18
7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 1/18 Dewing, K., Sharp, R.J., Turner, E., 2007, Synopsis of the Polaris Zn-Pb District, Canadian Arctice Islands, Nunavut, in Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 655-672. SYNOPSIS OF THE POLARIS ZN-PB DISTRICT , CANADIAN ARCTIC ISLANDS, NUNAVUT EITH DEWING 1 , R OBERT J. SHARP 2 , AND ELIZABETH TURNER 3 1. Geological Survey of Canada, 3303-33rd Street NW, Calgary, Alberta T2L 2A7 2. Trans Polar Geological, 60 Hawkmount Heights NW, Calgar,y Alberta T3G 3S5 3. Department of Earth Science, Laurentian University, Sudbury, Ontario, P3E 2C6 Corresponding author’s email: [email protected] Abstract The Polaris Mine was a Mississippi Valley-type (MVT) deposit hosted in dolomitized Middle Ordovician lime- stone. Total production was 20.1 Mt at 13.4% Zn and 3.6% Pb. There are about 80 showings in the district, which stretches from Somerset Island to the Grinnell Peninsula. There are two deposit types in the Polaris District: 1) struc- turally controlled, carbonate-hosted Zn-Pb-Fe deposits typical of MVT deposits, and 2) structurally and stratigraphi- cally controlled, carbonate-hosted Cu deposits enriched by later supergene removal of Fe and S. Mineralization is paragenetically simple, with sphalerite and galena as the ore minerals, and with dolomite and mar- casite as the main gangue minerals. The deposits formed from brines at about 90 to 100°C. The age of the mineraliza- tion is constrained to post-Late Devonian folding and may be associated with the last stages of the Ellesmerian Orogeny or the opening of the Sverdrup Basin. Copper-rich mineralization is known from four showings, is associated with zinc- lead mineralization and is confined to a single interval in the Silurian. The metallogenic model for Polaris invokes a source of metal ions within the stratigraphic column since strontium shows no indication of basement involvement. Metals are then carried in sulphate-rich brines through deep aquifers. Driven by an orogenic process, circulating fluids rose along faults until they encountered organic-rich, permeable lime- stone overlain by impermeable shale. Bacterial sulphate reduction reduces sulphate to H 2 S using organic matter as a reductant. The resulting H 2 S has a shift in δ 34 S values of -15‰. The H 2 S reacts inorganically with zinc, lead, and iron ions to produce sulphides with a δ 34 S value of about 10‰. Released hydrogen ions dissolve carbonate resulting in dis- solution breccias and other dissolution fabrics. Excess sulphate was expelled from the system and produced a halo of  barite up to 10 km from the deposit with δ 34 S of 40 to 60‰. Résumé La mine Polaris consistait en un gisement de type Mississippi-Valley encaissé dans un calcaire dolomitisé de l’Ordovicien moyen. Au total, elle a produit 20,1 Mt de minerai titrant 13,4 % de Zn et 3,6 % de Pb. Le district de Polaris compte quelque 80 indices minéralisés et s’étend de l’île Somerset jusqu’à la péninsule Grinnell. On y trouve deux types de gîtes, à savoir des gîtes de Zn-Pb-Fe encaissés dans des roches carbonatées, qui affichent un contrôle structural et sont représentatifs des gîtes de type Mississippi-Valley, et des gîtes de Cu logés dans des roches carbon- atées, qui montrent des contrôles structuraux et stratigraphiques et un enrichissement supergène ultérieur par l’élimi- nation du Fe et du S. Du point de vue paragénétique, les minéralisations sont simples. Elles présentent la sphalérite et la galène comme minéraux métallifères, ainsi que la dolomite et la marcasite comme principaux minéraux de gangue. Les gîtes du dis- trict se sont formés à partir de saumures affichant des températures de 90 à 100°C environ. L’âge maximal des minéral- isations est défini par un plissement du Dévonien tardif, qui pourrait être rattaché aux dernières phases de l’orogenèse Ellesmérienne ou à l’ouverture du bassin de Sverdrup. Quatre indices minéralisées ont révélé des minéralisations riches en cuivre, qui sont associées aux minéralisations de zinc-plomb et confinées à un seul intervalle du Silurien. Le modèle métallogénique proposé pour le district de Polaris établit une source d’ions métalliques dans la colonne sédimentaire, car la composition isotopique du strontium ne témoigne d’aucune contribution du socle. Les métaux ont donc été transportés dans des saumures riches en sulfates circulant dans de profonds aquifères. Un phénomène orogénique a fait en sorte que les fluides en circulation se sont élevés le long de failles jusqu’à ce qu’ils atteignent des horizons perméables de calcaire riche en matière organique, qui sont recouverts de shale imperméable. Des bactéries ont réduit les sulfates en H 2 S en se servant de la matière organique comme agent réducteur. Le H 2 S résultant présente un décalage des valeurs de δ 34 S de -15 ‰. Le H 2 S réagit de manière inorganique avec les ions de zinc, de plomb et de fer pour produire des sulfures dont la valeur de δ 34 S est d’environ 10 ‰. Les ions d’hydrogène émis dissolvent les car-  bonates pour produire des brèches de dissolution et d’autres fabriques de dissolution. Les sulfates excédentaires ont été expulsés du système et ont produit une auréole de barytine qui s’étend jusqu’à 10 km du gisement et les valeurs de δ 34 S de ce minéral varient de 40 à 60 ‰. Introduction and History The Polaris Zn-Pb District lies in the central Arctic Islands, Nunavut, and spans an area that is roughly 450 km north-south by 130 km east-west (Fig. 1). The southern limit is the southern edge of Somerset Island; the northern edge is the northern shore of the Grinnell Peninsula. The eastern limit runs along the longitude of Wellington Channel  between Cornwallis and Devon islands and the western limit is on eastern Bathurst Island. There are about 80 individual Zn-Pb showings occur within the study area (Fig. 1, Table 1). The largest of these is the Polaris deposit, a carbonate-hosted Zn-Pb deposit of about 20 million tonnes grading about 17% Zn+Pb. The deposit was mined from 1982 to 2002, when it shut down due to depletion of reserves. During its latter days, Polaris employed a workforce of 235 employees on an 8 week onsite and 4 week offsite rotation. Sphalerite and galena were sep- arated from the gangue in a complex known as “the barge”

Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

Embed Size (px)

Citation preview

Page 1: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 1/18

Dewing, K., Sharp, R.J., Turner, E., 2007, Synopsis of the Polaris Zn-Pb District, Canadian Arctice Islands, Nunavut, in Goodfellow, W.D., ed., MineralDeposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: GeologicalAssociation of Canada, Mineral Deposits Division, Special Publication No. 5, p. 655-672.

