533989

43 Hot 464 104 6980495

75 Hot 236.3 113 9505120

71 Hot 150.8 96 369413

11 Cold 58.8 203 -4326818

40 Cold 70 464 -1167948

37 Cold 444.8 464 -71642

48 Cold 228.8 464 -1127207

51 Cold 102.9 176 -2575080

Total Q = 24720955

E m (lb/hr) Cp

(BTU/lb)

mCp

(BTU/(hr·°F))

E-102 90237 0.3049 27514

E-105 9153 0.4876 4463

E-203 10447 1.8561 19390

E-210 33426 2.3063 77089

E-211 3526 1.9116 6741

E-101 30887 0.9715 30006

E-201 858 3.4540 2964

E-202 7648 0.4879 3731

E-204 1941 2.4697 4793

E-205 8404 4.1917 35227

Page 44: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

43

In Table A.6, the data of flow rate ṁ, Tin, Tout, Qavailable are obtained from the Aspen. Cp is

calculated using the following equation

( ) (27)

Using a minimum approach temperature is 10°F the Temperature Interval Diagram was

constructed.

Page 45: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

44

Figure A.1. Temperature Interval Diagram.

Stream 8 26 43 75 71 11 40 37 48 51

mCp 27514.34 4463.16 19390.26 77089.38 6741.11 30005.67 2964.34 3731.35 4792.55 35226.81 (BTU/(hr·°F)) ∑mCpΔT

770 760 (BTU/hr)

A 8144245

474 464

B 160261

464 454

C 325831

454.8 444.8

D 277949

447.7 437.7

E 9219338

236.3 226.3

F 2923982

213 203

G 954871

203 193

H 1155537

186 176

I 1152658

150.8 140.8

J 1492612

113 103

K -21379

104 94

L -209831

96 86

M -816154

68.8 58.8

∑ 24759920

Page 46: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

45

The small difference between the Qavailable and the in the Temperature Interval

Diagram is because the numbers in the EXCEL are rounded. was determined by the

sum of the individual streams in the section.

Section B:

( ) ( )

( ) ( )

(28)

Based on the Temperature Interval Diagram, we can construct the cascade diagram.

Figure A.2. Cascade diagram. All values are in Btu/hr.

Page 47: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

46

There’s no pinch in this process, and we only need cold utilities. The load of the cold utilities is

Qc =24759920 Btu/hr.

The calculation of the minimum number of exchangers is shown in Figure A.3.

Page 48: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

47

Figure A.3. Calculation of minimum number of exchangers. All values are in Btu/hr.

The Heat Exchanger Network is configured in Figure A.4. We can use hot stream 8 to heat stream 37, 48, 40, 11 and 51, and use the

cold utilities to cool stream 8, 26, 43, 75, 71. The load of each heat exchanger was calculated like the example of exchanger 1 below.

( ) ( )

(29)

Page 49: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

48

Figure A.4. Design of Heat-Exchanger Network. All values are in Btu/hr.

Page 50: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

49

Equipment Sizing

Heat Exchangers

Values for the temperature and pressure of high, medium, and low pressure steam, as well as

cooling water can be found in Table 8.3 of Analysis, Synthesis, and Design of Chemical

Processes.

Values for heat exchanger coefficients can be found in Table 11.11 of Analysis, Synthesis,

and Design of Chemical Processes.

The following is a sample calculation for the heat transfer area of heat exchanger E-101.

(30)

(31)

( ) ( )

( )

( )

(32)

(33)

The above values and equations - along with a heat duty (Q, BTU/hr) determined using the

Aspen Plus Simulation - provide the necessary information to find the heat transfer area of

the heat exchanger.

The temperature of the heating medium does not change; rather the heat transfer occurs due

to the heat of vaporization as steam condenses to water. The necessary steam flow rate and

price of the utility can be determined using the following equations and data taken from heat

exchanger E-101:

(34)

(35)

(36)

(37)

Similarly, the price can be determined using the necessary heat duty of the heat exchanger,

and the same price will be found.

(38)

Page 51: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

50

(39)

Heat exchangers with a negative heat duty are sized in the exact same manner as an

exchanger with a positive heat duty. The only differences between the two are the heat

transfer coefficients in use for coolers. Water is used as a heating medium rather than steam,

and thus heat transfer occurs much more efficiently leading to generally smaller heat

exchange areas than are needed for positive heat duty exchangers.

(40)

(41)

( ) ( )

( )

( )

(42)

(43)

Process cooling water is produced at a temperature of 86 oF, and is heated to a maximum

temperature of 104 oF.

The necessary process cooling water flow rate and price of the utility can be determined

using the following equations and data taken from heat exchanger E-102:

(44)

( )

(45)

(46)

(47)

Similarly, the price can be determined using the necessary heat duty of the heat exchanger,

and the same price will be found.

(48)

(49)

Distillation Towers

The number of stages in each distillation tower is determined using Aspen Plus.

The tower height is determined using the spacing between each tray, which is a range

between 20 and 24 in. The maximum value of 24 in. has been chosen for sizing of trays in

this project.

Page 52: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

51

The following is a sample calculation for distillation tower T-102:

(50)

(51)

The tower diameter is determined using a heuristic for the diameter based upon the ratio of

the tower length and diameter. This heuristic states that the ratio L/D must be less than 30,

and preferably less than 20 due to special design considerations for ratios above these values.

A value of L/D of 20 has been chosen for these calculations.

(52)

(53)

(54)

Finally, in order to determine the actual height of the tower, space must be made available for

the vapor disengagement as well as the reboiler return sections of the tower. The heuristic

for this calculation states that for a diameter of 3 feet, 4 feet must be added to the top for the

vapor disengagement and 6 feet must be added to the bottom for the reboiler return.

(55)

(56)

(57)

(58)

(59)

(60)

Therefore, T-102 has a total height of 70 ft and a diameter of 3ft.

Vessels

The following is a sample calculation for vessel V-101.

The volume of a vessel is determined using the volume of fluid to fill the vessel half-way for

a five minute period of time.

(61)

(62)

(63)

Page 53: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

52

The dimensions of this vessel are then determined using an optimum ratio of the length and

the diameter, taken from Table 11.6 of Analysis, Synthesis and Design of Chemical

Processes.

(63)

(64)

(65)

(66)

(67)

(68)

(69)

Reactors

The necessary size of a reactor is entirely dependent upon the volumetric flowrate of the

process fluid as well as the residence time required to achieve the desired conversion of

reactants.

This information can be found on patents describing the specific reaction in question.

The following is a sample calculation for reactor R-201, which has a residence time of five

seconds.

(70)

(71)

Pumps and Compressors

Both pumps and compressors are sized using data taken directly from Aspen Plus.

We have chosen to use centrifugal pumps at an efficiency of 80% because all of the pumps

run at a volumetric flow rate greater than 500gpm (67 ft3/min). This efficiency value is found

in table 11.9 of Analysis, Synthesis and Design of Chemical Processes.

A sample calculation of the necessary utility cost to power a pump can be seen below for

pump P-201A/B:

(72)

(73)

Compressors are sized in the exact same manner using power data taken from Aspen Plus.

A sample calculation of the necessary utility cost to power a compressor can be seen below

for C-201A/B:

Page 54: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

53

(74)

(45)

Fired Heaters

Fired heaters are sized using heat duty given from Aspen Plus, as well as heating rates for

various types of fired heaters found in Table 11.11 of Analysis, Synthesis, and Design of

Chemical Processes.

We have chosen to use radiant heaters due to their large heating rate of 12,000 BTU/hr/ft2.

The following is a sample calculation for fired heater H-101:

(76)

(77)

Fired heaters are powered by burning natural gas, and therefore do not fall under the same

utility category as steam for other heat exchangers. Therefore, there is a different method for

calculating the utility cost of a fired heater.

(78)

(79)

Notes

Heuristics for sizing each piece of equipment can be found in Chapter 11 of Analysis,

Synthesis and Design of Chemical Processes.

Each heuristic used is noted in the specific section of each piece of equipment, along with the

appropriate table where the heuristic can be found.

The cost of each specific utility is found in Table 8.3 of Analysis, Synthesis and Design of

Chemical Processes. A summary of each utility used can be found below in Table A.7.

Table A.7. Utility Costs.

Utility Cost

High Pressure Steam 18.67 $/MBTU

0.0136 $/lb

Cooling Water 0.0004 $/ft3

0.37 $/MBTU

Fuel oil 11.71 $/MBTU

Electricity 0.08 $/HP h

Page 55: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

54

Capital and Manufacturing Costs

1. All equipment is priced using information determined while sizing such as:

a. Heat transfer area

b. Volume of vessels, towers, reactors

c. Fluid power of pumps and compressors

d. Number of trays for distillation towers

2. The following equation is used to determine the purchased cost of equipment:

( ) ( ) [ ( )]

(80)

a. is the purchased cost of the equipment in 2001.

b. Values for K1, K2 and K3 are found in Table A.1 of Appendix A of Analysis,

Synthesis and Design of Chemical Processes and are dependent upon the

equipment type and the specific equipment description.

c. A is the specific capacity of the equipment being priced.

3. must be converted into the price of the equipment in 2011. This is done using the

ratio of the 2011 value of the CEPCI (564.8) and the 2001 value of the CEPCI (397).

( )

( )

(81)

4. Once the value of is determined, it must be converted into the bare module cost, .

The bare module cost takes into account different materials of construction than carbon

steel, as well as any pressure factors that would lead to scale-up of the piece of

equipment. This is done using the scaling factor, .

(82)

a. Generally, the value of is as follows, but certain pieces of equipment use

different methods of calculating this factor, which will be explained in their

individual sections.

( ) (83)

b. B1 and B2 are found using Table A.4 of Appendix A of Analysis, Synthesis and

Design of Chemical Processes and are specific to the type of equipment being

priced.

Page 56: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

55

c. FM is the materials factor which is found using Table A.3 and Figure A.18 of

Appendix A of Analysis, Synthesis and Design of Chemical Processes and are

specific to the type of equipment being priced.

d. FP is the pressure factor and is found using the following equation:

( ) ( ) [ ( )] (84)

e. Values of C1, C2 and C3 are found in Table A.2 of Appendix A of Analysis,

Synthesis and Design of Chemical Processes and are specific to the type of

equipment being priced.

f. P is pressure and is in units of barg for these calculations.

g. FP is not always necessary, only if the pressure inside the equipment is above a

certain pressure which is dependent upon the specific type of equipment being

sized.

5. Once the value of CBM is determined, the total module cost, CTM must be found. The

total module cost takes into account possible contingency and fee costs as well as

auxiliary facility costs. The total module cost is the sum of the individual bare module

costs multiplied by a scaling factor to account for the additional costs.

(85)

6. All values found for the above equations presented in Appendix A of Analysis, Synthesis

and Design of Chemical Processes are presented in SI units, and so each sample

calculation will be first converted to that system.

Page 57: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

56

7. Heat Exchangers

The following is a sample calculation for a 316 stainless steel, floating head, and shell

and tube heat exchanger with a heat transfer area of 500 ft3 and a maximum pressure

of 100 psig.

o 500 ft2 = 46.5 m

2

o 100 psig = 6.9 barg

o K1 = 4.8306 K2 = -0.8509 K3 = 0.3187

o C1 = 0.03881 C2 = -0.11272 C3 = 0.08183

o B1 = 1.63 B2 = 1.66

o FM = 2.75

( ) ( ) [ ( )]

(80)

( ) ( ) [ ( )]

(86)

( )

( )

(81)

( )

(87)

( ) ( ) [ ( )] (84)

( ) ( ) [ ( )] (88)

( ) (83)

( ) (89)

(82)

(90)

Therefore, from the above calculations, the bare module cost of this heat exchanger is

$175,540.30.

Page 58: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

57

8. Distillation Towers

Towers and vessels use a special method to determine the pressure factor involved in

calculating the bare module cost. This equation is as follows:

( )

[ ( )]

(91)

o P is the maximum pressure in barg

o D is the diameter in m

Trays use a special method to determine the bare module cost. This equation is as

follows:

(92)

( ) ( ) ( ( )) (93)

(94)

o Fq is a quantity factor used only for trays

o N is the number of trays

The following is a sample calculation for a carbon steel tray tower with a total of 25

316 stainless steel valve trays, a volume of 750 ft3, a diameter of 5 ft and a maximum

pressure of 125 psig.

o 750 ft3 = 21.2 m

3

o 5 ft = 1.52 m

o A = 1.8 m2

o 125 psig = 8.62 barg

o Tower:

K1 = 3.4974 K2 = 0.4485 K3 = 0.1074

FM = 1

B1 = 2.25 B2 = 1.82

o Trays:

K1 = 3.3322 K2 = 0.4838 K3 = 0.3434

Fq = 1

FBM = 1.8

o Pricing of the tower:

( ) ( ) [ ( )]

(80)

( ) ( ) [ ( )]

(95)

( )

( )

(81)

Page 59: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

58

( )

(96)

( )

[ ( )]

(91)

( )

[ ( )]

(97)

( ) (83)

( ) (98)

(82)

(99)

o Pricing of the trays

( ) ( ) [ ( )]

(80)

( ) ( ) [ ( )]

(100)

( )

( )

(81)

( )

(102)

(92)

(103)

o The total bare module cost for this piece of equipment is the sum of the bare

module costs of the tower as well as the trays.

(104)

(105)

Therefore, from the above calculations, the bare module cost of this distillation tower

is $347,419.37.

Page 60: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

59

9. Vessels

Vessels are sized in a similar manner to distillation towers, with the same

modification to the pressure factor but without the addition of trays.

The following is a sample calculation for a horizontal, 316 stainless steel clad vessel

with a volume of 50 ft3 and a diameter of 3ft with a maximum pressure of 150 psig.

o 50 ft3 = 1.42 m

3

o 3 ft = 0.91 m

o 150 psig = 10.34 barg

o K1 = 3.5565 K2 = 0.3376 K3 = 0.0905

o FM = 1.65

o B1 = 1.49 B2 = 1.52

( ) ( ) [ ( )]

(80)

( ) ( ) [ ( )]

(106)

( )

( )

(81)

( )

(107)

( )

[ ( )]

(91)

( )

[ ( )]

(108)

( ) (83)

( ) (109)

(82)

(110)

Therefore, from the above calculations, the bare module cost of the vessel is

$30,022.58.

Page 61: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

60

10. Reactors

Reactor prices are based solely dependently upon the volume of the reactor. The bare

module factor is a constant value of 4 for each type of reactor.

The following is a sample calculation for a jacketed agitated reactor with a volume of

1000 ft3.

o 1000 ft3 = 28.3 m

3

o K1 = 4.1052 K2 = -0.4680 K3 = -0.0005

( ) ( ) [ ( )]

(80)

( ) ( ) [ ( )]

(111)

( )

( )

(81)

( )

(112)

(82)

(114)

Therefore, from the above calculations, the bare module cost of the reactor is

$16,412.85.