SYNOPSIS OF THE POLARIS ZN-PB DISTRICT, CANADIAN ARCTIC ISLANDS, NUNAVUT

K EITH DEWING1, R OBERT J. SHARP2 , AND ELIZABETH TURNER 3

1. Geological Survey of Canada, 3303-33rd Street NW, Calgary, Alberta T2L 2A7 2. Trans Polar Geological, 60 Hawkmount Heights NW, Calgar,y Alberta T3G 3S53. Department of Earth Science, Laurentian University, Sudbury, Ontario, P3E 2C6 

Corresponding author’s email: [email protected]

AbstractThe Polaris Mine was a Mississippi Valley-type (MVT) deposit hosted in dolomitized Middle Ordovician lime-

stone. Total production was 20.1 Mt at 13.4% Zn and 3.6% Pb. There are about 80 showings in the district, whichstretches from Somerset Island to the Grinnell Peninsula. There are two deposit types in the Polaris District: 1) struc-turally controlled, carbonate-hosted Zn-Pb-Fe deposits typical of MVT deposits, and 2) structurally and stratigraphi-cally controlled, carbonate-hosted Cu deposits enriched by later supergene removal of Fe and S.

Mineralization is paragenetically simple, with sphalerite and galena as the ore minerals, and with dolomite and mar-casite as the main gangue minerals. The deposits formed from brines at about 90 to 100°C. The age of the mineraliza-tion is constrained to post-Late Devonian folding and may be associated with the last stages of the Ellesmerian Orogenyor the opening of the Sverdrup Basin. Copper-rich mineralization is known from four showings, is associated with zinc-lead mineralization and is confined to a single interval in the Silurian.

The metallogenic model for Polaris invokes a source of metal ions within the stratigraphic column since strontiumshows no indication of basement involvement. Metals are then carried in sulphate-rich brines through deep aquifers.Driven by an orogenic process, circulating fluids rose along faults until they encountered organic-rich, permeable lime-stone overlain by impermeable shale. Bacterial sulphate reduction reduces sulphate to H2S using organic matter as a

reductant. The resulting H2S has a shift in δ34S values of -15‰. The H2S reacts inorganically with zinc, lead, and ironions to produce sulphides with a δ34S value of about 10‰. Released hydrogen ions dissolve carbonate resulting in dis-solution breccias and other dissolution fabrics. Excess sulphate was expelled from the system and produced a halo of 

 barite up to 10 km from the deposit with δ34S of 40 to 60‰.

Résumé

La mine Polaris consistait en un gisement de type Mississippi-Valley encaissé dans un calcaire dolomitisé del’Ordovicien moyen. Au total, elle a produit 20,1 Mt de minerai titrant 13,4 % de Zn et 3,6 % de Pb. Le district dePolaris compte quelque 80 indices minéralisés et s’étend de l’île Somerset jusqu’à la péninsule Grinnell. On y trouvedeux types de gîtes, à savoir des gîtes de Zn-Pb-Fe encaissés dans des roches carbonatées, qui affichent un contrôlestructural et sont représentatifs des gîtes de type Mississippi-Valley, et des gîtes de Cu logés dans des roches carbon-atées, qui montrent des contrôles structuraux et stratigraphiques et un enrichissement supergène ultérieur par l’élimi-nation du Fe et du S.

Du point de vue paragénétique, les minéralisations sont simples. Elles présentent la sphalérite et la galène commeminéraux métallifères, ainsi que la dolomite et la marcasite comme principaux minéraux de gangue. Les gîtes du dis-

trict se sont formés à partir de saumures affichant des températures de 90 à 100°C environ. L’âge maximal des minéral-isations est défini par un plissement du Dévonien tardif, qui pourrait être rattaché aux dernières phases de l’orogenèseEllesmérienne ou à l’ouverture du bassin de Sverdrup. Quatre indices minéralisées ont révélé des minéralisationsriches en cuivre, qui sont associées aux minéralisations de zinc-plomb et confinées à un seul intervalle du Silurien.

Le modèle métallogénique proposé pour le district de Polaris établit une source d’ions métalliques dans la colonnesédimentaire, car la composition isotopique du strontium ne témoigne d’aucune contribution du socle. Les métaux ontdonc été transportés dans des saumures riches en sulfates circulant dans de profonds aquifères. Un phénomèneorogénique a fait en sorte que les fluides en circulation se sont élevés le long de failles jusqu’à ce qu’ils atteignent deshorizons perméables de calcaire riche en matière organique, qui sont recouverts de shale imperméable. Des bactériesont réduit les sulfates en H2S en se servant de la matière organique comme agent réducteur. Le H2S résultant présenteun décalage des valeurs de δ34S de -15 ‰. Le H2S réagit de manière inorganique avec les ions de zinc, de plomb et defer pour produire des sulfures dont la valeur de δ34S est d’environ 10 ‰. Les ions d’hydrogène émis dissolvent les car-

 bonates pour produire des brèches de dissolution et d’autres fabriques de dissolution. Les sulfates excédentaires ont étéexpulsés du système et ont produit une auréole de barytine qui s’étend jusqu’à 10 km du gisement et les valeurs de δ34Sde ce minéral varient de 40 à 60 ‰.

Introduction and History

The Polaris Zn-Pb District lies in the central ArcticIslands, Nunavut, and spans an area that is roughly 450 kmnorth-south by 130 km east-west (Fig. 1). The southern limitis the southern edge of Somerset Island; the northern edge isthe northern shore of the Grinnell Peninsula. The easternlimit runs along the longitude of Wellington Channel

 between Cornwallis and Devon islands and the western limitis on eastern Bathurst Island.

There are about 80 individual Zn-Pb showings occur within the study area (Fig. 1, Table 1). The largest of these isthe Polaris deposit, a carbonate-hosted Zn-Pb deposit of about 20 million tonnes grading about 17% Zn+Pb. Thedeposit was mined from 1982 to 2002, when it shut downdue to depletion of reserves. During its latter days, Polarisemployed a workforce of 235 employees on an 8 week onsiteand 4 week offsite rotation. Sphalerite and galena were sep-arated from the gangue in a complex known as “the barge”

Page 2: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 2/18

which in addition to the concentra-tor, housed offices, warehouse,

 powerhouse, and heavy equipmentand other repair shops. The concen-trator complex was built on a bargein Trois Rivières, Québec, andtowed to Little Cornwallis Islandwhere it was floated into an exca-

vated lagoon and surrounded byrockfill. The annual mining rate of 1,040,000 tonnes per year produced200,000 tonnes of zinc and 30,000tonnes of lead concentrates thatwere stored in a large concentrateshed. Ocean-going ships dockednear the concentrate shed and wereloaded directly with a conveyor system. Freighters arrived in earlyJuly and departed up until lateOctober.

Exploration in the PolarisDistrict took place in five phases(Fig. 2): 1) a reconnaissance explo-ration period (1960-1970) duringwhich most surface showings onCornwallis and Little Cornwallisislands were found; 2) a discovery

 period (1971-1979) during whichthe Polaris orebody was drilled

 based on a gravity anomaly andfeasibility studies were completed.Also, new showings were discov-ered, and many showings receivedlimited drill testing; 3) a production

 period (1980-1988), dominated bydrilling and mining at the PolarisMine; 4) an ore-replacement explo-ration period (1989-2001) duringwhich showings close to Polariswere extensively drilled, showingson Cornwallis Island drill tested,and new showings found anddrilled on Somerset and Bathurstislands and on the GrinnellPeninsula; and 5) a reclamation

 period (2002-2004) during whichthe mine site was restored and theinfrastructure removed.

Early studies on the Polaris

deposit included a brief descriptionof the geology and mineralization by Muraro (1974), fluid inclusionwork by Jowett (1975), and leadisotope work on the Truro Island showing by Heal (1976).Kerr (1977) proposed a metallogenic model that requiredformation of karst during the Early Devonian Boothia Uplift,then migration of metal-bearing and sulphur-bearing fluidsto the site of deposition during the Late Devonian. The karstmodel guided exploration during much of the 1970s and1980s. Randell introduced a hydrothermal karst model(Randell, 1994; Randell and Anderson, 1997; Randell et al.,

1997), and controversial ideas related to the timing of fold-ing. Sharp et al. (1995a,b) produced a field-trip guide for thePolaris Mine. Savard et al. (2000) reported on fluid inclusionand isotopic data from the deposit and Dewing and Turner (2003) looked at the relative ages of faults near Polaris.Mineralization at Polaris was dated by paleomagnetics(Symons and Sangster, 1992), and Rb-Sr dating of sphalerite(Christensen et al., 1995). Randell (1994), Disnar and

K. Dewing, R.J. Sharp, and E. Turner

656

Devon Island 

Cornwallis Island 

Baffin Island 

Somerset Island 

Prince of Wales

Island 

Grinnell Peninsula

Bathurst 

Island 

W     e    l     l     i     n    

  g    t     o    n    

C     h     a    n    n    e    l     

Bar r o w S tr ai t

La n c a s t e r S o u n d 

LCI 

Typhoon

Creswell

Seal

Storm Cu

 AllenMuskox

Hornby Zn

Hornby CuLiz

SimbaBK

Ridge Cu

Trigger&JGCanyon North

CU AuroraJG West

Featherbear Soda

Tiger Oceanview

Stuart

Caribou

BG

210

LauraTern

CapeCD

NW Arm

Bacon

Resolute Bay(Qausuittuq )

Baillie Hamilton

Dundas

Sheills 1Sheills 2

 Agpan

 Aquarius

Bass

Markham PtHarrison

Truro

Eclipse

Polaris Rookery

 Abbott E Abbott W

Cu showingZn-Pb showing

50 500 100 150

kilometres

FIGURE 1. Lead-zinc-copper showings in the Polaris District, central Arctic Islands, Nunavut. LCI is LittleCornwallis Island. Some dots represent clusters of showings. Locations and sources are listed in Appendix 1.

Page 3: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 3/18

Synopsis of the Polaris Zn-Pb District, Canadian Arctic Islands, Nunavut

65

Héroux (1995), and Héroux et al. (1996, 1999) examinedorganic matter alteration from Polaris.

Studies of individual showings apart from Polaris arerestricted to showings in Devonian strata on BaillieHamilton Island (Thorsteinsson, 1984), showings in

Devonian strata on Bathurst Island (Harrison and de Freitas,1996; Rose, 1999), the Rookery Creek showing onCornwallis Island (Dewing and Turner, 2003), and the‘Bermuda’ showing on Grinnell Peninsula (Mitchell, 2000).

Geological and Tectonic Setting

Cambrian to Devonian strata of the Arctic Islands are amixed sedimentary-igneous succession, collectively referredto as the Franklinian succession, which were deposited on a

 passive-to-convergent cratonic margin (Fig. 3; Trettin,1991). The upper boundary of this succession is constrainedas latest Devonian or earliest Carboniferous, but the oldeststrata are not exposed. Trettin (1991) suggested that the mar-gin initiated following a widespread Proterozoic igneous

event at 723 Ma (see Heaman et al., 1992). The oldestexposed strata are late Neoproterozoic in age (Dewing et al.,2004).

Following Precambrian continental breakup, thick Lower Cambrian clastics and carbonate rocks accumulated alongthe rifted margin. The shelf-to-basin transition was estab-lished by Early Cambrian time (Trettin, 1994; Harrison,1995). During the Cambrian and Ordovician, the Franklinianshelf accumulated carbonates, evaporites, and continent-derived siliciclastic rocks. During this time, marked differ-ences in subsidence rates between shelf and basin producedan escarpment at the shelf margin (Trettin, 1994). TheCambrian-Ordovician carbonate platform was bordered tothe north by the shale-dominated Hazen Basin.

Cambro-Ordovician platformal strata pass southeast andsouth into the thin, undisturbed cratonic sedimentary cover.The boundary between these depositional realms occursapproximately at the southern and eastern boundaries of theParry Island – Central Ellesmere fold belts. A hinge lineexists between Somerset and Cornwallis islands; theCambro-Ordovician sedimentary succession thickens rap-idly northward across this feature (de Freitas and Mayr,1993; de Freitas et al., 1999).

During latest Ordovician, the shelf margin retreated sub-stantially towards the south and southeast, forming the Cape

Phillips Embayment. The embayment received mostly grap-tolitic shale and carbonates, but isolated microbial and coral-microbial banks within the embayment kept up with sealevel rise at least until Early Silurian time (Wenlock). Theshelf-to-basin transition was a ramp immediately followingshelf retreat, but developed a steeper rimmed profile by lateLlandovery time (Early Silurian). The facies front is wellexposed halfway up the eastern coast of Cornwallis Island.

Vertical movement along a narrow, north-south intracra-tonic uplift running from Boothia Peninsula to GrinnellPeninsula during Late Silurian to Middle Devonian(Givetian) time produced unconformities and syntectonicclastic sediments (the Boothia Uplift). This deformation

 probably was caused by stress transmitted cratonward fromthe Caledonian Mobile Belt on East Greenland (Miall, 1986;Okulitch et al., 1986). Structures within the Boothia Upliftare characterized by broad synclines and narrow, evaporite-cored anticlines (Thorsteinsson, 1986; Mayr et al., 1998).The margins of the anticlines contain abundant thrust faults(Fig. 4; Henrichsen, 2003; Jober, 2005). Dense, anastamos-ing arrays of subvertical normal faults with significant verti-cal offset characterize the western margin of the uplift oneastern Bathurst Island.