Page 62: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

61

11. Pumps

The following is a sample calculation for a 316 stainless steel, centrifugal, pump with

a shaft power of 50 hp and a discharge pressure of 250 psig.

o 50 hp = 37.3 kW

o 250 psig = 17.2 barg

o K1 = 3.3892 K2 = 0.0356 K3 = 0.1538

o C1 = -0.3935 C2 = 0.3957 C3 = -0.00226

o B1 = 1.89 B2 = 1.35

o FM = 2.6

( ) ( ) [ ( )]

(80)

( ) ( ) [ ( )]

(115)

( )

( )

(81)

( )

(116)

( ) ( ) [ ( )] (84)

( ) ( ) [ ( )] (117)

( ) (83)

( ) (118)

(82)

(119)

Therefore, from the above calculations, the bare module cost of the pump is

$59,225.59. A spare pump is always purchased so that production will continue

during regularly scheduled pump maintenance or failure. This brings the total bare

module cost for the pump to $118,451.18.

Page 63: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

62

12. Compressors

Compressors do not rely upon a variable bare module factor, rather the value is

constant for each type of compressor. The modification comes with the inclusion of a

drive that is priced separate from the compressor.

The following is a sample calculation for a carbon steel rotary compressor with a

fluid power of 250 hp and an explosion-proof electric motor.

o 250 hp = 184 kW

o Compressor

K1 = 5.0355 K2 = -1.8002 K3 = 0.8253

FBM = 2.4

o Drive

K1 = 2.4604 K2 = 1.4191 K3 = -0.1798

FBM = 1.55

o Pricing of the compressor:

( ) ( ) [ ( )]

(80)

( ) ( ) [ ( )]

(120)

( )

( )

(81)

( )

(121)

(82)

(122)

o Pricing of the drive

( ) ( ) [ ( )]

(80)

( ) ( ) [ ( )]

(123)

( )

( )

(81)

( )

(124)

(83)

(125)

The total bare module cost for this compressor is the sum of the bare module costs of

the compressor as well as the drive.

(126)

(127)

Therefore, from the above calculations, the bare module cost of the compressor is

$655,480.60. A spare compressor is always purchased so that production will

Page 64: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

63

continue during regularly scheduled compressor maintenance or failure. This brings

the total bare module cost for the compressor to $1,310,961.20.

13. Fired Heaters

The following is a sample calculation for a stainless steel fired heater with a heat duty

of 170 MBTU/h and a maximum pressure of 600 psig.

o 170 MBTU/h = 49,822 kW

o 600 psig = 41.4 barg

o K1 = 7.3488 K2 = -1.1666 K3 = 0.2028

o C1 = 0.1347 C2 = -0.2368 C3 = 0.1021

o FBM = 2.8

o FT = 1

( ) ( ) [ ( )]

(80)

( ) ( ) [ ( )]

(128)

(129)

( )

( )

(81)

( )

(130)

( ) ( ) [ ( )] (84)

( ) ( ) [ ( )] (131)

(132)

(133)

Therefore, from the above calculations, the bare module cost of the fired heater is

$9,177,874.58.

Page 65: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

64

1. Finding the Total Module Cost

The above sections give a sample of how to calculate each type of equipment that is

used in this process. Table A.8 below gives a summary of the price determined for

each piece of equipment at the current 2011 value.

Table A.8. Bare Module Cost Summary.

Equipment Price

Heat Exchanger $175,540.27

Distillation Tower $347,419.37

Vessel $30,022.58

Reactor $16,412.65

Pump $118,451.18

Compressor $1,310,961.20

Fired Heater $9,177,874.58

Sum $11,176,681.83

As can be seen above in Table A.8., the sum of the bare module costs for these pieces

of equipment is $11,176,681.83.

The final step in finding the total module cost is to factor for any possible extra fees.

(134)

(135)

Page 66: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

65

Table A.9. CAPCOST program for the conversion of n-butane to maleic acid.

Compressors Compressor Type

Power

(kilowatts) # Spares MOC

Purchased

Equipment

Cost

Bare Module

Cost

C-101 Centrifugal 1800 1 CS $ 1,210,000 $ 3,310,000

Exchangers Exchanger Type

Shell

Pressure

(barg)

Tube

Pressure

(barg) MOC

Area

(square

meters)

Purchased

Equipment

Cost

Bare Module

Cost

E-101 Floating Head 1.03 1.03 CS / CS 114 $ 38,200 $ 126,000

E-102 Floating Head 2.76 2.76 SS / CS 19.2 $ 26,100 $ 121,000

E-103 Floating Head 2.76 2.76 SS / CS 1100 $ 222,000 $ 1,030,000

E-104 Floating Head 2.41 2.41 SS / CS 166 $ 46,300 $ 215,000

E-105 Double Pipe 2.41 SS / CS 8.64 $ 5,170 $ 23,500

E-106 Floating Head 2.07 2.07 SS / CS 544 $ 110,000 $ 509,000

E-107 Double Pipe 2.07 SS / CS 6.32 $ 4,870 $ 22,100

Fired

Heaters Type

Heat Duty

(MJ/h)

Steam

Superheat

(°C) MOC

Pressure

(barg)

Purchased

Equipment

Cost

Bare Module

Cost

H-101 Process Heater 3690 SS 2.76 $ 673,000 $ 1,890,000

H-102 Process Heater 10100 SS 2.76 $ 778,000 $ 2,190,000

H-103 Process Heater 17200 SS 2.76 $ 901,000 $ 2,530,000

Page 67: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

66

Pumps

(with drives) Pump Type

Power

(kilowatts) # Spares MOC

Discharge

Pressure

(barg)

Purchased

Equipment

Cost

Bare Module

Cost

P-101 Centrifugal 0.33 1 CS 1.72 $ 6,970 $ 27,800

P-102 Centrifugal 0.095 1 CS 2.76 $ 6,970 $ 27,800

P-103 Centrifugal 0.45 1 SS 2.07 $ 6,970 $ 34,600

P-104 Centrifugal 0.45 1 SS 2.07 $ 6,970 $ 34,600

P-105 Centrifugal 0.324 1 SS 2.07 $ 6,970 $ 34,600

P-106 Centrifugal 0.031 1 SS 2.07 $ 6,970 $ 34,600

P-107 Centrifugal 0.249 1 SS 30 $ 6,970 $ 46,100

Reactors Type

Volume

(cubic

meters)

Purchased

Equipment

Cost

Bare Module

Cost

R-101 Jacketed Non-Agitated 39.6 $ 46,200 $ 69,300

Towers Tower Description

Height

(meters)

Diameter

(meters)

Tower

MOC

Demister

MOC

Pressure

(barg)

Purchased

Equipment

Cost

Bare Module

Cost

T-101 3 SS Valve Trays 1.68 0.914

Stainless

Clad SS 1.7 $ 14,400 $ 41,400

T-102 30 SS Valve Trays 16.8 0.396

Stainless

Clad SS 2.07 $ 77,200 $ 181,000

T-103 30 SS Valve Trays 16.8 0.183

Stainless

Clad SS 2.07 $ 127,000 $ 265,000

Page 68: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

67

Vessels Orientation

Length/Heigh

t (meters) Diameter (meters) MOC

Demister

MOC

Pressure

(barg)

Purchased

Equipment Cost

Bare Module

Cost

V-101 Horizontal 2.9 0.975

Stainless

Clad 2.07 $ 7,020 $ 29,000

V-102 Horizontal 1.13 0.366

Stainless

Clad 2.07 $ 2,740 $ 11,300

Total Bare Module Cost $ 12,803,700

Page 69: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

68

Figure A.10. CAPCOST program for the conversion of maleic anhydride to tetrahydrofuran.

Compressors Compressor Type

Power

(kilowatts) # Spares MOC

Purchased

Equipment

Cost

Bare Module

Cost

C-201 Rotary 202 1 SS $ 532,000 $ 2,680,000

C-202 Rotary 413 1 CS $ 2,680,000 $ 6,460,000

C-203 Rotary 427 1 CS $ 2,920,000 $ 7,040,000

Exchangers Exchanger Type

Shell

Pressure

(barg)

Tube

Pressure

(barg) MOC

Area

(square

meters)

Purchased

Equipment

Cost

Bare Module

Cost

E-201 Floating Head 42.4 42.4 CS / CS 157 $ 44,900 $ 161,000

E-202 Floating Head 42.7 42.7 SS / CS 17.7 $ 26,200 $ 136,000

E-203 Floating Head 25 25 CS / CS 37.9 $ 27,200 $ 94,000

E-204 Floating Head 42.7 42.7 CS / CS 212 $ 53,600 $ 192,000

E-205 Floating Head 1 1 CS / CS 69 $ 31,400 $ 103,000

E-206 Floating Head 2.07 2.07 CS / CS 676 $ 134,000 $ 442,000

E-207 Floating Head 2.07 2.07 CS / CS 211 $ 53,400 $ 176,000

E-208 Floating Head 8.62 8.62 CS / CS 908 $ 180,000 $ 596,000

E-209 Floating Head 8.62 8.62 CS / CS 62.4 $ 30,400 $ 101,000

E-210 Floating Head 1 1 CS / CS 100 $ 36,100 $ 119,000

E-211 Floating Head 1.72 1.72 CS / CS 9.66 $ 28,300 $ 93,000

Page 70: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

69

Pumps

(with

drives) Pump Type

Power

(kilowatts) # Spares MOC

Discharge

Pressure

(barg)

Purchased

Equipment Cost

Bare Module

Cost

P-201 Centrifugal 2.09 1 CS 1.72 $ 7,520 $ 30,000

P-202 Centrifugal 1.34 1 CS 1.72 $ 7,120 $ 28,400

P-203 Centrifugal 2.29 1 CS 1.72 $ 7,630 $ 30,400

P-204 Centrifugal 1.79 1 CS 1.72 $ 7,360 $ 29,300

Reactors Type

Volume

(cubic

meters)

Purchased

Equipment Cost

Bare Module

Cost

R-201

Jacketed Non-

Agitated 1.18 $ 10,200 $ 15,300

Towers

Tower

Description

Height

(meters)

Diameter

(meters) Tower MOC

Demister

MOC

Pressure

(barg)

Purchased

Equipment Cost

Bare Module

Cost

T-201 10 CS Valve Trays 7.01 0.305 CS SS 1.72 $ 31,200 $ 47,400

T-202 20 CS Valve Trays 14.3 0.61 CS SS 25 $ 56,700 $ 119,000

Vessels Orientation

Length/Heig

ht (meters)

Diameter

(meters) MOC

Demister

MOC

Pressure

(barg)

Purchased

Equipment Cost

Bare Module

Cost

V-201 Vertical 8.6 2.87 CS SS 25.5 $ 67,500 $ 947,000

V-202 Horizontal 4.97 1.62 CS 1.72 $ 15,200 $ 45,800

V-203 Horizontal 4.97 1.65 CS 1.72 $ 15,500 $ 46,700

Total Bare Module Cost $ 19,732,300

Page 71: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

70

Table A.11. CAPCOST program for the optimization.

Compressors

Compressor

Type

Power

(kilowatts) # Spares MOC

Purchased

Equipment Cost

Bare Module

Cost

C-201 Rotary 202 1 SS $ 532,000 $ 2,680,000

C-202 Rotary 347 1 CS $1,740,000 $ 4,200,000

C-203 Rotary 360 1 CS $1,910,000 $ 4,610,000

Exchangers Exchanger Type

Shell

Pressure

(barg)

Tube

Pressure

(barg) MOC

Area

(square meters)

Purchased

Equipment Cost

Bare Module

Cost

E-201 Floating Head 42.4 42.4 CS / CS 157 $ 44,900 $ 161,000

E-202 Floating Head 42.7 42.7 SS / CS 17.7 $ 26,200 $ 136,000

E-203 Floating Head 25 25 CS / CS 37.9 $ 27,200 $ 94,000

E-204 Floating Head 42.7 42.7 CS / CS 212 $ 53,600 $ 192,000

E-205 Floating Head 1 1 CS / CS 69 $ 31,400 $ 103,000

E-206 Floating Head 2.07 2.07 CS / CS 287 $ 65,700 $ 216,000

E-207 Floating Head 2.07 2.07 CS / CS 136 $ 41,600 $ 137,000

E-208 Floating Head 8.62 8.62 CS / CS 595 $ 119,000 $ 394,000

E-209 Floating Head 8.62 8.62 CS / CS 62.4 $ 30,400 $ 101,000

E-210 Double Pipe 1 CS / CS 9.66 $ 5,270 $ 17,400

E-211 Double Pipe 1.72 CS / CS 5.85 $ 4,790 $ 15,800

E-212 Double Pipe 2.41 CS / CS 0.65 $ 3,140 $ 10,300

E-213 Double Pipe 2.41 CS / CS 0.557 $ 3,140 $ 10,300

Page 72: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

71

Pumps

(with

drives) Pump Type

Power

(kilowatts) # Spares MOC

Discharge

Pressure

(barg)

Purchased

Equipment

Cost

Bare Module

Cost

P-201 Centrifugal 2.09 1 CS 1.72 $ 7,520 $ 30,000

P-202 Centrifugal 1.34 1 CS 1.72 $ 7,120 $ 28,400

P-203 Centrifugal 2.29 1 CS 1.72 $ 7,630 $ 30,400

P-204 Centrifugal 1.79 1 CS 1.72 $ 7,360 $ 29,300

P-205 Centrifugal 0.033 1 CS 1.72 $ 6,970 $ 27,800

P-206 Centrifugal 0.023 1 Cast Iron 1.72 $ 6,970 $ 22,600

Reactors Type

Volume

(cubic meters)

Purchased

Equipment

Cost

Bare Module

Cost

R-201 Jacketed Non-Agitated 1.18 $ 10,200 $ 15,300

Towers Tower Description

Height

(meters)

Diameter

(meters)

Tower

MOC

Demister

MOC

Pressure

(barg)

Purchased

Equipment

Cost

Bare Module

Cost

T-201 10 CS Valve Trays 7.01 0.305 CS SS 1.72 $ 31,200 $ 47,400

T-202 20 CS Valve Trays 14.3 0.61 CS SS 25 $ 56,700 $ 119,000

T-203 6 CS Valve Trays 4.27 0.183 CS SS 2.41 $ 29,400 $ 40,500

Vessels Orientation

Length/Height

(meters)

Diameter

(meters) MOC

Demister

MOC

Pressure

(barg)

Purchased

Equipment

Cost

Bare Module

Cost

V-201 Vertical 8.6 2.87 CS SS 25.5 $ 67,500 $ 947,000

V-202 Horizontal 4.97 1.62 CS 1.72 $ 15,200 $ 45,800

V-203 Horizontal 4.97 1.65 CS 1.72 $ 15,500 $ 46,700

V-204 Horizontal 1.22 0.396 CS 2.41 $ 2,890 $ 8,680

Total Bare Module Cost $14,516,680

Page 73: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

72

Grassroots Cost:

(80)

(81)

Operator Labor Cost:

( )

(82)

(83)

( ) (84)

(85)

(86)

Raw Material Cost:

(87)

(88)

(89)

Waste Treatment Cost:

(90)

(91)

(92)

Cost of Manufacture:

( ) (93)

(

) (94)

Page 74: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

73

Deprecation:

(95)

(96)

Table A.12. MACRS Method

Year Depreciation Allowance (%)

3 20

4 32

5 19.20

6 11.52

7 11.52

8 5.76

Revenue:

(97)

After Tax Profit:

( ) ( ) (98)

( ) ( ) (99)

(100)

After Tax Cash Flow:

(101)

(102)

Discounted Cash Flow:

( ) (103)

( ) (104)

(105)

Page 75: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

74

Appendix B – Aspen Input Summaries

Production of Maleic Anhydride from n-Butane

;;Input Summary created by Aspen Plus Rel. 25.0 at 14:41:30 Sun Dec 4, 2011

;Directory C:\Users\ljcfy3\Downloads Filename

C:\Users\ljcfy3\AppData\Local\Temp\~apd74a.txt

;

DYNAMICS

DYNAMICS RESULTS=ON

TITLE 'Production of Maleic Anhydride'

IN-UNITS ENG

DEF-STREAMS CONVEN ALL

SIM-OPTIONS

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

SIM-OPTIONS MASS-BAL-CHE=YES OLD-DATABANK=YES

DESCRIPTION "

General Simulation with Metric Units :

C, bar, kg/hr, kmol/hr, Gcal/hr, cum/hr.