By early Middle Devonian time, the effects of plate con-vergence were widespread over most of the Arctic Islands.Shallow-marine and nonmarine syntectonic clastic rockswere deposited in a foreland basin adjacent to a southeast-ward- and southward-advancing deformation front. Themaximum preserved thickness of this clastic wedge is about4000 m. Thermal maturity indicators in the area of theBoothia Uplift are generally low (conodont alteration indexof <2 and graptolite-based vitrinite equivalent reflectancesof about 1% (Gentzis et al., 1996; Héroux et al., 1999)) indi-cating that the clastic wedge could not have attained a greatthickness over the Boothia Uplift.

In the Arctic Islands, the youngest preserved strata are of Famennian age. The Middle Devonian to earliestCarboniferous phase of deformation is known as theEllesmerian Orogeny (Thorsteinsson and Tozer, 1970). East-west-trending folds that resulted from the EllesmerianOrogeny characterize Melville, Bathurst, and southernEllesmere Islands. In the area of the pre-existing Boothia

TABLE 1. Distribution of showings by formation.

Formation # showings % of showings Com.

Bird Fiord (Dbi) 3 3.75 Zn

Blue Fiord (Dbl) 15 18.75 Zn, Pb

Disappointment Bay (Ddb) 6 7.5 Zn, Pb

Prince Alfred (Dpa) 2 2.5 Zn, Pb, Cu

Barlow Inlet (Sbi) 2 2.5 Zn, Pb

Cape Storm (Scs) 5 6.25 Cu

Allen Bay (Osa) 8 10 Zn, Pb

Thumb Mountain (Oct) 34 42.5 Zn, Pb

Bay Fiord (Ocb) 2 2.5 Zn, Pb

Eleanor River (Oe) 2 2.5 Zn

Ship Point (Osp) 1 1.25 Zn

Total 80 100%

ExplorationDiscovery

and feasibility ProductionOre-replacement

exploration

 Year 

     D    r     i     l     l     i    n    g  

     (      m     )  

Z      i      n     

 c     

  (      1      

 9       9      

 8       U       S      

 d       o     l      l       a     r     

 s     

  )      

 /       t       o     n     

2000

400

800

1200

1600

2400

2800Zinc price

0

2000

4000

6000

8000

10000

12000

14000

16000

1   9   6   0  

1   9   6  2  

1   9   6  4  

1   9   6   6  

1   9   6   8  

1   9  7   0  

1   9  7  2  

1   9  7  4  

1   9  7   6  

1   9  7   8  

1   9   8   0  

1   9   8  2  

1   9   8  4  

1   9   8   6  

1   9   8   8  

1   9   9   0  

1   9   9  2  

1   9   9  4  

1   9   9   6  

1   9   9   8  

2   0   0   0  

2   0   0  2  

Diamond Drilling

Polaris

Exploration

FIGURE 2. Exploration and ore-definition drilling in the Polaris District between 1960 and 2002. High zinc prices in 1974 and 1990 coincide withnew rounds of regional exploration. Historical zinc prices from Planchy(1998).

Page 4: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 4/18

K. Dewing, R.J. Sharp, and E. Turner

658

      B    a    r      l    o    w

      I    n      l    e      t

      P    e    e      l S

    o    u    n      d

m      b    r      4

      D    o    u    r    o

      T      h    u    m      b      M    o    u    n      t    a      i    n

      A    m    a      d      j     u    a      k

      A      k    p    a      t    o      k

      G    a      l      l    e    r    y

      E      i      d    s

      D    e    v    o    n      I    s      l    a    n      d

      R      i      d    g    e      M

    e    m      b    e    r

      T      h    u    m      b      M

    o    u    n      t    a      i    n

      C    a    p    e      P      h      i      l      l      i    p    s

      S      h      i    p      P    o      i    n      t

      D    e    v    o    n      I    s      l    a    n      d

      I    r    e    n    e      B    a    y

      B    e    v    e    r      l    e    y      I    n      l    e      t

      H    e    c      l    a      B    a    y

      S    n    o    w      b      l      i    n      d      B    a    y

      B    a    r      l    o    w      I    n      l    e      t

      B    a    r      l    o    w      I    n      l    e      t

    u    p    p    e    r    m      b    r

      l    o    w    e    r    m      b    r

      C    a    p    e

      C    r    a    u      f    o    r      d

      A      l      l    e

    n      B    a    y

      A      l      l    e    n      B    a    y

    m      i      d      d      l    e    m      b    r

      S    e    v    e    r    n      R .

      B    a      i      l      l    a    r    g    e    m      b    r      A

     c      h     a     n     g     e      i     n

     n     o     m     e     n     c      l     a      t     u     r     e

   c   h   a   n   g   e  i   n   n   o    m   e   n   c  l   a  t   u  r   e

   c   h   a   n   g   e  i   n   n   o    m   e   n   c  l   a  t   u  r   e

     c      h

     a     n     g     e      i     n

     n     o     m     e     n     c      l     a      t     u     r     e

     c      h     a     n     g     e      i     n

     n     o     m     e     n     c      l     a      t     u     r     e

      C    a    p    e      S      t    o    r    m

    u    p    p    e    r    m      b    r      (      A      B      )

      C    a    p    e

      C    r    a    u      f    o    r      d

      D    o    u    r    o

      C    a    p    e

      S      t    o    r    m

      B    a    u    m    a    n    n      F      i    o    r      d

    m      b    r      1

      l    o    w    e    r    m      b    r

    m      b    r      2

    u    p    p    e    r    m      b    r

      I    r    e    n    e      B

    a    y

      A      l      l    e    n      B    a    y

      B    u      l      l    e    y    s

      L    u    m    p

      B    u      l      l    e    y    s

      L    u    m    p

      E      l    e    a    n    o    r      R      i    v    e    r

      S    o    m    e    r    s    e      t      I    s      l    a    n      d

    u    p    p    e    r    m      b    r

      "      B    a      t      h    u    r    s      t      I    s      l    a    n      d      "

      "      B    a      t      h    u    r    s      t      I    s      l    a    n      d      "

    u    p    p    e    r    m      b    r

    u    n    n    a    m    e      d

      "      S      t    u    a    r      t      B    a    y

      "

      l    o    w    e    r    m      b    r

      l    o    w    e    r    m      b    r

      P    a    r    r    y      I    s      l    a    n      d    s

      l    o    w    e    r    m      b    r

    u    p    p    e    r    m      b    r

      B      i    r      d      F      i    o    r      d

      D      i    s    a    p    p    o      i    n      t    m    e    n      t      B    a    y

      B      i    r      d      F      d .

      "      B      l    u    e

      F      i    o    r      d      "

      "      B      l    u    e      F      i    o    r      d      "

      H    a    z    e    n      C

      H    a    z    e    n      D

      H    a    z    e    n      E

      H    a    z    e    n      A

      H    a    z    e    n      B

      S    c    o    r    e

    s      b    y      B    a    y

      E      l      l    e    s    m    e    r    e      G    r    o    u    p

      “      R    a      b      b      i      t      P    o      i    n      t      ”

      K    a    n    e      B    a    s      i    n

    u    p    p    e    r      C    a    s    s      F      j     o    r      d

      l    o    w    e    r      C    a    s    s      F      j     o    r      d

      S      h      i    p      P    o      i    n      t    u    n      i      t    s      3      &      4

      C    a    p    e      C      l    a    y

    c     h

    a    n    g      e

i    n

    n    o    m    e    n    c

     l    a     t    u

    r    e

    u    p    p    e    r      T    u    r    n    e    r      C      l      i      f      f    s

      l    o    w    e    r      T    u    r    n    e    r      C      l      i      f      f    s

      C      h    r      i    s      t      i    a    n      E      l    v

      B    a      i      l      l    a    r    g    e    m      b    r      B .

      P    r      i    n    c    e      A      l      f    r    e      d

      G    o    o    s    e      F      i    o    r      d

      S    o    p      h      i    a      L      k .

    m      b    r      3

      P    e    e      l

      S    o    u    n      d

    m      b    r      2

      D    c    g      l

      D    s    s

      B    a    y      F      i    o    r      d

      B    a    y      F      i    o    r      d

     c      h     a     n     g     e      i     n

     n     o     m     e     n     c      l     a      t     u     r     e

     B    e    g    a     d    e    a    n

   S I   L   U    R I   A   N   D   E   V    O   N I   A   N

     L     l    a    n     d    o    v    e    r    y

     W    e    n     l    o    c     k

     L    u     d     l    o    w

     P    r     i     d    o     l     i

         ?

     L    o    c     k    o    v     i    a    n

   E   a  r l   y E   a  r l   y    M i   d   d l   e   L   a  t   e L   a  t   e

     P    r    a    g     i    a    n

     E    m    s     i    a    n

     E     i     f    e     l     i    a    n

     G     i    v    e     t     i    a    n

     F    r    a    s    n     i    a    n

     F    a    m    e    n    n     i    a    n

   1   8

    M i   d   L   a  t   e E   a  r l   y     W    a    u    c    o     b    a    n

     L     i    n    c    o     l    n     i    a    n

     M     i     l     l    a    r     d    a    n

     I     b    e    x     i    a    n

     W     h     i     t    e    r    o    c     k     i    a    n

   E   a  r l   y    M i   d   d l   e   L   a  t   e

    O    R   D    O   V I    C I   A   N C   A    M   B    R I   A   N

     C     i    n    c     i    n    n    a     t     i    a    n

     M    o     h    a    w     k     i    a    n

     N    o   r  t    h     B    a   f   f  i    n

     B   r    o    d    e    u   r     P    e    n  i    s    u  l    a

     S    o      m    e   r    s    e  t  I    s  l    a    n    d

     C    o   r    n     w    a  l  l  i    s  I    s  l    a    n    d

     H    e  l    e    n    a  I    s  l    a    n    d

     E    a    s  t    c    o    a    s  t

     B    a  t    h    u   r    s  t  I    s  l    a    n    d

    B    o    o   t    h  i   a    c    o     m    p   r    e    s    s  i    o    n

    B    o    o   t    h  i   a    c    o     m    p   r    e    s    s  i    o    n

    B    o    o   t    h  i   a    c    o     m    p   r    e    s    s  i    o    n

    B    o    o   t    h  i   a    c    o     m    p   r    e    s    s  i    o    n

    s     h    a     l    e ,

    c     h    e    r     t ,    c    a    r     b    o    n    a     t    e ,

    o     l     i    s     t    o    s     t    r    o    m    e    s

     b    o    u    n     d    s     t    o    n    e ,

    r    u     d    s     t    o    n

    e ,

    g    r    a     i    n    s     t    o    n    e

    c    a    r     b    o    n    a     t    e ,

    g    y    p    s    u    m ,

    s     h    a     l    e

    c    a    r     b    o    n    a     t    e ,

     l    o    c    a     l     l    y    a     b

    u    n     d    a    n     t    c     l    a    s     t     i    c    s

    c    a    r     b    o    n    a     t    e ,

     k    n    o    w    n     f    r    o    m

     d    r     i     l     l     h    o     l    e    s    a    n     d    s    e     i    s    m     i    c

    c    a    r     b    o    n    a     t    e ,

     l    o    c    a     l     l    y    w     i     t     h    g    y    p    s    u    m

    a    n     d    m    u     d    r    o    c     k

     b     i    o     t    u    r     b    a     t    e     d    a    n     d     l    o    c    a

     l     l    y     f    o    s    s     i     l     i     f    e    r    o    u    s    c    a    r     b    o    n    a     t    e

    c     h    e    r     t ,    c    a    r     b    o    n    a     t    e

    o    o     l     i     t     i    c    g    r    a     i    n    s     t    o    n    e

    c    o    n    g     l    o    m    e    r    a     t    e ,

    s    a    n     d    s     t    o    n    e

    c    a    r     b    o    n    a     t    e    c    o    n    g     l    o    m

    e    r    a     t    e

    s    a    n     d    s     t    o    n    e ,

    s     i     l     t    s     t    o    n    e ,

    c    a    r     b    o    n    a     t    e ,

    s     h    a     l    e ,

    g    y    p    s    u    m ,

    m     i    n

    o    r

    c    o    n    g     l    o    m    e    r    a     t    e ,

     l    o    c    a

     l     l    y    w     i     t     h    r    e     d     b    e     d    s

    s    a    n     d    s     t    o    n    e ,

    s     i     l     t    s     t    o    n    e ,    s

     h    a     l    e ,

    r    e     d     b    e     d    s

     f    o    r    m    a     t     i    o    n    c    o    n     t    a    c     t

     f    a    c     i    e    s     /    m    e    m     b    e    r    c    o    n

     t    a    c     t

     f    o    r    m    a     t     i    o    n    n    a    m    e

    s    a    n     d    s     t    o    n    e

      F    r    a    m

   F   I   G   U   R   E

   3 .

   T   i  m  e  -  s   t  r  a   t   i  g  r  a  p   h   i  c   d   i  a  g  r  a  m  s

   h  o  w   i  n  g  a  s  o  u   t   h   t  o  n  o  r   t   h   t  r  a  n  s  e  c   t   f  r  o  m  n  o  r   t   h  w  e

  s   t  e  r  n   B  a   f   f   i  n   I  s   l  a  n   d   t  o  n  o  r   t   h  e  r  n   B  a   t   h  u  r  s   t   I  s   l  a  n   d .