Property Method: None

Flow basis for input: Mass

Stream report composition: Mass flow

"

DATABANKS PURE25 / AQUEOUS / SOLIDS / INORGANIC / &

NOASPENPCD

Page 76: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

75

PROP-SOURCES PURE25 / AQUEOUS / SOLIDS / INORGANIC

COMPONENTS

WATER H2O /

BUTANE C4H10-1 /

AIR AIR /

OXYGEN O2 /

MAH C4H2O3 /

CO CO /

CO2 CO2 /

FORMIC CH2O2 /

ACRYLIC C3H4O2-1 /

N2 N2 /

MA C4H4O4-D2 /

THF C4H8O-4 /

BUTANOL C4H10O-1 /

PROPANOL C3H8O-1 /

METHANOL CH4O /

H2 H2 /

GAMMA-01 C4H6O2-D2 /

1:4-B-01 C4H10O2-D2 /

METHANE CH4 /

PROPANE C3H8 /

SUCCI-02 C4H6O4-2

FLOWSHEET

BLOCK R-101 IN=7 OUT=8

BLOCK M-101 IN=6 4 OUT=7

BLOCK E-102 IN=8 OUT=9

BLOCK T-101 IN=9 12 OUT=13 15A

BLOCK H-103 IN=16 OUT=17

BLOCK T-101R IN=15A OUT=15

BLOCK R-102 IN=27 OUT=28

BLOCK E-105 IN=26 OUT=27

BLOCK T-103 IN=28 OUT=33 37

BLOCK E-101 IN=11 OUT=12

BLOCK P-101 IN=10 OUT=11

BLOCK T-102 IN=17 OUT=22 26

BLOCK P-103 IN=15 OUT=16

Page 77: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

76

BLOCK C-101 IN=2 OUT=5

BLOCK H-102 IN=5 OUT=6

BLOCK P-102 IN=1 OUT=3

BLOCK H-101 IN=3 OUT=4

PROPERTIES NRTL

PROPERTIES B-PITZER / IDEAL / NRTL-2 / PENG-ROB / PSRK /

RK-SOAVE / SRK / UNIQ-2 / UNIQUAC / WILS-RK /

WILS-VOL / WILSON

PROP-DATA BWRKT-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST BWRKT

BPVAL WATER BUTANE .7402200000

BPVAL WATER CO2 -.0795000000

BPVAL WATER N2 -.3032300000

BPVAL WATER H2 -.3556800000

BPVAL WATER METHANE .7872800000

BPVAL BUTANE CO2 .1957800000

BPVAL BUTANE N2 .0865300000

BPVAL BUTANE WATER .7402200000

BPVAL BUTANE H2 -.1459200000

BPVAL BUTANE METHANE .1075300000

BPVAL CO2 BUTANE .1957800000

BPVAL CO2 N2 -.0892100000

BPVAL CO2 WATER -.0795000000

BPVAL CO2 H2 -.3993500000

BPVAL CO2 METHANE 8.78000000E-3

BPVAL CO2 PROPANE .1514400000

BPVAL N2 BUTANE .0865300000

BPVAL N2 CO2 -.0892100000

BPVAL N2 WATER -.3032300000

BPVAL N2 H2 -.0837800000

BPVAL N2 METHANE .0361900000

BPVAL N2 PROPANE .1122100000

Page 78: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

77

BPVAL CO H2 .4534900000

BPVAL CO PROPANE .0555300000

BPVAL H2 BUTANE -.1459200000

BPVAL H2 CO2 -.3993500000

BPVAL H2 N2 -.0837800000

BPVAL H2 WATER -.3556800000

BPVAL H2 CO .4534900000

BPVAL H2 METHANE -.4387400000

BPVAL H2 PROPANE -.2514400000

BPVAL METHANE BUTANE .1075300000

BPVAL METHANE CO2 8.78000000E-3

BPVAL METHANE N2 .0361900000

BPVAL METHANE WATER .7872800000

BPVAL METHANE H2 -.4387400000

BPVAL METHANE PROPANE .0631600000

BPVAL PROPANE CO2 .1514400000

BPVAL PROPANE N2 .1122100000

BPVAL PROPANE H2 -.2514400000

BPVAL PROPANE CO .0555300000

BPVAL PROPANE METHANE .0631600000

PROP-DATA BWRKV-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST BWRKV

BPVAL WATER BUTANE .3183100000

BPVAL WATER CO2 .0605100000

BPVAL WATER N2 .1032000000

BPVAL WATER H2 .1535100000

BPVAL WATER METHANE .2553200000

BPVAL BUTANE CO2 -.0582800000

BPVAL BUTANE N2 -.0766100000

BPVAL BUTANE WATER .3183100000

BPVAL BUTANE H2 -.0770100000

BPVAL BUTANE METHANE -.0300200000

BPVAL CO2 BUTANE -.0582800000

Page 79: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

78

BPVAL CO2 N2 -7.1500000E-3

BPVAL CO2 WATER .0605100000

BPVAL CO2 H2 .0156200000

BPVAL CO2 METHANE .0106700000

BPVAL CO2 PROPANE -.0447300000

BPVAL N2 BUTANE -.0766100000

BPVAL N2 CO2 -7.1500000E-3

BPVAL N2 WATER .1032000000

BPVAL N2 H2 -.0211600000

BPVAL N2 METHANE -.0339900000

BPVAL N2 PROPANE -.0341000000

BPVAL CO H2 -.1097400000

BPVAL CO PROPANE -.0453100000

BPVAL H2 BUTANE -.0770100000

BPVAL H2 CO2 .0156200000

BPVAL H2 N2 -.0211600000

BPVAL H2 WATER .1535100000

BPVAL H2 CO -.1097400000

BPVAL H2 METHANE -.1277700000

BPVAL H2 PROPANE -.0689500000

BPVAL METHANE BUTANE -.0300200000

BPVAL METHANE CO2 .0106700000

BPVAL METHANE N2 -.0339900000

BPVAL METHANE WATER .2553200000

BPVAL METHANE H2 -.1277700000

BPVAL METHANE PROPANE -.0118800000

BPVAL PROPANE CO2 -.0447300000

BPVAL PROPANE N2 -.0341000000

BPVAL PROPANE H2 -.0689500000

BPVAL PROPANE CO -.0453100000

BPVAL PROPANE METHANE -.0118800000

PROP-DATA NRTL-1

IN-UNITS ENG

PROP-LIST NRTL

BPVAL WATER ACRYLIC 0.0 1676.270867 .3000000000 0.0 0.0 &

0.0 212.7200023 248.9000020

BPVAL ACRYLIC WATER 0.0 -543.5965757 .3000000000 0.0 0.0 &

0.0 212.7200023 248.9000020

BPVAL WATER THF 4.760148000 -1320.122869 .4725526000 0.0 &

Page 80: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

79

0.0 0.0 146.1380028 212.0000023

BPVAL THF WATER 1.214162000 284.0056177 .4725526000 0.0 &

0.0 0.0 146.1380028 212.0000023

BPVAL WATER BUTANOL 13.11020000 -6010.116432 .3000000000 &

0.0 0.0 0.0 66.50600347 243.6800021

BPVAL BUTANOL WATER -2.040500000 1374.964549 .3000000000 &

0.0 0.0 0.0 66.50600347 243.6800021

BPVAL ACRYLIC BUTANOL 0.0 -1073.497311 .3116000000 0.0 0.0 &

0.0 248.0000020 284.0000017

BPVAL BUTANOL ACRYLIC 0.0 970.5745722 .3116000000 0.0 0.0 &

0.0 248.0000020 284.0000017

BPVAL THF BUTANOL 0.0 607.2393551 .3000000000 0.0 0.0 0.0 &

154.9400028 224.8700022

BPVAL BUTANOL THF 0.0 -354.7387772 .3000000000 0.0 0.0 &

0.0 154.9400028 224.8700022

BPVAL WATER PROPANOL 5.448600000 -1550.122548 .3000000000 &

0.0 0.0 0.0 77.00000338 212.0000023

BPVAL PROPANOL WATER -1.741100000 1037.602432 .3000000000 &

0.0 0.0 0.0 77.00000338 212.0000023

BPVAL BUTANE PROPANOL 0.0 566.5037355 .3000000000 0.0 0.0 &

0.0 50.00000360 104.0000032

BPVAL PROPANOL BUTANE 0.0 347.8390172 .3000000000 0.0 0.0 &

0.0 50.00000360 104.0000032

BPVAL ACRYLIC PROPANOL 0.0 2188.951182 .3000000000 0.0 0.0 &

0.0 212.0000023 284.0000017

BPVAL PROPANOL ACRYLIC 0.0 -1335.879709 .3000000000 0.0 &

0.0 0.0 212.0000023 284.0000017

BPVAL THF PROPANOL 0.0 708.9470943 .3000000000 0.0 0.0 &

0.0 150.4400028 207.3200023

BPVAL PROPANOL THF 0.0 -399.7814368 .3000000000 0.0 0.0 &

0.0 150.4400028 207.3200023

BPVAL BUTANOL PROPANOL 0.0 -158.9718587 .3000000000 0.0 &

0.0 0.0 104.0000032 243.6800021

BPVAL PROPANOL BUTANOL 0.0 203.3026184 .3000000000 0.0 0.0 &

0.0 104.0000032 243.6800021

BPVAL WATER METHANOL 2.732200000 -1111.083651 .3000000000 &

0.0 0.0 0.0 76.98200338 212.0000023

BPVAL METHANOL WATER -.6930000000 311.3767775 .3000000000 &

0.0 0.0 0.0 76.98200338 212.0000023

BPVAL BUTANE METHANOL 0.0 993.1037321 .3000000000 0.0 0.0 &

Page 81: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

80

0.0 122.0000030 122.0000030

BPVAL METHANOL BUTANE 0.0 684.7795745 .3000000000 0.0 0.0 &

0.0 122.0000030 122.0000030

BPVAL THF METHANOL 0.0 403.4712568 .3000000000 0.0 0.0 &

0.0 87.53000330 144.6800028

BPVAL METHANOL THF 0.0 113.5891791 .3000000000 0.0 0.0 &

0.0 87.53000330 144.6800028

BPVAL BUTANOL METHANOL -1.516500000 436.7237365 .3000000000 &

0.0 0.0 0.0 77.00000338 243.8960020

BPVAL METHANOL BUTANOL 2.220000000 -607.8823151 .3000000000 &

0.0 0.0 0.0 77.00000338 243.8960020

BPVAL PROPANOL METHANOL 0.0 -15.99605987 .3000000000 0.0 &

0.0 0.0 140.0360029 206.8160023

BPVAL METHANOL PROPANOL 0.0 35.19845972 .3000000000 0.0 &

0.0 0.0 140.0360029 206.8160023

BPVAL WATER GAMMA-01 0.0 1474.941048 .3000000000 0.0 0.0 &

0.0 152.7800028 327.1640014

BPVAL GAMMA-01 WATER 0.0 -88.62929929 .3000000000 0.0 0.0 &

0.0 152.7800028 327.1640014

BPVAL THF GAMMA-01 16.04880000 -8348.314613 .3000000000 0.0 &

0.0 0.0 152.7440028 352.6160012

BPVAL GAMMA-01 THF .9873000000 -1378.530169 .3000000000 0.0 &

0.0 0.0 152.7440028 352.6160012

BPVAL WATER 1:4-B-01 0.0 1381.130629 .4700000000 0.0 0.0 &

0.0 212.1800023 222.8000022

BPVAL 1:4-B-01 WATER 0.0 992.9431721 .4700000000 0.0 0.0 &

0.0 212.1800023 222.8000022

BPVAL THF 1:4-B-01 -9.196000000 6646.489327 .3000000000 0.0 &

0.0 0.0 140.0000029 439.7000005

BPVAL 1:4-B-01 THF 7.301800000 -4588.857323 .3000000000 0.0 &

0.0 0.0 140.0000029 439.7000005

BPVAL METHANOL 1:4-B-01 .3892000000 109.6928991 .3000000000 &

0.0 0.0 0.0 140.0000029 439.7000005

BPVAL 1:4-B-01 METHANOL -.0611000000 -342.0120573 &

.3000000000 0.0 0.0 0.0 140.0000029 439.7000005

PROP-DATA NRTL-2

IN-UNITS ENG

PROP-LIST NRTL 2

BPVAL WATER ACRYLIC 0.0 1676.270867 .3000000000 0.0 0.0 &

Page 82: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

81

0.0 212.7200023 248.9000020

BPVAL ACRYLIC WATER 0.0 -543.5965757 .3000000000 0.0 0.0 &

0.0 212.7200023 248.9000020

BPVAL WATER THF 4.760148000 -1320.122869 .4725526000 0.0 &

0.0 0.0 146.1380028 212.0000023

BPVAL THF WATER 1.214162000 284.0056177 .4725526000 0.0 &

0.0 0.0 146.1380028 212.0000023

BPVAL WATER BUTANOL 13.11020000 -6010.116432 .3000000000 &

0.0 0.0 0.0 66.50600347 243.6800021

BPVAL BUTANOL WATER -2.040500000 1374.964549 .3000000000 &

0.0 0.0 0.0 66.50600347 243.6800021

BPVAL ACRYLIC BUTANOL 0.0 -1073.497311 .3116000000 0.0 0.0 &

0.0 248.0000020 284.0000017

BPVAL BUTANOL ACRYLIC 0.0 970.5745722 .3116000000 0.0 0.0 &

0.0 248.0000020 284.0000017

BPVAL THF BUTANOL 0.0 607.2393551 .3000000000 0.0 0.0 0.0 &

154.9400028 224.8700022

BPVAL BUTANOL THF 0.0 -354.7387772 .3000000000 0.0 0.0 &

0.0 154.9400028 224.8700022

BPVAL WATER PROPANOL 5.448600000 -1550.122548 .3000000000 &

0.0 0.0 0.0 77.00000338 212.0000023

BPVAL PROPANOL WATER -1.741100000 1037.602432 .3000000000 &

0.0 0.0 0.0 77.00000338 212.0000023

BPVAL BUTANE PROPANOL 0.0 566.5037355 .3000000000 0.0 0.0 &

0.0 50.00000360 104.0000032

BPVAL PROPANOL BUTANE 0.0 347.8390172 .3000000000 0.0 0.0 &

0.0 50.00000360 104.0000032

BPVAL ACRYLIC PROPANOL 0.0 2188.951182 .3000000000 0.0 0.0 &

0.0 212.0000023 284.0000017

BPVAL PROPANOL ACRYLIC 0.0 -1335.879709 .3000000000 0.0 &

0.0 0.0 212.0000023 284.0000017

BPVAL THF PROPANOL 0.0 708.9470943 .3000000000 0.0 0.0 &

0.0 150.4400028 207.3200023

BPVAL PROPANOL THF 0.0 -399.7814368 .3000000000 0.0 0.0 &

0.0 150.4400028 207.3200023

BPVAL BUTANOL PROPANOL 0.0 -158.9718587 .3000000000 0.0 &

0.0 0.0 104.0000032 243.6800021

BPVAL PROPANOL BUTANOL 0.0 203.3026184 .3000000000 0.0 0.0 &