   T   h  e  a  g  e  r  a  n  g  e  o   f   t   h  e   f  o  r  m  a   t   i  o  n  s   i  s   b  a  s  e   d  o  n   d

  a   t  a   i  n   T  r  e   t   t   i  n   (   1   9   6   9   ) ,   M  a  y  r

   (   1   9   7   8   ) ,   N  e  n   t  w   i  c   h   (   1   9   8   7   ) ,   S   t  e  w  a  r   t   (   1   9   8   7   ) ,   T   h  o  r  s   t  e   i  n  s  s  o  n  a  n   d   M  a  y  r   (   1   9   8   7   ) ,   N  e  n   t  w   i  c   h  a

  n   d   J  o  n  e  s   (   1   9   8   9   ) ,   M  a  y  r  e   t  a   l .   (   1   9   9   4 ,

   1   9   9   8   ) ,   d  e   F  r  e   i   t  a  s  e   t  a   l .   (   1   9   9   9   ) ,  a  n   d   S  a  n   f  o  r   d  a  n   d   G  r  a  n   t   (   2   0

   0   0   ) .   F  o  r  m  a   t   i  o  n  s   b  e   l  o  w   t   h  e

  u  p  p  e  r   C  a  s  s   F   j  o  r   d   F  o  r  m  a   t   i  o  n  a  r  e  n  o   t  e  x  p

  o  s  e   d  o  n   t   h  e   l   i  n  e  o   f  s  e  c   t   i  o  n  a  n   d   t   h  e  p  r  e  s  e  n  c  e   i  s   b  a  s  e   d  o  n  o  c  c  u  r  r  e  n  c  e  s  e   l  s  e  w   h  e  r  e   i  n   t   h  e   A  r  c   t   i  c   I  s   l  a  n   d  s .

Page 5: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 5/18

Synopsis of the Polaris Zn-Pb District, Canadian Arctic Islands, Nunavut

65

76°

74°

98° 96° 94° 92 °100° 

100°  98° 96° 94° 92 °

73°

75°

77°77°

76°

75°

74°

73°

BB’

100

km

0

      B       O        O 

      T      H      I      A      U       P      L      I      F      T

      B       O        O       T      H      I      A      U       P      L      I      F      T

PARRYISLANDSFOLDBELT

CENTRALELLESMERE

FOLD BELT

 ARCHEANmetamorphic basement

Time stratigraphic chart (Figure 3) colour coded to map legend

CAMBRIAN to ORDOVICIANpassive margin carbonate &evaporite rocks

ORDOVICIAN & SILURIANplatformal rocksbasinal and

SILURIAN & DEVONIANconformable base

DEVONIANabove unconformity

DEVONIANEllesmerian clastics

CARBONIFEROUS & PERMIANSverdrup Basin

normal fault - mapped at surface- inferred under water 

anticline axis - mapped at surface

reverse or thrust fault - mapped at surface- inferred under water 

Prince of Wales Is. Somerset Is.

Cornwallis Is.

Devon Is.

BathurstIs.

DhbDbiOScp

Oe

Oe

O c t - u 

Ob

Ob

Oct-l

O c t - l 

Ocb-u

O c b - u 

Ocb-l

O c b - l 

Dhb Hecla Bay Formation

Dbi Bird Fiord Formation

OScp

Cape Phillips andBarlow Inlet formations -undivided

Oci Irene Bay FormationEleanor River Formation

Oct-uThumb MountainFormation - upper 

Baumann FiordFormation

Thumb MountainFormation - lower 

Bay Fiord Formation -upper 

Bay Fiord Formation -lower 

SEALEVEL

-1000

-2000

-3000

Metres

B B’

0 2 4

km

FIGURE 4. Generalized geological map of the central Arctic Islands, Nunavut, (after Okulitch, 1991). The base of the legend shows the time-stratigraphic dia-gram in Figure 3 colour coded to match this map legend. At the base of the diagram is a hypothetical cross-section B-B’ (shown by white line in the centreof the map). This presents a conceptual model (Henrichsen, 2003) that shows a Boothia structure with a thick, evaporite-filled core and thrusted carbonateson the flanks. No attempt was made to balance sub-Baumann Fiord units. Later extension reactivated some of the thrusts as normal faults and created smallhalf grabens.

Page 6: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 6/18

Uplift, the Ellesmerian compression produced low-ampli-tude east-west folds locally forming an interference fold pat-tern with the pre-existing north-south Boothia folds.

Rifting during the Early Carboniferous (Viséan) producedthe Sverdrup Basin to the north of the lower Paleozoic shelf margin. Regional extension related to the formation of theSverdrup Basin may have reactivated older thrust faults

within the Boothia Uplift as extensional faults creating half grabens locally on the leading edge of the older thrusts.

Mineral Deposits and Occurrences

 Deposit Types and Classification

There are two deposit types in the Polaris District:1) structurally controlled, carbonate-hosted Zn-Pb-Fedeposits typical of the Mississippi Valley-type (MVT)deposit, and 2) structurally and stratigraphically controlled,carbonate-hosted Cu deposits enriched by later supergeneremoval of Fe and S. This deposit type is not discussed indetail herein.

 Deposit Distribution

The Ordovician Thumb Mountain Formation hosts mostof the Zn-Pb mineralization and includes the largest depositsat Polaris, Eclipse, and Truro. Consequently, the ThumbMountain Formation has been extensively prospected.Significant mineralization was found in the Devonian BlueFiord Formation only in 1995 (Harrison and de Freitas,1996) and 14 of the 15 showings in that unit were found

 between 1996 and 2001. Copper mineralization is restrictedto the Cape Storm, Prince Alfred, and Douro formations.

Grade and Tonnage

Before mining, the Polaris orebody contained a diluted insitu ore reserve of 26 million tonnes grading 3.7% Pb and

13.9% Zn based on an 8% combined Pb+Zn (cutoff over fivemetres). Total production at the end of mine life was 20.1 Mtof ore at 13.4% Zn and 3.6% Pb. This places Polaris in theupper echelon of individual carbonate-hosted Zn-Pb minesin the world (Fig. 5).

 No other showing in the district was found to be economicso their grade and tonnage are speculative. Teck Comincoestimated the Eclipse showing to contain 765,000 (undi-luted) tonnes grading 0.89% Pb and 11.84% Zn, with a pos-sible additional 165,000 tonnes grading 0.07% Pb and 8.83%Zn. Eclipse contains both sulphide and oxide ore making therecovery more difficult. Estimates of the size of the Seal

showing indicate up to 2 Mt (diluted) at 7% Zn. No other showings had ore-grade intersections that could be corre-lated to nearby drillholes

 Age

The age of sphalerite crystallization at Polaris has beenestablished as 366 ± 15 Ma, (Late Devonian to EarlyCarboniferous) based upon Rb/Sr isotopic ratios in spha-

lerite (Christensen et al., 1995). This age is supported by aLate Devonian magnetic paleopole for the ore (Symons andSangster, 1992). Recent, as yet unpublished, work byChristensen indicates some showings (e.g. Dundas Island)have a Viséan (Early Carboniferous, 337 Ma) age, synchro-nous with the opening of the Sverdrup Basin.

 Deposit Morphology

Host Rocks

Four stratigraphic units are exposed around Polaris (Figs.6, 7, 8). The oldest is the Middle Ordovician Bay FiordFormation, a 440 m thick succession of anhydrite and dolo-stone. This is overlain by the Middle to Upper Ordovician

Thumb Mountain Formation, which, where unaltered, con-sists of 340 m of carbonate. These shallow-water carbonatesand evaporites are overlain by deeper water shale of theIrene Bay (60 m) and Cape Phillips (600 m) formations. TheThumb Mountain Formation hosts the mineralization at thePolaris Mine.

The lower member of the Thumb Mountain Formation isapproximately 250 m thick and consists of dolomitic lime-stone or dolostone. The basal 35 to 45 metres are composedof thick-bedded, burrow-mottled, lime- or dolomudstone andwackestone. Overlying strata of the lower member (approx-imately 180 m) consist of medium- to thick-bedded, palegrey to brown, lime- or dolomudstone, peloidal grainstone,with lesser wackestone. Metre-scale cycles of mottled dolo-

mudstone or wackestone overlain by plane-laminated or fen-estral lime- or dolomudstone occur. The uppermost 10 to 30m of the lower member of the Thumb Mountain Formation,known as the Tetradium Interval, contain rare to abundantTetradium (characterized by calcite-filled tubes with a 0.5 to2.0 mm square cross-section).

The upper Thumb Mountain Formation is approximately80 m thick. A basal chert marker (4-10 m thick) consists of thickly bedded, medium to dark brown, burrow-mottledskeletal wackestone with white-weathering silicified bur-rows several centimetres in diameter. Above the ChertMarker, the upper Thumb Mountain Formation consists of 30 to 40 m of burrow-mottled, medium-bedded skeletalwackestone with lesser interbeds of nodular, argillaceous

lime mudstone and wackestone. This is followed by 15 to 20m of massive to thick-bedded, fossiliferous wackestone con-taining abundant macrofossils. The uppermost part of theThumb Mountain Formation consists of 20 to 25 m of argillaceous, nodular, skeletal wackestone with interbeddedgreen terrigenous mud.

Within the upper Thumb Mountain at Polaris, and onwestern Cornwallis Island, is the organic-rich “Vr” Marker,a 1 m thick wackestone bed with total organic carbon of 

 between 0.5 and 1.5%, and containing abundant, dark orangeto dark brown algal colonies up to 1.5 cm long and 0.5 cm

K. Dewing, R.J. Sharp, and E. Turner

660

Geological Resource (Mt)

     P     b     +     Z    n     (      w     t  .     %      )  

1

10

50

0.1 1 10 100 1000

Daniel’s Harbour 

Monarch-Kicking Horse

Gays River 

Polaris

Pine PointNanisivik

1   0    , 0   0   0   t   o  n  n  e  s  

o  f   P   b  +  Z   

n  m  e  t   a  l   

1    0    

0     , 0    0    0    

1     , 0    

0    0     , 0    

0    0    

1    0     , 0    

0    0     , 0    0    

0    

Canadian MVT Deposits-Production

Canadian MVT Deposits-Remaining Resource

Great Slave Reef 

Robb LakeSealJubilee

Prairie Creek

Gayna River 

UptonGoz Creek

Esker 

Eclipse

FIGURE 5. Resources versus grade diagram for Canadian MississippiValley-type deposits and resources. Production at the Polaris Mine ismarked by red star. From Paradis et al. (this volume).

Page 7: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 7/18

Synopsis of the Polaris Zn-Pb District, Canadian Arctic Islands, Nunavut

66

high that are internally massive or faintly laminated.

The Irene Bay Formation is a 55m thick Upper Ordoviciansequence gradationally overlyingthe Thumb Mountain Formation. Itconsists of interbedded green mud-stone, argillaceous grey-green

limestone, and massive to nodular grey limestone.

The Upper Ordovician toSilurian Cape Phillips Formationhas a lower Ridge Member (athickly bedded dolomitic or cal-careous wackestone that is 7-10m), overlain by 600 to 2200 m of shale, argillaceous limestone, andchert. A facies front on centralCornwallis Island marks the transi-tion from basinal Cape PhillipsFormation to the north to platfor-

mal strata of the Allen Bay, CapeStorm, Douro, and Barlow Inletformations to the south.

Unconformably overlyingOrdovician or older Silurian strataare several Upper Silurian - Lower Devonian alluvial conglomerateunits that record the Boothia Uplift(Fig. 3; Miall and Gibling, 1978;Thorsteinsson and Uyeno, 1980;Muir and Rust 1982; de Freitas andMayr, 1993; Mayr et al. 1998).Conglomerate units are restrictedto regions in front of each Boothia-

aged thrust fault. The EarlyDevonian Disappointment BayFormation overlies the conglomer-ate, or forms the lowest Devonianunit where the conglomerate isabsent. This is, in turn, overlain bythe dolomitic Blue Fiord and BirdFiord formations. Devonian unitssit with an angular unconformityon underlying Ordovician andSilurian units on Cornwall Island(Thorsteinsson, 1986), LittleCornwallis Island (Turner andDewing, 2004), and Grinnell

Peninsula (Mayr et al., 1998).

Dimensions

Dimensions of the Polarisdeposit are 800 m strike length,300 m at its widest point, and athickness ranging from 20 m in thewest to 100 m in the central por-tion. The deposit is blind, with thetopmost ore lying 50 m below sur-face on the west and up to 160 m

    A    S     H    G     I    L    L

    L    L    A    N    D    O     V    E    R    Y

    W    E    N    L    O 

    C     K

    L    U     D    L    O     W

    P    R    I    D    O     L    I

?

         I       r       e        n       e 

         B       a 

      y   

Ridge Mbr 

       C      a      p       e 

       P       h       i       l       l       i     p  

     s        F

     o      r     m     a 

       t        i     o      n

C-cy

B

 A

D

E

U

Tetradium Interval

thin-bedded grey limestone withcrinoids, brachiopods and graptolites

wackestone, brachiopodstrilobites, burrowed

thin-bedded, black graptolitic shale

cream to pink nodular carbonate

thick-bedded dolostone

nodular chert and dolostone

green shale with limestone interbeds

thick-bedded brown limestone with chert (Chert Marker; M-Ch)organic-rich limestone (Vr Marker; M-Vr)

wackestone with and coralsReceptaculites

BarlowInlet Fm.