0.0 104.0000032 243.6800021

BPVAL WATER METHANOL 2.732200000 -1111.083651 .3000000000 &

Page 83: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

82

0.0 0.0 0.0 76.98200338 212.0000023

BPVAL METHANOL WATER -.6930000000 311.3767775 .3000000000 &

0.0 0.0 0.0 76.98200338 212.0000023

BPVAL BUTANE METHANOL 0.0 993.1037321 .3000000000 0.0 0.0 &

0.0 122.0000030 122.0000030

BPVAL METHANOL BUTANE 0.0 684.7795745 .3000000000 0.0 0.0 &

0.0 122.0000030 122.0000030

BPVAL THF METHANOL 0.0 403.4712568 .3000000000 0.0 0.0 &

0.0 87.53000330 144.6800028

BPVAL METHANOL THF 0.0 113.5891791 .3000000000 0.0 0.0 &

0.0 87.53000330 144.6800028

BPVAL BUTANOL METHANOL -1.516500000 436.7237365 .3000000000 &

0.0 0.0 0.0 77.00000338 243.8960020

BPVAL METHANOL BUTANOL 2.220000000 -607.8823151 .3000000000 &

0.0 0.0 0.0 77.00000338 243.8960020

BPVAL PROPANOL METHANOL 0.0 -15.99605987 .3000000000 0.0 &

0.0 0.0 140.0360029 206.8160023

BPVAL METHANOL PROPANOL 0.0 35.19845972 .3000000000 0.0 &

0.0 0.0 140.0360029 206.8160023

BPVAL WATER GAMMA-01 0.0 1474.941048 .3000000000 0.0 0.0 &

0.0 152.7800028 327.1640014

BPVAL GAMMA-01 WATER 0.0 -88.62929929 .3000000000 0.0 0.0 &

0.0 152.7800028 327.1640014

BPVAL THF GAMMA-01 16.04880000 -8348.314613 .3000000000 0.0 &

0.0 0.0 152.7440028 352.6160012

BPVAL GAMMA-01 THF .9873000000 -1378.530169 .3000000000 0.0 &

0.0 0.0 152.7440028 352.6160012

BPVAL WATER 1:4-B-01 0.0 1381.130629 .4700000000 0.0 0.0 &

0.0 212.1800023 222.8000022

BPVAL 1:4-B-01 WATER 0.0 992.9431721 .4700000000 0.0 0.0 &

0.0 212.1800023 222.8000022

BPVAL THF 1:4-B-01 -9.196000000 6646.489327 .3000000000 0.0 &

0.0 0.0 140.0000029 439.7000005

BPVAL 1:4-B-01 THF 7.301800000 -4588.857323 .3000000000 0.0 &

0.0 0.0 140.0000029 439.7000005

BPVAL METHANOL 1:4-B-01 .3892000000 109.6928991 .3000000000 &

0.0 0.0 0.0 140.0000029 439.7000005

BPVAL 1:4-B-01 METHANOL -.0611000000 -342.0120573 &

.3000000000 0.0 0.0 0.0 140.0000029 439.7000005

Page 84: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

83

PROP-DATA PRKBV-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST PRKBV

BPVAL WATER CO2 .1200000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 WATER .1200000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE CO2 .1333000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 BUTANE .1333000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE N2 .0800000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 BUTANE .0800000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL OXYGEN N2 -.0119000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 OXYGEN -.0119000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO N2 .0307000000 0.0 0.0 -273.1500000 726.8500000

BPVAL N2 CO .0307000000 0.0 0.0 -273.1500000 726.8500000

BPVAL CO2 N2 -.0170000000 0.0 0.0 -273.1500000 726.8500000

BPVAL N2 CO2 -.0170000000 0.0 0.0 -273.1500000 726.8500000

BPVAL WATER METHANOL -.0778000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL WATER -.0778000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 METHANOL .0230000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL CO2 .0230000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 METHANOL -.2141000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL N2 -.2141000000 0.0 0.0 -273.1500000 &

726.8500000

Page 85: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

84

BPVAL BUTANE H2 -.3970000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 BUTANE -.3970000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO H2 .0919000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 CO .0919000000 0.0 0.0 -273.1500000 726.8500000

BPVAL CO2 H2 -.1622000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 CO2 -.1622000000 0.0 0.0 -273.1500000 726.8500000

BPVAL N2 H2 .1030000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 N2 .1030000000 0.0 0.0 -273.1500000 726.8500000

BPVAL BUTANE METHANE .0133000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE BUTANE .0133000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO METHANE .0300000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE CO .0300000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 METHANE .0919000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE CO2 .0919000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 METHANE .0311000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE N2 .0311000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 METHANE .0156000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE H2 .0156000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE PROPANE 3.30000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE BUTANE 3.30000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO PROPANE .0259000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE CO .0259000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 PROPANE .1241000000 0.0 0.0 -273.1500000 &

726.8500000

Page 86: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

85

BPVAL PROPANE CO2 .1241000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 PROPANE .0852000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE N2 .0852000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 PROPANE -.0833000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE H2 -.0833000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE PROPANE .0140000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE METHANE .0140000000 0.0 0.0 -273.1500000 &

726.8500000

PROP-DATA RKSKBV-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST RKSKBV

BPVAL WATER CO2 .0737000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 WATER .0737000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE CO2 .1430000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 BUTANE .1430000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE N2 .0700000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 BUTANE .0700000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL OXYGEN N2 -7.8000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 OXYGEN -7.8000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO N2 .0374000000 0.0 0.0 -273.1500000 726.8500000

Page 87: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

86

BPVAL N2 CO .0374000000 0.0 0.0 -273.1500000 726.8500000

BPVAL CO2 N2 -.0315000000 0.0 0.0 -273.1500000 726.8500000

BPVAL N2 CO2 -.0315000000 0.0 0.0 -273.1500000 726.8500000

BPVAL WATER METHANOL -.0789000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL WATER -.0789000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 METHANOL .0148000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL CO2 .0148000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 METHANOL -.2881000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL N2 -.2881000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE H2 -.5100000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 BUTANE -.5100000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO H2 .0804000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 CO .0804000000 0.0 0.0 -273.1500000 726.8500000

BPVAL CO2 H2 -.3426000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 CO2 -.3426000000 0.0 0.0 -273.1500000 726.8500000

BPVAL N2 H2 .0978000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 N2 .0978000000 0.0 0.0 -273.1500000 726.8500000

BPVAL BUTANE METHANE 5.60000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE BUTANE 5.60000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO METHANE .0322000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE CO .0322000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 METHANE .0933000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE CO2 .0933000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 METHANE .0278000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE N2 .0278000000 0.0 0.0 -273.1500000 &

Page 88: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

87

726.8500000

BPVAL H2 METHANE -.0222000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE H2 -.0222000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE PROPANE 0.0 0.0 0.0 -273.1500000 726.8500000

BPVAL PROPANE BUTANE 0.0 0.0 0.0 -273.1500000 726.8500000

BPVAL CO PROPANE .0156000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE CO .0156000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 PROPANE .1289000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE CO2 .1289000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 PROPANE .0763000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE N2 .0763000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 PROPANE -.2359000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE H2 -.2359000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE PROPANE 9.00000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE METHANE 9.00000000E-3 0.0 0.0 -273.1500000 &

726.8500000

PROP-DATA SRKKIJ-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST SRKKIJ

BPVAL CO CO2 -.0154400000 0.0 0.0 -273.1500000 726.8500000

BPVAL CO2 CO -.0154400000 0.0 0.0 -273.1500000 726.8500000

BPVAL BUTANE METHANE .0226440000 0.0 0.0 -273.1500000 &

726.8500000

Page 89: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

88

BPVAL METHANE BUTANE .0226440000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 METHANE -.0244851000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE H2 -.0244851000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE PROPANE -2.0759400E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE BUTANE -2.0759400E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 PROPANE .1014650000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE H2 .1014650000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE PROPANE .0241509000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE METHANE .0241509000 0.0 0.0 -273.1500000 &

726.8500000

PROP-DATA UNIQ-1

IN-UNITS ENG

PROP-LIST UNIQ

BPVAL WATER FORMIC 0.0 420.2459966 0.0 0.0 68.00000346 &

104.0000032 0.0

BPVAL FORMIC WATER 0.0 278.9279978 0.0 0.0 68.00000346 &

104.0000032 0.0

BPVAL WATER ACRYLIC 0.0 -815.2817335 0.0 0.0 212.7200023 &

248.9000020 0.0

BPVAL ACRYLIC WATER 0.0 455.6541564 0.0 0.0 212.7200023 &

248.9000020 0.0

BPVAL WATER THF -.3878309000 425.0131166 0.0 0.0 &

146.1380028 212.0000023 0.0

BPVAL THF WATER .3109718000 -1099.904031 0.0 0.0 &

146.1380028 212.0000023 0.0

BPVAL WATER BUTANOL -4.993400000 2824.291597 0.0 0.0 &

66.50600347 243.6800021 0.0

BPVAL BUTANOL WATER 3.764400000 -2603.900319 0.0 0.0 &

66.50600347 243.6800021 0.0

BPVAL ACRYLIC BUTANOL 0.0 572.3542754 0.0 0.0 248.0000020 &

284.0000017 0.0

Page 90: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

89

BPVAL BUTANOL ACRYLIC 0.0 -616.4940551 0.0 0.0 248.0000020 &

284.0000017 0.0

BPVAL THF BUTANOL 0.0 -406.3535967 0.0 0.0 154.9400028 &

224.8700022 0.0

BPVAL BUTANOL THF 0.0 270.7903778 0.0 0.0 154.9400028 &

224.8700022 0.0

BPVAL WATER PROPANOL -2.333000000 1080.883071 0.0 0.0 &

77.00000338 212.0000023 0.0

BPVAL PROPANOL WATER 1.766800000 -1172.243151 0.0 0.0 &

77.00000338 212.0000023 0.0

BPVAL BUTANE PROPANOL 0.0 -273.6566978 0.0 0.0 50.00000360 &

104.0000032 0.0

BPVAL PROPANOL BUTANE 0.0 -60.55145952 0.0 0.0 50.00000360 &

104.0000032 0.0

BPVAL ACRYLIC PROPANOL 0.0 -1859.684385 0.0 0.0 &

212.0000023 284.0000017 0.0

BPVAL PROPANOL ACRYLIC 0.0 834.8853533 0.0 0.0 212.0000023 &

284.0000017 0.0

BPVAL THF PROPANOL 0.0 -483.8293761 0.0 0.0 150.4400028 &

207.3200023 0.0

BPVAL PROPANOL THF 0.0 310.2845375 0.0 0.0 150.4400028 &

207.3200023 0.0

BPVAL BUTANOL PROPANOL 0.0 53.83709957 0.0 0.0 104.0000032 &

243.6800021 0.0

BPVAL PROPANOL BUTANOL 0.0 -71.30987943 0.0 0.0 &

104.0000032 243.6800021 0.0

BPVAL WATER METHANOL .6437000000 -579.8361554 0.0 0.0 &

76.98200338 212.0000023 0.0

BPVAL METHANOL WATER -1.066200000 779.1812938 0.0 0.0 &

76.98200338 212.0000023 0.0

BPVAL BUTANE METHANOL 0.0 -1148.501691 0.0 0.0 122.0000030 &

122.0000030 0.0

BPVAL METHANOL BUTANE 0.0 -23.68817981 0.0 0.0 122.0000030 &

122.0000030 0.0

BPVAL THF METHANOL 0.0 -572.5058354 0.0 0.0 87.53000330 &

144.6800028 0.0

BPVAL METHANOL THF 0.0 161.6754587 0.0 0.0 87.53000330 &

144.6800028 0.0

BPVAL BUTANOL METHANOL .2267000000 -225.5174982 0.0 0.0 &

77.00000338 243.8960020 0.0

Page 91: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

90

BPVAL METHANOL BUTANOL -.3136000000 148.7455188 0.0 0.0 &

77.00000338 243.8960020 0.0

BPVAL PROPANOL METHANOL 0.0 -167.8472987 0.0 0.0 &

140.0360029 206.8160023 0.0

BPVAL METHANOL PROPANOL 0.0 88.58789929 0.0 0.0 &

140.0360029 206.8160023 0.0

BPVAL WATER GAMMA-01 0.0 31.23053975 0.0 0.0 152.7800028 &

327.1640014 0.0

BPVAL GAMMA-01 WATER 0.0 -225.8560782 0.0 0.0 152.7800028 &

327.1640014 0.0

BPVAL THF GAMMA-01 -11.99890000 6474.853568 0.0 0.0 &

152.7440028 352.6160012 0.0

BPVAL GAMMA-01 THF 1.109300000 -207.5934583 0.0 0.0 &

152.7440028 352.6160012 0.0

BPVAL WATER 1:4-B-01 0.0 249.0355780 0.0 0.0 212.1800023 &

222.8000022 0.0

BPVAL 1:4-B-01 WATER 0.0 -1235.539610 0.0 0.0 212.1800023 &

222.8000022 0.0

BPVAL THF 1:4-B-01 2.601800000 -1934.671305 0.0 0.0 &

140.0000029 439.7000005 0.0

BPVAL 1:4-B-01 THF -2.501400000 1594.517927 0.0 0.0 &

140.0000029 439.7000005 0.0

BPVAL METHANOL 1:4-B-01 -.1912000000 383.7301169 0.0 0.0 &

140.0000029 439.7000005 0.0

BPVAL 1:4-B-01 METHANOL .3393000000 -660.7933147 0.0 0.0 &

140.0000029 439.7000005 0.0

BPVAL WATER SUCCI-02 0.0 152.7533988 0.0 0.0 68.00000346 &

104.0000032 0.0

BPVAL SUCCI-02 WATER 0.0 -15.60689988 0.0 0.0 68.00000346 &

104.0000032 0.0

BPVAL BUTANOL SUCCI-02 0.0 -251.2979980 0.0 0.0 &

68.00000346 104.0000032 0.0

BPVAL SUCCI-02 BUTANOL 0.0 181.7819985 0.0 0.0 68.00000346 &

104.0000032 0.0

PROP-DATA UNIQ-2

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

Page 92: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

91

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST UNIQ 2

BPVAL WATER FORMIC 0.0 233.4700000 0.0 0.0 20.00000000 &

40.00000000 0.0

BPVAL FORMIC WATER 0.0 154.9600000 0.0 0.0 20.00000000 &

40.00000000 0.0

BPVAL WATER ACRYLIC 0.0 -452.9343000 0.0 0.0 100.4000000 &

120.5000000 0.0

BPVAL ACRYLIC WATER 0.0 253.1412000 0.0 0.0 100.4000000 &

120.5000000 0.0

BPVAL WATER THF -.3878309000 236.1184000 0.0 0.0 &

63.41000000 100.0000000 0.0

BPVAL THF WATER .3109718000 -611.0578000 0.0 0.0 &

63.41000000 100.0000000 0.0

BPVAL WATER BUTANOL -4.993400000 1569.050900 0.0 0.0 &

19.17000000 117.6000000 0.0

BPVAL BUTANOL WATER 3.764400000 -1446.611300 0.0 0.0 &

19.17000000 117.6000000 0.0

BPVAL ACRYLIC BUTANOL 0.0 317.9746000 0.0 0.0 120.0000000 &

140.0000000 0.0

BPVAL BUTANOL ACRYLIC 0.0 -342.4967000 0.0 0.0 120.0000000 &

140.0000000 0.0

BPVAL THF BUTANOL 0.0 -225.7520000 0.0 0.0 68.30000000 &

107.1500000 0.0

BPVAL BUTANOL THF 0.0 150.4391000 0.0 0.0 68.30000000 &

107.1500000 0.0

BPVAL WATER PROPANOL -2.333000000 600.4906000 0.0 0.0 &

25.00000000 100.0000000 0.0

BPVAL PROPANOL WATER 1.766800000 -651.2462000 0.0 0.0 &

25.00000000 100.0000000 0.0

BPVAL BUTANE PROPANOL 0.0 -152.0315000 0.0 0.0 10.00000000 &

40.00000000 0.0

BPVAL PROPANOL BUTANE 0.0 -33.63970000 0.0 0.0 10.00000000 &

40.00000000 0.0

BPVAL ACRYLIC PROPANOL 0.0 -1033.158000 0.0 0.0 &

100.0000000 140.0000000 0.0

BPVAL PROPANOL ACRYLIC 0.0 463.8252000 0.0 0.0 100.0000000 &

140.0000000 0.0

BPVAL THF PROPANOL 0.0 -268.7941000 0.0 0.0 65.80000000 &

Page 93: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

92

97.40000000 0.0

BPVAL PROPANOL THF 0.0 172.3803000 0.0 0.0 65.80000000 &

97.40000000 0.0

BPVAL BUTANOL PROPANOL 0.0 29.90950000 0.0 0.0 40.00000000 &

117.6000000 0.0

BPVAL PROPANOL BUTANOL 0.0 -39.61660000 0.0 0.0 &

40.00000000 117.6000000 0.0

BPVAL WATER METHANOL .6437000000 -322.1312000 0.0 0.0 &

24.99000000 100.0000000 0.0

BPVAL METHANOL WATER -1.066200000 432.8785000 0.0 0.0 &

24.99000000 100.0000000 0.0

BPVAL BUTANE METHANOL 0.0 -638.0565000 0.0 0.0 50.00000000 &

50.00000000 0.0

BPVAL METHANOL BUTANE 0.0 -13.16010000 0.0 0.0 50.00000000 &

50.00000000 0.0

BPVAL THF METHANOL 0.0 -318.0588000 0.0 0.0 30.85000000 &

62.60000000 0.0

BPVAL METHANOL THF 0.0 89.81970000 0.0 0.0 30.85000000 &

62.60000000 0.0

BPVAL BUTANOL METHANOL .2267000000 -125.2875000 0.0 0.0 &

25.00000000 117.7200000 0.0

BPVAL METHANOL BUTANOL -.3136000000 82.63640000 0.0 0.0 &

25.00000000 117.7200000 0.0

BPVAL PROPANOL METHANOL 0.0 -93.24850000 0.0 0.0 &

60.02000000 97.12000000 0.0

BPVAL METHANOL PROPANOL 0.0 49.21550000 0.0 0.0 &

60.02000000 97.12000000 0.0

BPVAL WATER GAMMA-01 0.0 17.35030000 0.0 0.0 67.10000000 &

163.9800000 0.0

BPVAL GAMMA-01 WATER 0.0 -125.4756000 0.0 0.0 67.10000000 &

163.9800000 0.0

BPVAL THF GAMMA-01 -11.99890000 3597.140900 0.0 0.0 &

67.08000000 178.1200000 0.0

BPVAL GAMMA-01 THF 1.109300000 -115.3297000 0.0 0.0 &

67.08000000 178.1200000 0.0

BPVAL WATER 1:4-B-01 0.0 138.3531000 0.0 0.0 100.1000000 &

106.0000000 0.0

BPVAL 1:4-B-01 WATER 0.0 -686.4109000 0.0 0.0 100.1000000 &

106.0000000 0.0

BPVAL THF 1:4-B-01 2.601800000 -1074.817400 0.0 0.0 &

Page 94: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

93

60.00000000 226.5000000 0.0

BPVAL 1:4-B-01 THF -2.501400000 885.8433000 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL METHANOL 1:4-B-01 -.1912000000 213.1834000 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL 1:4-B-01 METHANOL .3393000000 -367.1074000 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL WATER SUCCI-02 0.0 84.86300000 0.0 0.0 20.00000000 &

40.00000000 0.0

BPVAL SUCCI-02 WATER 0.0 -8.670500000 0.0 0.0 20.00000000 &

40.00000000 0.0

BPVAL BUTANOL SUCCI-02 0.0 -139.6100000 0.0 0.0 &

20.00000000 40.00000000 0.0

BPVAL SUCCI-02 BUTANOL 0.0 100.9900000 0.0 0.0 20.00000000 &

40.00000000 0.0

PROP-DATA WILSON-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST WILSON

BPVAL WATER ACRYLIC 0.0 168.4465000 0.0 0.0 100.4000000 &

120.5000000 0.0

BPVAL ACRYLIC WATER 0.0 -882.7916000 0.0 0.0 100.4000000 &

120.5000000 0.0

BPVAL WATER THF 1.166967000 -861.2151000 0.0 0.0 &

63.41000000 100.0000000 0.0

BPVAL THF WATER -9.570150000 2146.342000 0.0 0.0 &

63.41000000 100.0000000 0.0

BPVAL WATER BUTANOL .6102000000 -420.6027000 0.0 0.0 &

19.17000000 191.8000000 0.0

BPVAL BUTANOL WATER 2.450400000 -2492.023400 0.0 0.0 &

19.17000000 191.8000000 0.0

BPVAL THF BUTANOL 0.0 180.6092000 0.0 0.0 68.30000000 &

107.1500000 0.0

BPVAL BUTANOL THF 0.0 -388.8284000 0.0 0.0 68.30000000 &

107.1500000 0.0

Page 95: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

94

BPVAL WATER PROPANOL 1.267500000 -580.1956000 0.0 0.0 &

25.00000000 100.0000000 0.0

BPVAL PROPANOL WATER -4.815800000 648.7817000 0.0 0.0 &

25.00000000 100.0000000 0.0

BPVAL BUTANE PROPANOL 0.0 -236.3575000 0.0 0.0 10.00000000 &

40.00000000 0.0

BPVAL PROPANOL BUTANE 0.0 -393.1257000 0.0 0.0 10.00000000 &

40.00000000 0.0

BPVAL THF PROPANOL 0.0 133.2163000 0.0 0.0 65.80000000 &

97.40000000 0.0

BPVAL PROPANOL THF 0.0 -299.9573000 0.0 0.0 65.80000000 &

97.40000000 0.0

BPVAL BUTANOL PROPANOL 0.0 -107.5577000 0.0 0.0 &

40.00000000 117.6000000 0.0

BPVAL PROPANOL BUTANOL 0.0 78.37730000 0.0 0.0 40.00000000 &

117.6000000 0.0

BPVAL WATER METHANOL -1.884200000 617.4097000 0.0 0.0 &

24.99000000 188.3000000 0.0

BPVAL METHANOL WATER 1.083700000 -580.2370000 0.0 0.0 &

24.99000000 188.3000000 0.0

BPVAL BUTANE METHANOL -.4811000000 -433.3017000 0.0 0.0 &

50.00000000 100.0000000 0.0

BPVAL METHANOL BUTANE 3.617800000 -1967.833100 0.0 0.0 &

50.00000000 100.0000000 0.0

BPVAL THF METHANOL 0.0 -95.32840000 0.0 0.0 30.85000000 &

62.60000000 0.0

BPVAL METHANOL THF 0.0 -201.7985000 0.0 0.0 30.85000000 &

62.60000000 0.0

BPVAL BUTANOL METHANOL -.6341000000 -73.65750000 0.0 0.0 &

25.00000000 285.4000000 0.0

BPVAL METHANOL BUTANOL .5587000000 -19.02890000 0.0 0.0 &

25.00000000 285.4000000 0.0

BPVAL PROPANOL METHANOL 0.0 -66.18770000 0.0 0.0 &

60.02000000 97.12000000 0.0

BPVAL METHANOL PROPANOL 0.0 47.93730000 0.0 0.0 &

60.02000000 97.12000000 0.0

BPVAL WATER GAMMA-01 0.0 -44.70750000 0.0 0.0 67.10000000 &

163.9800000 0.0

BPVAL GAMMA-01 WATER 0.0 -993.0518000 0.0 0.0 67.10000000 &

163.9800000 0.0

Page 96: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

95

BPVAL THF GAMMA-01 -.2082000000 308.0572000 0.0 0.0 &

67.08000000 178.1200000 0.0

BPVAL GAMMA-01 THF -30.94190000 10000.00000 0.0 0.0 &

67.08000000 178.1200000 0.0

BPVAL WATER 1:4-B-01 0.0 -506.5348000 0.0 0.0 100.1000000 &

106.0000000 0.0

BPVAL 1:4-B-01 WATER 0.0 -841.3055000 0.0 0.0 100.1000000 &

106.0000000 0.0

BPVAL THF 1:4-B-01 -7.241300000 2413.589800 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL 1:4-B-01 THF 8.514000000 -3389.141600 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL METHANOL 1:4-B-01 -.1189000000 201.7588000 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL 1:4-B-01 METHANOL -.5852000000 42.67770000 0.0 0.0 &

60.00000000 226.5000000 0.0

STREAM 1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

SUBSTREAM MIXED TEMP=70. <F> PRES=16. <psig> &

MASS-FLOW=5500.45 <lb/hr> FREE-WATER=NO NPHASE=1 PHASE=L

MASS-FRAC BUTANE 1.

STREAM 2

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

SUBSTREAM MIXED TEMP=68. <F> PRES=101.896 <kPa> &

MASS-FLOW=84736.3 <lb/hr> FREE-WATER=NO NPHASE=1 PHASE=V

MASS-FRAC WATER 0.005844 / OXYGEN 0.233128 / CO2 &

0.000594 / N2 0.760434

Page 97: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

96

STREAM 10

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

SUBSTREAM MIXED TEMP=14.889 PRES=101.896 <kPa> &

MASS-FLOW=30887.2 <lb/hr>

MASS-FRAC WATER 1.

BLOCK M-101 MIXER

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 &

TRUE-COMPS=YES

BLOCK E-101 HEATER

PARAM TEMP=95. <C> PRES=170. <kPa> NPHASE=1 PHASE=L

BLOCK-OPTION FREE-WATER=NO

BLOCK E-102 HEATER

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PARAM TEMP=95. PRES=170. <kPa>

BLOCK E-105 HEATER

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

Page 98: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

97

PDROP=bar

PARAM TEMP=40. PRES=200. <kPa>

BLOCK H-101 HEATER

PARAM TEMP=410. <C> PRES=275. <kPa>

BLOCK H-102 HEATER

PARAM TEMP=410. <C> PRES=275. <kPa>

BLOCK H-103 HEATER

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PARAM TEMP=300. PRES=200. <kPa> NPHASE=1 PHASE=L

BLOCK T-101 RADFRAC

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PARAM NSTAGE=3

COL-CONFIG CONDENSER=NONE REBOILER=NONE

RATESEP-ENAB CALC-MODE=EQUILIBRIUM

FEEDS 9 3 ON-STAGE-VAP / 12 1

PRODUCTS 13 1 V / 15A 3 L

P-SPEC 1 170. <kPa> / 2 170. <kPa>

COL-SPECS

PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 &

TRUE-COMPS=YES

BLOCK T-102 RADFRAC

PARAM NSTAGE=30

COL-CONFIG CONDENSER=TOTAL

FEEDS 17 3

PRODUCTS 22 1 L / 26 30 L

Page 99: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

98

P-SPEC 1 200. <kPa> / 2 200. <kPa>

COL-SPECS D:F=0.946 MOLE-RR=0.06

PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 &

TRUE-COMPS=YES

REPORT STDVPROF

BLOCK T-103 RADFRAC

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PARAM NSTAGE=30

COL-CONFIG CONDENSER=TOTAL

FEEDS 28 17

PRODUCTS 33 1 L / 37 30 L

P-SPEC 1 200. <kPa> / 2 200. <kPa>

COL-SPECS D:F=0.51559001 MOLE-RR=0.10363926

PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 &

TRUE-COMPS=YES

REPORT STDVPROF

BLOCK R-101 RSTOIC

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PARAM TEMP=410. PRES=275. <kPa> SERIES=YES

STOIC 1 MIXED BUTANE -1. / OXYGEN -3.5 / MAH 1. / &

WATER 4.

STOIC 2 MIXED BUTANE -1. / OXYGEN -5.5 / CO 2. / CO2 &

2. / WATER 5.

STOIC 3 MIXED BUTANE -1. / OXYGEN -3.5 / ACRYLIC 1. / &

CO2 1. / WATER 3.

STOIC 4 MIXED BUTANE -1. / OXYGEN -6. / CO2 3. / &

WATER 4. / FORMIC 1.

CONV 1 MIXED BUTANE 0.822

Page 100: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

99

CONV 2 MIXED BUTANE 0.822

CONV 3 MIXED BUTANE 0.822

CONV 4 MIXED BUTANE 0.822

SELECTIVITY 1 MAH MIXED BUTANE MIXED

SELECTIVITY 2 CO MIXED BUTANE MIXED

SELECTIVITY 3 ACRYLIC MIXED BUTANE MIXED

SELECTIVITY 4 FORMIC MIXED BUTANE MIXED

PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 &

TRUE-COMPS=YES

BLOCK R-102 RSTOIC

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PARAM TEMP=40. PRES=200. <kPa> NPHASE=1 PHASE=L

STOIC 1 MIXED MA -1. / MAH 1. / WATER 1.

CONV 1 MIXED MA 1.

PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 &

TRUE-COMPS=YES

BLOCK-OPTION FREE-WATER=NO

BLOCK T-101R RSTOIC

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PARAM TEMP=95. PRES=170. <kPa> NPHASE=1 PHASE=L

STOIC 1 MIXED WATER -1. / MAH -1. / MA 1.

CONV 1 MIXED MAH 1.

BLOCK-OPTION FREE-WATER=NO

BLOCK P-101 PUMP

PARAM PRES=170. <kPa> EFF=0.85

BLOCK P-102 PUMP

Page 101: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

100

PARAM PRES=275. <kPa> EFF=0.85

BLOCK P-103 PUMP

PARAM PRES=200. <kPa> EFF=0.85

BLOCK C-101 COMPR

PARAM TYPE=ASME-POLYTROP PRES=275. <kPa> MEFF=0.85

EO-CONV-OPTI

CONV-OPTIONS

WEGSTEIN MAXIT=30

STREAM-REPOR MOLEFLOW MASSFLOW MASSFRAC

Page 102: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

101

Production of Tetrahydrofuran from Maleic Anhydride

;Input Summary created by Aspen Plus Rel. 25.0 at 14:44:40 Sun Dec 4, 2011

;Directory C:\Users\ljcfy3\Downloads Filename

C:\Users\ljcfy3\AppData\Local\Temp\~apc002.txt

;

DYNAMICS

DYNAMICS RESULTS=ON

TITLE 'Production of Maleic Anhydride'

IN-UNITS ENG

DEF-STREAMS CONVEN ALL

SIM-OPTIONS

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

SIM-OPTIONS MASS-BAL-CHE=YES OLD-DATABANK=YES

DESCRIPTION "

General Simulation with Metric Units :

C, bar, kg/hr, kmol/hr, Gcal/hr, cum/hr.

Property Method: None

Flow basis for input: Mass

Stream report composition: Mass flow

"

DATABANKS PURE25 / AQUEOUS / SOLIDS / INORGANIC / &

NOASPENPCD

PROP-SOURCES PURE25 / AQUEOUS / SOLIDS / INORGANIC

Page 103: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

102

COMPONENTS

WATER H2O /

BUTANE C4H10-1 /

AIR AIR /

OXYGEN O2 /

MAH C4H2O3 /

CO CO /

CO2 CO2 /

FORMIC CH2O2 /

ACRYLIC C3H4O2-1 /

N2 N2 /

MA C4H4O4-D2 /

THF C4H8O-4 /

BUTANOL C4H10O-1 /

PROPANOL C3H8O-1 /

METHANOL CH4O /

H2 H2 /

GAMMA-01 C4H6O2-D2 /

1:4-B-01 C4H10O2-D2 /

METHANE CH4 /

PROPANE C3H8 /

SUCCI-02 C4H6O4-2

FLOWSHEET

BLOCK M-201 IN=38 41 OUT=42

BLOCK R-201 IN=42 49 OUT=43

BLOCK E-203 IN=43 OUT=44

BLOCK E-205 IN=51 OUT=52

BLOCK T-201 IN=52 78 OUT=56 60

BLOCK S-202 IN=66 OUT=74 73

BLOCK V-201 IN=44 OUT=45 50

BLOCK S-201 IN=45 OUT=46 47

BLOCK E-204 IN=48 OUT=49

BLOCK V-204 IN=76 OUT=77 78

BLOCK T-202 IN=62 OUT=66 70

BLOCK CV-203 IN=70 OUT=71

BLOCK E-211 IN=71 OUT=72

BLOCK C-201 IN=47 OUT=48

BLOCK C-202 IN=56 OUT=61

Page 104: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

103

BLOCK C-203 IN=61 OUT=62

BLOCK E-210 IN=75 OUT=76

BLOCK T-103P IN=36 OUT=37

BLOCK E-202 IN=37 OUT=38

BLOCK E-201 IN=40 OUT=41

BLOCK CV-201 IN=39 OUT=40

BLOCK CV-202 IN=50 OUT=51

BLOCK CV-204 IN=74 OUT=75

PROPERTIES NRTL

PROPERTIES B-PITZER / IDEAL / NRTL-2 / PENG-ROB / PSRK /

RK-SOAVE / SRK / UNIQ-2 / UNIQUAC / WILS-RK /

WILS-VOL / WILSON

PROP-DATA BWRKT-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST BWRKT

BPVAL WATER BUTANE .7402200000

BPVAL WATER CO2 -.0795000000

BPVAL WATER N2 -.3032300000

BPVAL WATER H2 -.3556800000

BPVAL WATER METHANE .7872800000

BPVAL BUTANE CO2 .1957800000

BPVAL BUTANE N2 .0865300000

BPVAL BUTANE H2 -.1459200000

BPVAL BUTANE METHANE .1075300000

BPVAL BUTANE WATER .7402200000

BPVAL CO2 BUTANE .1957800000

BPVAL CO2 N2 -.0892100000

BPVAL CO2 H2 -.3993500000

BPVAL CO2 METHANE 8.78000000E-3

BPVAL CO2 WATER -.0795000000

BPVAL CO2 PROPANE .1514400000

BPVAL N2 BUTANE .0865300000

BPVAL N2 CO2 -.0892100000

Page 105: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

104

BPVAL N2 H2 -.0837800000

BPVAL N2 METHANE .0361900000

BPVAL N2 WATER -.3032300000

BPVAL N2 PROPANE .1122100000

BPVAL CO H2 .4534900000

BPVAL CO PROPANE .0555300000

BPVAL H2 BUTANE -.1459200000

BPVAL H2 CO2 -.3993500000

BPVAL H2 N2 -.0837800000

BPVAL H2 METHANE -.4387400000

BPVAL H2 WATER -.3556800000

BPVAL H2 PROPANE -.2514400000

BPVAL H2 CO .4534900000

BPVAL METHANE BUTANE .1075300000

BPVAL METHANE CO2 8.78000000E-3

BPVAL METHANE N2 .0361900000

BPVAL METHANE H2 -.4387400000

BPVAL METHANE WATER .7872800000

BPVAL METHANE PROPANE .0631600000

BPVAL PROPANE CO2 .1514400000

BPVAL PROPANE N2 .1122100000

BPVAL PROPANE H2 -.2514400000

BPVAL PROPANE METHANE .0631600000

BPVAL PROPANE CO .0555300000

PROP-DATA BWRKV-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST BWRKV

BPVAL WATER BUTANE .3183100000

BPVAL WATER CO2 .0605100000

BPVAL WATER N2 .1032000000

BPVAL WATER H2 .1535100000

BPVAL WATER METHANE .2553200000

BPVAL BUTANE CO2 -.0582800000

BPVAL BUTANE N2 -.0766100000

Page 106: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

105

BPVAL BUTANE H2 -.0770100000

BPVAL BUTANE METHANE -.0300200000

BPVAL BUTANE WATER .3183100000

BPVAL CO2 BUTANE -.0582800000

BPVAL CO2 N2 -7.1500000E-3

BPVAL CO2 H2 .0156200000

BPVAL CO2 METHANE .0106700000

BPVAL CO2 WATER .0605100000

BPVAL CO2 PROPANE -.0447300000

BPVAL N2 BUTANE -.0766100000

BPVAL N2 CO2 -7.1500000E-3

BPVAL N2 H2 -.0211600000

BPVAL N2 METHANE -.0339900000

BPVAL N2 WATER .1032000000

BPVAL N2 PROPANE -.0341000000

BPVAL CO H2 -.1097400000

BPVAL CO PROPANE -.0453100000

BPVAL H2 BUTANE -.0770100000

BPVAL H2 CO2 .0156200000

BPVAL H2 N2 -.0211600000

BPVAL H2 METHANE -.1277700000

BPVAL H2 WATER .1535100000

BPVAL H2 PROPANE -.0689500000

BPVAL H2 CO -.1097400000

BPVAL METHANE BUTANE -.0300200000

BPVAL METHANE CO2 .0106700000

BPVAL METHANE N2 -.0339900000

BPVAL METHANE H2 -.1277700000

BPVAL METHANE WATER .2553200000

BPVAL METHANE PROPANE -.0118800000

BPVAL PROPANE CO2 -.0447300000

BPVAL PROPANE N2 -.0341000000

BPVAL PROPANE H2 -.0689500000

BPVAL PROPANE METHANE -.0118800000

BPVAL PROPANE CO -.0453100000

PROP-DATA NRTL-1

IN-UNITS ENG

PROP-LIST NRTL

BPVAL WATER ACRYLIC 0.0 1676.270867 .3000000000 0.0 0.0 &

Page 107: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

106

0.0 212.7200023 248.9000020

BPVAL ACRYLIC WATER 0.0 -543.5965757 .3000000000 0.0 0.0 &

0.0 212.7200023 248.9000020

BPVAL WATER THF 4.760148000 -1320.122869 .4725526000 0.0 &

0.0 0.0 146.1380028 212.0000023

BPVAL THF WATER 1.214162000 284.0056177 .4725526000 0.0 &

0.0 0.0 146.1380028 212.0000023

BPVAL WATER BUTANOL 13.11020000 -6010.116432 .3000000000 &

0.0 0.0 0.0 66.50600347 243.6800021

BPVAL BUTANOL WATER -2.040500000 1374.964549 .3000000000 &

0.0 0.0 0.0 66.50600347 243.6800021

BPVAL ACRYLIC BUTANOL 0.0 -1073.497311 .3116000000 0.0 0.0 &

0.0 248.0000020 284.0000017

BPVAL BUTANOL ACRYLIC 0.0 970.5745722 .3116000000 0.0 0.0 &

0.0 248.0000020 284.0000017

BPVAL THF BUTANOL 0.0 607.2393551 .3000000000 0.0 0.0 0.0 &

154.9400028 224.8700022

BPVAL BUTANOL THF 0.0 -354.7387772 .3000000000 0.0 0.0 &

0.0 154.9400028 224.8700022

BPVAL WATER PROPANOL 5.448600000 -1550.122548 .3000000000 &

0.0 0.0 0.0 77.00000338 212.0000023

BPVAL PROPANOL WATER -1.741100000 1037.602432 .3000000000 &

0.0 0.0 0.0 77.00000338 212.0000023

BPVAL BUTANE PROPANOL 0.0 566.5037355 .3000000000 0.0 0.0 &

0.0 50.00000360 104.0000032

BPVAL PROPANOL BUTANE 0.0 347.8390172 .3000000000 0.0 0.0 &

0.0 50.00000360 104.0000032

BPVAL ACRYLIC PROPANOL 0.0 2188.951182 .3000000000 0.0 0.0 &

0.0 212.0000023 284.0000017

BPVAL PROPANOL ACRYLIC 0.0 -1335.879709 .3000000000 0.0 &

0.0 0.0 212.0000023 284.0000017

BPVAL THF PROPANOL 0.0 708.9470943 .3000000000 0.0 0.0 &

0.0 150.4400028 207.3200023

BPVAL PROPANOL THF 0.0 -399.7814368 .3000000000 0.0 0.0 &

0.0 150.4400028 207.3200023

BPVAL BUTANOL PROPANOL 0.0 -158.9718587 .3000000000 0.0 &

0.0 0.0 104.0000032 243.6800021

BPVAL PROPANOL BUTANOL 0.0 203.3026184 .3000000000 0.0 0.0 &

0.0 104.0000032 243.6800021

BPVAL WATER METHANOL 2.732200000 -1111.083651 .3000000000 &

Page 108: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

107

0.0 0.0 0.0 76.98200338 212.0000023

BPVAL METHANOL WATER -.6930000000 311.3767775 .3000000000 &

0.0 0.0 0.0 76.98200338 212.0000023

BPVAL BUTANE METHANOL 0.0 993.1037321 .3000000000 0.0 0.0 &

0.0 122.0000030 122.0000030

BPVAL METHANOL BUTANE 0.0 684.7795745 .3000000000 0.0 0.0 &

0.0 122.0000030 122.0000030

BPVAL THF METHANOL 0.0 403.4712568 .3000000000 0.0 0.0 &

0.0 87.53000330 144.6800028

BPVAL METHANOL THF 0.0 113.5891791 .3000000000 0.0 0.0 &

0.0 87.53000330 144.6800028

BPVAL BUTANOL METHANOL -1.516500000 436.7237365 .3000000000 &

0.0 0.0 0.0 77.00000338 243.8960020

BPVAL METHANOL BUTANOL 2.220000000 -607.8823151 .3000000000 &

0.0 0.0 0.0 77.00000338 243.8960020

BPVAL PROPANOL METHANOL 0.0 -15.99605987 .3000000000 0.0 &

0.0 0.0 140.0360029 206.8160023

BPVAL METHANOL PROPANOL 0.0 35.19845972 .3000000000 0.0 &

0.0 0.0 140.0360029 206.8160023

BPVAL WATER GAMMA-01 0.0 1474.941048 .3000000000 0.0 0.0 &

0.0 152.7800028 327.1640014

BPVAL GAMMA-01 WATER 0.0 -88.62929929 .3000000000 0.0 0.0 &

0.0 152.7800028 327.1640014

BPVAL THF GAMMA-01 16.04880000 -8348.314613 .3000000000 0.0 &

0.0 0.0 152.7440028 352.6160012

BPVAL GAMMA-01 THF .9873000000 -1378.530169 .3000000000 0.0 &

0.0 0.0 152.7440028 352.6160012

BPVAL WATER 1:4-B-01 0.0 1381.130629 .4700000000 0.0 0.0 &

0.0 212.1800023 222.8000022

BPVAL 1:4-B-01 WATER 0.0 992.9431721 .4700000000 0.0 0.0 &

0.0 212.1800023 222.8000022

BPVAL THF 1:4-B-01 -9.196000000 6646.489327 .3000000000 0.0 &

0.0 0.0 140.0000029 439.7000005

BPVAL 1:4-B-01 THF 7.301800000 -4588.857323 .3000000000 0.0 &

0.0 0.0 140.0000029 439.7000005

BPVAL METHANOL 1:4-B-01 .3892000000 109.6928991 .3000000000 &

0.0 0.0 0.0 140.0000029 439.7000005

BPVAL 1:4-B-01 METHANOL -.0611000000 -342.0120573 &

.3000000000 0.0 0.0 0.0 140.0000029 439.7000005

Page 109: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

108

PROP-DATA NRTL-2

IN-UNITS ENG

PROP-LIST NRTL 2

BPVAL WATER ACRYLIC 0.0 1676.270867 .3000000000 0.0 0.0 &

0.0 212.7200023 248.9000020

BPVAL ACRYLIC WATER 0.0 -543.5965757 .3000000000 0.0 0.0 &

0.0 212.7200023 248.9000020

BPVAL WATER THF 4.760148000 -1320.122869 .4725526000 0.0 &

0.0 0.0 146.1380028 212.0000023

BPVAL THF WATER 1.214162000 284.0056177 .4725526000 0.0 &

0.0 0.0 146.1380028 212.0000023

BPVAL WATER BUTANOL 13.11020000 -6010.116432 .3000000000 &

0.0 0.0 0.0 66.50600347 243.6800021

BPVAL BUTANOL WATER -2.040500000 1374.964549 .3000000000 &

0.0 0.0 0.0 66.50600347 243.6800021

BPVAL ACRYLIC BUTANOL 0.0 -1073.497311 .3116000000 0.0 0.0 &

0.0 248.0000020 284.0000017

BPVAL BUTANOL ACRYLIC 0.0 970.5745722 .3116000000 0.0 0.0 &

0.0 248.0000020 284.0000017

BPVAL THF BUTANOL 0.0 607.2393551 .3000000000 0.0 0.0 0.0 &

154.9400028 224.8700022

BPVAL BUTANOL THF 0.0 -354.7387772 .3000000000 0.0 0.0 &

0.0 154.9400028 224.8700022

BPVAL WATER PROPANOL 5.448600000 -1550.122548 .3000000000 &

0.0 0.0 0.0 77.00000338 212.0000023

BPVAL PROPANOL WATER -1.741100000 1037.602432 .3000000000 &

0.0 0.0 0.0 77.00000338 212.0000023

BPVAL BUTANE PROPANOL 0.0 566.5037355 .3000000000 0.0 0.0 &

0.0 50.00000360 104.0000032

BPVAL PROPANOL BUTANE 0.0 347.8390172 .3000000000 0.0 0.0 &

0.0 50.00000360 104.0000032

BPVAL ACRYLIC PROPANOL 0.0 2188.951182 .3000000000 0.0 0.0 &

0.0 212.0000023 284.0000017

BPVAL PROPANOL ACRYLIC 0.0 -1335.879709 .3000000000 0.0 &

0.0 0.0 212.0000023 284.0000017

BPVAL THF PROPANOL 0.0 708.9470943 .3000000000 0.0 0.0 &

0.0 150.4400028 207.3200023

BPVAL PROPANOL THF 0.0 -399.7814368 .3000000000 0.0 0.0 &

0.0 150.4400028 207.3200023

BPVAL BUTANOL PROPANOL 0.0 -158.9718587 .3000000000 0.0 &

Page 110: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

109

0.0 0.0 104.0000032 243.6800021

BPVAL PROPANOL BUTANOL 0.0 203.3026184 .3000000000 0.0 0.0 &

0.0 104.0000032 243.6800021

BPVAL WATER METHANOL 2.732200000 -1111.083651 .3000000000 &

0.0 0.0 0.0 76.98200338 212.0000023

BPVAL METHANOL WATER -.6930000000 311.3767775 .3000000000 &

0.0 0.0 0.0 76.98200338 212.0000023

BPVAL BUTANE METHANOL 0.0 993.1037321 .3000000000 0.0 0.0 &

0.0 122.0000030 122.0000030

BPVAL METHANOL BUTANE 0.0 684.7795745 .3000000000 0.0 0.0 &

0.0 122.0000030 122.0000030

BPVAL THF METHANOL 0.0 403.4712568 .3000000000 0.0 0.0 &

0.0 87.53000330 144.6800028

BPVAL METHANOL THF 0.0 113.5891791 .3000000000 0.0 0.0 &

0.0 87.53000330 144.6800028

BPVAL BUTANOL METHANOL -1.516500000 436.7237365 .3000000000 &

0.0 0.0 0.0 77.00000338 243.8960020

BPVAL METHANOL BUTANOL 2.220000000 -607.8823151 .3000000000 &

0.0 0.0 0.0 77.00000338 243.8960020

BPVAL PROPANOL METHANOL 0.0 -15.99605987 .3000000000 0.0 &

0.0 0.0 140.0360029 206.8160023

BPVAL METHANOL PROPANOL 0.0 35.19845972 .3000000000 0.0 &

0.0 0.0 140.0360029 206.8160023

BPVAL WATER GAMMA-01 0.0 1474.941048 .3000000000 0.0 0.0 &

0.0 152.7800028 327.1640014

BPVAL GAMMA-01 WATER 0.0 -88.62929929 .3000000000 0.0 0.0 &

0.0 152.7800028 327.1640014

BPVAL THF GAMMA-01 16.04880000 -8348.314613 .3000000000 0.0 &

0.0 0.0 152.7440028 352.6160012

BPVAL GAMMA-01 THF .9873000000 -1378.530169 .3000000000 0.0 &

0.0 0.0 152.7440028 352.6160012

BPVAL WATER 1:4-B-01 0.0 1381.130629 .4700000000 0.0 0.0 &

0.0 212.1800023 222.8000022

BPVAL 1:4-B-01 WATER 0.0 992.9431721 .4700000000 0.0 0.0 &

0.0 212.1800023 222.8000022

BPVAL THF 1:4-B-01 -9.196000000 6646.489327 .3000000000 0.0 &

0.0 0.0 140.0000029 439.7000005

BPVAL 1:4-B-01 THF 7.301800000 -4588.857323 .3000000000 0.0 &

0.0 0.0 140.0000029 439.7000005

BPVAL METHANOL 1:4-B-01 .3892000000 109.6928991 .3000000000 &

Page 111: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

110

0.0 0.0 0.0 140.0000029 439.7000005

BPVAL 1:4-B-01 METHANOL -.0611000000 -342.0120573 &

.3000000000 0.0 0.0 0.0 140.0000029 439.7000005

PROP-DATA PRKBV-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST PRKBV

BPVAL WATER CO2 .1200000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 WATER .1200000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE CO2 .1333000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 BUTANE .1333000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE N2 .0800000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 BUTANE .0800000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL OXYGEN N2 -.0119000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 OXYGEN -.0119000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO N2 .0307000000 0.0 0.0 -273.1500000 726.8500000

BPVAL N2 CO .0307000000 0.0 0.0 -273.1500000 726.8500000

BPVAL CO2 N2 -.0170000000 0.0 0.0 -273.1500000 726.8500000

BPVAL N2 CO2 -.0170000000 0.0 0.0 -273.1500000 726.8500000

BPVAL WATER METHANOL -.0778000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL WATER -.0778000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 METHANOL .0230000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL CO2 .0230000000 0.0 0.0 -273.1500000 &

726.8500000

Page 112: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

111

BPVAL N2 METHANOL -.2141000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL N2 -.2141000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE H2 -.3970000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 BUTANE -.3970000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO H2 .0919000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 CO .0919000000 0.0 0.0 -273.1500000 726.8500000

BPVAL CO2 H2 -.1622000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 CO2 -.1622000000 0.0 0.0 -273.1500000 726.8500000

BPVAL N2 H2 .1030000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 N2 .1030000000 0.0 0.0 -273.1500000 726.8500000

BPVAL BUTANE METHANE .0133000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE BUTANE .0133000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO METHANE .0300000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE CO .0300000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 METHANE .0919000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE CO2 .0919000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 METHANE .0311000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE N2 .0311000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 METHANE .0156000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE H2 .0156000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE PROPANE 3.30000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE BUTANE 3.30000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO PROPANE .0259000000 0.0 0.0 -273.1500000 &

726.8500000

Page 113: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

112

BPVAL PROPANE CO .0259000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 PROPANE .1241000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE CO2 .1241000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 PROPANE .0852000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE N2 .0852000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 PROPANE -.0833000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE H2 -.0833000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE PROPANE .0140000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE METHANE .0140000000 0.0 0.0 -273.1500000 &

726.8500000

PROP-DATA RKSKBV-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST RKSKBV

BPVAL WATER CO2 .0737000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 WATER .0737000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE CO2 .1430000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 BUTANE .1430000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE N2 .0700000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 BUTANE .0700000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL OXYGEN N2 -7.8000000E-3 0.0 0.0 -273.1500000 &

Page 114: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

113

726.8500000

BPVAL N2 OXYGEN -7.8000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO N2 .0374000000 0.0 0.0 -273.1500000 726.8500000

BPVAL N2 CO .0374000000 0.0 0.0 -273.1500000 726.8500000

BPVAL CO2 N2 -.0315000000 0.0 0.0 -273.1500000 726.8500000

BPVAL N2 CO2 -.0315000000 0.0 0.0 -273.1500000 726.8500000

BPVAL WATER METHANOL -.0789000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL WATER -.0789000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 METHANOL .0148000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL CO2 .0148000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 METHANOL -.2881000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANOL N2 -.2881000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE H2 -.5100000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 BUTANE -.5100000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO H2 .0804000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 CO .0804000000 0.0 0.0 -273.1500000 726.8500000

BPVAL CO2 H2 -.3426000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 CO2 -.3426000000 0.0 0.0 -273.1500000 726.8500000

BPVAL N2 H2 .0978000000 0.0 0.0 -273.1500000 726.8500000

BPVAL H2 N2 .0978000000 0.0 0.0 -273.1500000 726.8500000

BPVAL BUTANE METHANE 5.60000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE BUTANE 5.60000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO METHANE .0322000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE CO .0322000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 METHANE .0933000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE CO2 .0933000000 0.0 0.0 -273.1500000 &

Page 115: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

114

726.8500000

BPVAL N2 METHANE .0278000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE N2 .0278000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 METHANE -.0222000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE H2 -.0222000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE PROPANE 0.0 0.0 0.0 -273.1500000 726.8500000

BPVAL PROPANE BUTANE 0.0 0.0 0.0 -273.1500000 726.8500000

BPVAL CO PROPANE .0156000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE CO .0156000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL CO2 PROPANE .1289000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE CO2 .1289000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL N2 PROPANE .0763000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE N2 .0763000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 PROPANE -.2359000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE H2 -.2359000000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE PROPANE 9.00000000E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE METHANE 9.00000000E-3 0.0 0.0 -273.1500000 &

726.8500000

PROP-DATA SRKKIJ-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST SRKKIJ

Page 116: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

115

BPVAL CO CO2 -.0154400000 0.0 0.0 -273.1500000 726.8500000

BPVAL CO2 CO -.0154400000 0.0 0.0 -273.1500000 726.8500000

BPVAL BUTANE METHANE .0226440000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE BUTANE .0226440000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 METHANE -.0244851000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE H2 -.0244851000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL BUTANE PROPANE -2.0759400E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE BUTANE -2.0759400E-3 0.0 0.0 -273.1500000 &

726.8500000

BPVAL H2 PROPANE .1014650000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE H2 .1014650000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL METHANE PROPANE .0241509000 0.0 0.0 -273.1500000 &

726.8500000

BPVAL PROPANE METHANE .0241509000 0.0 0.0 -273.1500000 &

726.8500000

PROP-DATA UNIQ-1

IN-UNITS ENG

PROP-LIST UNIQ

BPVAL WATER FORMIC 0.0 420.2459966 0.0 0.0 68.00000346 &

104.0000032 0.0

BPVAL FORMIC WATER 0.0 278.9279978 0.0 0.0 68.00000346 &

104.0000032 0.0

BPVAL WATER ACRYLIC 0.0 -815.2817335 0.0 0.0 212.7200023 &

248.9000020 0.0

BPVAL ACRYLIC WATER 0.0 455.6541564 0.0 0.0 212.7200023 &

248.9000020 0.0

BPVAL WATER THF -.3878309000 425.0131166 0.0 0.0 &

146.1380028 212.0000023 0.0

BPVAL THF WATER .3109718000 -1099.904031 0.0 0.0 &

146.1380028 212.0000023 0.0

BPVAL WATER BUTANOL -4.993400000 2824.291597 0.0 0.0 &

66.50600347 243.6800021 0.0

Page 117: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

116

BPVAL BUTANOL WATER 3.764400000 -2603.900319 0.0 0.0 &

66.50600347 243.6800021 0.0

BPVAL ACRYLIC BUTANOL 0.0 572.3542754 0.0 0.0 248.0000020 &

284.0000017 0.0

BPVAL BUTANOL ACRYLIC 0.0 -616.4940551 0.0 0.0 248.0000020 &

284.0000017 0.0

BPVAL THF BUTANOL 0.0 -406.3535967 0.0 0.0 154.9400028 &

224.8700022 0.0

BPVAL BUTANOL THF 0.0 270.7903778 0.0 0.0 154.9400028 &

224.8700022 0.0

BPVAL WATER PROPANOL -2.333000000 1080.883071 0.0 0.0 &

77.00000338 212.0000023 0.0

BPVAL PROPANOL WATER 1.766800000 -1172.243151 0.0 0.0 &

77.00000338 212.0000023 0.0

BPVAL BUTANE PROPANOL 0.0 -273.6566978 0.0 0.0 50.00000360 &

104.0000032 0.0

BPVAL PROPANOL BUTANE 0.0 -60.55145952 0.0 0.0 50.00000360 &

104.0000032 0.0

BPVAL ACRYLIC PROPANOL 0.0 -1859.684385 0.0 0.0 &

212.0000023 284.0000017 0.0

BPVAL PROPANOL ACRYLIC 0.0 834.8853533 0.0 0.0 212.0000023 &

284.0000017 0.0

BPVAL THF PROPANOL 0.0 -483.8293761 0.0 0.0 150.4400028 &

207.3200023 0.0

BPVAL PROPANOL THF 0.0 310.2845375 0.0 0.0 150.4400028 &

207.3200023 0.0

BPVAL BUTANOL PROPANOL 0.0 53.83709957 0.0 0.0 104.0000032 &

243.6800021 0.0

BPVAL PROPANOL BUTANOL 0.0 -71.30987943 0.0 0.0 &

104.0000032 243.6800021 0.0

BPVAL WATER METHANOL .6437000000 -579.8361554 0.0 0.0 &

76.98200338 212.0000023 0.0

BPVAL METHANOL WATER -1.066200000 779.1812938 0.0 0.0 &

76.98200338 212.0000023 0.0

BPVAL BUTANE METHANOL 0.0 -1148.501691 0.0 0.0 122.0000030 &

122.0000030 0.0

BPVAL METHANOL BUTANE 0.0 -23.68817981 0.0 0.0 122.0000030 &

122.0000030 0.0

BPVAL THF METHANOL 0.0 -572.5058354 0.0 0.0 87.53000330 &

144.6800028 0.0

Page 118: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

117

BPVAL METHANOL THF 0.0 161.6754587 0.0 0.0 87.53000330 &

144.6800028 0.0

BPVAL BUTANOL METHANOL .2267000000 -225.5174982 0.0 0.0 &

77.00000338 243.8960020 0.0

BPVAL METHANOL BUTANOL -.3136000000 148.7455188 0.0 0.0 &

77.00000338 243.8960020 0.0

BPVAL PROPANOL METHANOL 0.0 -167.8472987 0.0 0.0 &

140.0360029 206.8160023 0.0

BPVAL METHANOL PROPANOL 0.0 88.58789929 0.0 0.0 &

140.0360029 206.8160023 0.0

BPVAL WATER GAMMA-01 0.0 31.23053975 0.0 0.0 152.7800028 &

327.1640014 0.0

BPVAL GAMMA-01 WATER 0.0 -225.8560782 0.0 0.0 152.7800028 &

327.1640014 0.0

BPVAL THF GAMMA-01 -11.99890000 6474.853568 0.0 0.0 &

152.7440028 352.6160012 0.0

BPVAL GAMMA-01 THF 1.109300000 -207.5934583 0.0 0.0 &

152.7440028 352.6160012 0.0

BPVAL WATER 1:4-B-01 0.0 249.0355780 0.0 0.0 212.1800023 &

222.8000022 0.0

BPVAL 1:4-B-01 WATER 0.0 -1235.539610 0.0 0.0 212.1800023 &

222.8000022 0.0

BPVAL THF 1:4-B-01 2.601800000 -1934.671305 0.0 0.0 &

140.0000029 439.7000005 0.0

BPVAL 1:4-B-01 THF -2.501400000 1594.517927 0.0 0.0 &

140.0000029 439.7000005 0.0

BPVAL METHANOL 1:4-B-01 -.1912000000 383.7301169 0.0 0.0 &

140.0000029 439.7000005 0.0

BPVAL 1:4-B-01 METHANOL .3393000000 -660.7933147 0.0 0.0 &

140.0000029 439.7000005 0.0

BPVAL WATER SUCCI-02 0.0 152.7533988 0.0 0.0 68.00000346 &

104.0000032 0.0

BPVAL SUCCI-02 WATER 0.0 -15.60689988 0.0 0.0 68.00000346 &

104.0000032 0.0

BPVAL BUTANOL SUCCI-02 0.0 -251.2979980 0.0 0.0 &

68.00000346 104.0000032 0.0

BPVAL SUCCI-02 BUTANOL 0.0 181.7819985 0.0 0.0 68.00000346 &

104.0000032 0.0

PROP-DATA UNIQ-2

Page 119: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

118

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST UNIQ 2

BPVAL WATER FORMIC 0.0 233.4700000 0.0 0.0 20.00000000 &

40.00000000 0.0

BPVAL FORMIC WATER 0.0 154.9600000 0.0 0.0 20.00000000 &

40.00000000 0.0

BPVAL WATER ACRYLIC 0.0 -452.9343000 0.0 0.0 100.4000000 &

120.5000000 0.0

BPVAL ACRYLIC WATER 0.0 253.1412000 0.0 0.0 100.4000000 &

120.5000000 0.0

BPVAL WATER THF -.3878309000 236.1184000 0.0 0.0 &

63.41000000 100.0000000 0.0

BPVAL THF WATER .3109718000 -611.0578000 0.0 0.0 &

63.41000000 100.0000000 0.0

BPVAL WATER BUTANOL -4.993400000 1569.050900 0.0 0.0 &

19.17000000 117.6000000 0.0

BPVAL BUTANOL WATER 3.764400000 -1446.611300 0.0 0.0 &

19.17000000 117.6000000 0.0

BPVAL ACRYLIC BUTANOL 0.0 317.9746000 0.0 0.0 120.0000000 &

140.0000000 0.0

BPVAL BUTANOL ACRYLIC 0.0 -342.4967000 0.0 0.0 120.0000000 &

140.0000000 0.0

BPVAL THF BUTANOL 0.0 -225.7520000 0.0 0.0 68.30000000 &

107.1500000 0.0

BPVAL BUTANOL THF 0.0 150.4391000 0.0 0.0 68.30000000 &

107.1500000 0.0

BPVAL WATER PROPANOL -2.333000000 600.4906000 0.0 0.0 &

25.00000000 100.0000000 0.0

BPVAL PROPANOL WATER 1.766800000 -651.2462000 0.0 0.0 &

25.00000000 100.0000000 0.0

BPVAL BUTANE PROPANOL 0.0 -152.0315000 0.0 0.0 10.00000000 &

40.00000000 0.0

BPVAL PROPANOL BUTANE 0.0 -33.63970000 0.0 0.0 10.00000000 &

40.00000000 0.0

BPVAL ACRYLIC PROPANOL 0.0 -1033.158000 0.0 0.0 &

Page 120: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

119

100.0000000 140.0000000 0.0

BPVAL PROPANOL ACRYLIC 0.0 463.8252000 0.0 0.0 100.0000000 &

140.0000000 0.0

BPVAL THF PROPANOL 0.0 -268.7941000 0.0 0.0 65.80000000 &

97.40000000 0.0

BPVAL PROPANOL THF 0.0 172.3803000 0.0 0.0 65.80000000 &

97.40000000 0.0

BPVAL BUTANOL PROPANOL 0.0 29.90950000 0.0 0.0 40.00000000 &

117.6000000 0.0

BPVAL PROPANOL BUTANOL 0.0 -39.61660000 0.0 0.0 &

40.00000000 117.6000000 0.0

BPVAL WATER METHANOL .6437000000 -322.1312000 0.0 0.0 &

24.99000000 100.0000000 0.0

BPVAL METHANOL WATER -1.066200000 432.8785000 0.0 0.0 &

24.99000000 100.0000000 0.0

BPVAL BUTANE METHANOL 0.0 -638.0565000 0.0 0.0 50.00000000 &

50.00000000 0.0

BPVAL METHANOL BUTANE 0.0 -13.16010000 0.0 0.0 50.00000000 &

50.00000000 0.0

BPVAL THF METHANOL 0.0 -318.0588000 0.0 0.0 30.85000000 &

62.60000000 0.0

BPVAL METHANOL THF 0.0 89.81970000 0.0 0.0 30.85000000 &

62.60000000 0.0

BPVAL BUTANOL METHANOL .2267000000 -125.2875000 0.0 0.0 &

25.00000000 117.7200000 0.0

BPVAL METHANOL BUTANOL -.3136000000 82.63640000 0.0 0.0 &

25.00000000 117.7200000 0.0

BPVAL PROPANOL METHANOL 0.0 -93.24850000 0.0 0.0 &

60.02000000 97.12000000 0.0

BPVAL METHANOL PROPANOL 0.0 49.21550000 0.0 0.0 &

60.02000000 97.12000000 0.0

BPVAL WATER GAMMA-01 0.0 17.35030000 0.0 0.0 67.10000000 &

163.9800000 0.0

BPVAL GAMMA-01 WATER 0.0 -125.4756000 0.0 0.0 67.10000000 &

163.9800000 0.0

BPVAL THF GAMMA-01 -11.99890000 3597.140900 0.0 0.0 &

67.08000000 178.1200000 0.0

BPVAL GAMMA-01 THF 1.109300000 -115.3297000 0.0 0.0 &

67.08000000 178.1200000 0.0

BPVAL WATER 1:4-B-01 0.0 138.3531000 0.0 0.0 100.1000000 &

Page 121: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

120

106.0000000 0.0

BPVAL 1:4-B-01 WATER 0.0 -686.4109000 0.0 0.0 100.1000000 &

106.0000000 0.0

BPVAL THF 1:4-B-01 2.601800000 -1074.817400 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL 1:4-B-01 THF -2.501400000 885.8433000 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL METHANOL 1:4-B-01 -.1912000000 213.1834000 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL 1:4-B-01 METHANOL .3393000000 -367.1074000 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL WATER SUCCI-02 0.0 84.86300000 0.0 0.0 20.00000000 &

40.00000000 0.0

BPVAL SUCCI-02 WATER 0.0 -8.670500000 0.0 0.0 20.00000000 &

40.00000000 0.0

BPVAL BUTANOL SUCCI-02 0.0 -139.6100000 0.0 0.0 &

20.00000000 40.00000000 0.0

BPVAL SUCCI-02 BUTANOL 0.0 100.9900000 0.0 0.0 20.00000000 &

40.00000000 0.0

PROP-DATA WILSON-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &

HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &

VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &

MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &

MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' &

PDROP=bar

PROP-LIST WILSON

BPVAL WATER ACRYLIC 0.0 168.4465000 0.0 0.0 100.4000000 &

120.5000000 0.0

BPVAL ACRYLIC WATER 0.0 -882.7916000 0.0 0.0 100.4000000 &

120.5000000 0.0

BPVAL WATER THF 1.166967000 -861.2151000 0.0 0.0 &

63.41000000 100.0000000 0.0

BPVAL THF WATER -9.570150000 2146.342000 0.0 0.0 &

63.41000000 100.0000000 0.0

BPVAL WATER BUTANOL .6102000000 -420.6027000 0.0 0.0 &

19.17000000 191.8000000 0.0

BPVAL BUTANOL WATER 2.450400000 -2492.023400 0.0 0.0 &

19.17000000 191.8000000 0.0

Page 122: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

121

BPVAL THF BUTANOL 0.0 180.6092000 0.0 0.0 68.30000000 &

107.1500000 0.0

BPVAL BUTANOL THF 0.0 -388.8284000 0.0 0.0 68.30000000 &

107.1500000 0.0

BPVAL WATER PROPANOL 1.267500000 -580.1956000 0.0 0.0 &

25.00000000 100.0000000 0.0

BPVAL PROPANOL WATER -4.815800000 648.7817000 0.0 0.0 &

25.00000000 100.0000000 0.0

BPVAL BUTANE PROPANOL 0.0 -236.3575000 0.0 0.0 10.00000000 &

40.00000000 0.0

BPVAL PROPANOL BUTANE 0.0 -393.1257000 0.0 0.0 10.00000000 &

40.00000000 0.0

BPVAL THF PROPANOL 0.0 133.2163000 0.0 0.0 65.80000000 &

97.40000000 0.0

BPVAL PROPANOL THF 0.0 -299.9573000 0.0 0.0 65.80000000 &

97.40000000 0.0

BPVAL BUTANOL PROPANOL 0.0 -107.5577000 0.0 0.0 &

40.00000000 117.6000000 0.0

BPVAL PROPANOL BUTANOL 0.0 78.37730000 0.0 0.0 40.00000000 &

117.6000000 0.0

BPVAL WATER METHANOL -1.884200000 617.4097000 0.0 0.0 &

24.99000000 188.3000000 0.0

BPVAL METHANOL WATER 1.083700000 -580.2370000 0.0 0.0 &

24.99000000 188.3000000 0.0

BPVAL BUTANE METHANOL -.4811000000 -433.3017000 0.0 0.0 &

50.00000000 100.0000000 0.0

BPVAL METHANOL BUTANE 3.617800000 -1967.833100 0.0 0.0 &

50.00000000 100.0000000 0.0

BPVAL THF METHANOL 0.0 -95.32840000 0.0 0.0 30.85000000 &

62.60000000 0.0

BPVAL METHANOL THF 0.0 -201.7985000 0.0 0.0 30.85000000 &

62.60000000 0.0

BPVAL BUTANOL METHANOL -.6341000000 -73.65750000 0.0 0.0 &

25.00000000 285.4000000 0.0

BPVAL METHANOL BUTANOL .5587000000 -19.02890000 0.0 0.0 &

25.00000000 285.4000000 0.0

BPVAL PROPANOL METHANOL 0.0 -66.18770000 0.0 0.0 &

60.02000000 97.12000000 0.0

BPVAL METHANOL PROPANOL 0.0 47.93730000 0.0 0.0 &

60.02000000 97.12000000 0.0

Page 123: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

122

BPVAL WATER GAMMA-01 0.0 -44.70750000 0.0 0.0 67.10000000 &

163.9800000 0.0

BPVAL GAMMA-01 WATER 0.0 -993.0518000 0.0 0.0 67.10000000 &

163.9800000 0.0

BPVAL THF GAMMA-01 -.2082000000 308.0572000 0.0 0.0 &

67.08000000 178.1200000 0.0

BPVAL GAMMA-01 THF -30.94190000 10000.00000 0.0 0.0 &

67.08000000 178.1200000 0.0

BPVAL WATER 1:4-B-01 0.0 -506.5348000 0.0 0.0 100.1000000 &

106.0000000 0.0

BPVAL 1:4-B-01 WATER 0.0 -841.3055000 0.0 0.0 100.1000000 &

106.0000000 0.0

BPVAL THF 1:4-B-01 -7.241300000 2413.589800 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL 1:4-B-01 THF 8.514000000 -3389.141600 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL METHANOL 1:4-B-01 -.1189000000 201.7588000 0.0 0.0 &

60.00000000 226.5000000 0.0

BPVAL 1:4-B-01 METHANOL -.5852000000 42.67770000 0.0 0.0 &

60.00000000 226.5000000 0.0

STREAM 36

SUBSTREAM MIXED TEMP=444. PRES=500.

MASS-FLOW WATER 1.621 / MAH 7627.813 / FORMIC 0.046 / &

ACRYLIC 18.448

STREAM 39

SUBSTREAM MIXED TEMP=70. PRES=3500. MASS-FLOW=858.233

MOLE-FLOW H2 1.

BLOCK M-201 MIXER

BLOCK S-201 FSPLIT

FRAC 47 0.95

BLOCK S-202 FSPLIT

FRAC 73 0.05

BLOCK E-201 HEATER

PARAM TEMP=464. PRES=614.7

Page 124: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

123

BLOCK E-202 HEATER

PARAM TEMP=464. PRES=614.7

BLOCK E-203 HEATER

PARAM TEMP=40. <C> PRES=25. <bar>

BLOCK E-204 HEATER

PARAM TEMP=240. <C> PRES=600. <psig>

BLOCK E-205 HEATER

PARAM TEMP=80. <C> PRES=1. <bar>

BLOCK E-210 HEATER

PARAM TEMP=45. <C> PRES=1. <bar>

BLOCK E-211 HEATER

PARAM TEMP=96. PRES=14.7

BLOCK V-201 FLASH2

PARAM TEMP=40. <C> PRES=25. <bar>

BLOCK V-204 FLASH2

PARAM TEMP=45. <C> PRES=1. <bar>

BLOCK T-201 RADFRAC

PARAM NSTAGE=10 MAXOL=60

COL-CONFIG CONDENSER=PARTIAL-V

FEEDS 52 5 / 78 5

PRODUCTS 56 1 V / 60 10 L

P-SPEC 1 1. <bar> / 2 1. <bar>

COL-SPECS B:F=0.30222 MOLE-RR=2.

DB:F-PARAMS COMPS=THF

REPORT STDVPROF

BLOCK T-202 RADFRAC

PARAM NSTAGE=20 MAXOL=25

COL-CONFIG CONDENSER=PARTIAL-V

FEEDS 62 10

PRODUCTS 70 20 L / 66 1 V

Page 125: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

124

P-SPEC 1 8. <bar> / 2 8. <bar>

COL-SPECS B:F=0.46366 MOLE-RR=3.

DB:F-PARAMS COMPS=WATER

REPORT STDVPROF

BLOCK R-201 RSTOIC

PARAM TEMP=240. <C> PRES=600. <psig> SERIES=YES

STOIC 1 MIXED MAH -1. / H2 -5. / THF 1. / WATER 2.

STOIC 2 MIXED MAH -1. / H2 -6. / BUTANOL 1. / WATER &

2.

STOIC 3 MIXED MAH -1. / H2 -3. / PROPANOL 1. / CO2 &

1.

STOIC 4 MIXED THF -1. / H2 -1.15 / BUTANE 0.15 / &

BUTANOL 0.85 / WATER 0.15

CONV 1 MIXED MAH 0.98

CONV 2 MIXED MAH 0.99

CONV 3 MIXED MAH 1.

CONV 4 MIXED THF 0.002

SELECTIVITY 1 THF MIXED MAH MIXED

BLOCK T-103P PUMP

PARAM PRES=614.7 EFF=0.8

BLOCK C-201 COMPR

PARAM TYPE=ASME-ISENTROP PRES=601.5 <psig> MEFF=0.85

BLOCK C-202 COMPR

PARAM TYPE=ASME-ISENTROP PRES=3. <bar> MEFF=0.85

BLOCK C-203 COMPR

PARAM TYPE=ASME-ISENTROP PRES=8.1 <bar> MEFF=0.85

BLOCK CV-201 VALVE

PARAM P-OUT=614.7

BLOCK CV-202 VALVE

PARAM P-OUT=16.

BLOCK CV-203 VALVE

PARAM P-OUT=14.7

Page 126: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

125

BLOCK CV-204 VALVE

PARAM P-OUT=1.1 <bar>

EO-CONV-OPTI

CONV-OPTIONS

WEGSTEIN MAXIT=30

TEAR

TEAR 78 0.001 STATE=P

STREAM-REPOR MOLEFLOW MASSFLOW MASSFRAC

;

Page 127: Synthesis of Tetrahydrofuran - Yolajingwang.yolasite.com/resources/Senior Design.pdf · We would like to present to you our complete process design for the production of ... Production

126

Appendix C – Material Saftey Data Sheet

Table C.1 has the material safety numbers for the National Fire Protection Association diamond

for the major components in the process. The products not included in this table are either not

hazardous or are present in such small quantity that a hazard is not prevalent.

Table C.1. NFPA values for major components.

Component Health Flammability Reactivity Special

Tetrahydrofuran 2 3 1

Maleic Anhydride 3 1 2

Butane 1 4 0

Maleic Acid 2 1 0

Formic Acid 3 2 2

Acrylic Acid 4 2 2

Hyrdogen 0 4 0 SA

Butanol 2 2 1 References 1, 4, 6, 8, 13, 14, 16, 18