L

U crinoidal grainstone

f.g. sandstone

       B     a      y  

       F       i     o 

     r       d        F

     o      r     m     a 

       t        i     o      n

       T       h     u     m       b       M     o     u     n       t     a       i     n       F     o     r     m     a       t       i     o     n

    O     R    D    O     V    I    C     I    A    N

    S     I    L    U     R    I    A    N

300 m

400 m

200 m

100 m

500 m

600 m

700 m

800 m

900 m

1000 m

1100 m

1200 m

1300 m

L

B

D

thin interbeds of carbonate mudstoneand grey shale

green shale with brachiopods

thick bedded with chert and (Lower Chert; L-Ch)Gonioceras

thin- to thick-bedded browndolostone

C-t

FIGURE 6. Stratigraphic column for Little Cornwallis Island. Ore at the Polaris Mine is hosted in the ThumbMountain Formation (red overlay). Cape Phillips Formation member C is divided on the basis of graptolitesinto a cyrtograptid-bearing “C-cy” unit and a Bohemograptus tenuis bearing C-t unit.

Page 8: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 8/18

K. Dewing, R.J. Sharp, and E. Turner

662

ORDOVICIAN UPPER- ORDOVICIAN

Loon 

Lake 

thin-bedded grey limestone with crinoids, brachiopodsand graptolites to zones, 160 m parultimus birchensisthin-bedded, black graptolitic shale cy - to

zones, 125 mt - to zones, 70 msakmaricus

testis dubius tenuis

thin-bedded, black graptolitic shaleto zones, 115 mfastigatus sedgwickii 

thick-bedded wackestone7-10 m

green shale and nodular wackestone55-60 m

nodular wackestone with Receptaculites Maclurites, coral.Chert marker at base 80 mdolomudstone, wackestone with ostracodes

zone (10-20 m) at top. 260 mTetradium

nodular chert and dolostoneto zones, 60 mminor griestonensis

    N

Fault(defined / assumed)

Geological contact(defined / assumed)

Zn-Pb surface projectionMineable ore

Zn ddh intersection

 e r o s i o n a l e d g e

No Data

      N     o 

      D     a 

      t      a 

Dolomite distribution in upper Thumb Mountain FormationOct-u is limestoneOct-u is mixed dolostone - limestoneOct-u is dolomite

2400N2800N 2000N 1600N 1200N 400N800N

1400E

600E

2200E

1000E

2600E

1800E

UPPER ORDOVICIAN TO UPPER SILURIANCAPE PHILLIPS FORMATION 

MI DDL E AND ORDOV ICI ANUPPER

0 400 m

FIGURE 7. Geological map of Polaris Peninsula, Little Cornwallis Island. Plan of the mined ore shown in solid red. The limit of the drillholes containing aninterval of >1% Zn are shown by a yellow line. The limits of completely and incompletely dolomitized upper Thumb Mountain Formation are shown bydashed lines and coloured dots. The mine grid is 23° east of true north. After Turner and Dewing (2004).

-200 m

Crozier 

Strait 

600E 800E 1000E 1200E 1400E 1600E

O S c p -  A

O S c p - R 

O c i 

O c t  - l  

O c t - u 

Chert Marker 

Green Marker OScp

-A

OScp-R

Oci

Oct-u Ocb-u

Oct-l

Cape Phillips Formation -ridge-forming member 

Cape Phillips Formation -Member A

Irene Bay Formation

Thumb Mountain Formation -upper 

Bay Fiord Formation -upper 

Thumb Mountain Formation -lower 

Ore Body

dol dol

dol

P 1 

P 2 

K  3 

K  2 

K  1 

K  e e l 

M  - G n 

M - C h 

M  - G n 

 f      a  u l     t   

P a n h a n d l e 

m   i    n   e   r   a   l    i    z   

e   d    

w   a   s   t    e   

FIGURE 8. Section through the Polaris Mine on mine grid 2100 N showing the outline of the mined ore, mineralized waste and the collapse of the marker  beds in the orebody. The dolomitization outlines are after Randell (1994). No vertical exaggeration. Dominant lithotypes for each unit are on the legend for Figure 7.

Page 9: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 9/18

Synopsis of the Polaris Zn-Pb District, Canadian Arctic Islands, Nunavut

66

 below surface on the east side. It forms a continuous sul- phide body.

The Eclipse showing is 700 m long, with a 300 metre longwestern portion that is about 70 to 100 m wide and an east-ern portion about 250 m long and 25 to 50 m wide, separated

 by a 150 m long central portion that appears to be poorlymineralized. The Seal Showing has a strike length of about400 m, daylights to the southwest, and is 50 to 100 m wideand 12 to 20 m thick. Other showings range in size from 100

 by 80 m (Dundas Island) to many that are <10 m across.Showings often occur in clusters of 5 to 10 spread parallel tostrike over roughly 10 km.

 Nature of Sulphide OrebodiesThe Polaris orebody consists of two parts (Fig. 8). The

Panhandle Zone forms the upper part of the deposit and is anelongate tabular Zn>Fe>Pb body, roughly concordant withthe upper Thumb Mountain Formation, in which carbonate isalmost completely replaced by sulphide. The Keel Zoneoccupies the lower and eastern part of the orebody and con-sists of a Zn>Pb>Fe vein stockwork. Five ore types wererecognized: two ore types occur in the upper ThumbMountain and three in the lower Thumb Mountain (Sharp etal., 1995b).

P1 ore was the economically most important and formeda 10 to 30 m thick, high-grade Zn-Fe-Pb, tabular unit hostedin the basal part of the upper Thumb Mountain Formation.P1 ore consisted of massive, carbonate replacement, breccia-fill and vein sulphide averaging 4 to 5% Fe with up to 30%Fe (see Table 2). Overlying the P1 ore, above the major north-south structures defining the boundaries of the Keelgraben, lie blocks designated as P2 ore. This ore is composedof numerous thin to 1m thick veins of sphalerite, marcasite,and galena oriented vertically, sub-perpendicular to bedding.Marcasite halos surround most P2 veins. Directly underlyingthe P1 tabular body is the high-grade K3 ore composed of complex, cross-cutting veins along with massive to dissemi-nated sulphide replacing Tetradium beds with 3 to 5% Fe.Differentiation between K3 and P1 ore was based mainly onlower iron contents of K3 versus the P1 ore. K2 ore under-lies the K3 unit and is composed of fracture-filling and veinsulphides with lesser replacement of carbonate, and local

 pods of mineralized brecciation carrying grades of 8 to 20%Pb+Zn and 1 to 2% Fe. The lowermost ore unit is K1 orecomposed of fracture-filling and vein sulphides, is discon-tinuous and of lower grade (10 to 15% Pb+Zn, 1 % Fe). Thisore unit follows either the north-south (mine grid) axis of mineralization or a northeast-southwest trend and is centredon lower stratigraphic horizons around a green marker bed inthe lower Thumb Mountain Formation. To the east and westof the orebody, sulfide mineralization dies out rapidly within15 m of the ore boundaries. Sulfide feathers out into small,

scattered lenses and sulfide vein systems to the north andsouth of the orebody.

Only the Eclipse and Seal showings have the pervasivereplacement of carbonate by sulphides, which is typical of the high-grade ore at Polaris, but the solution breccias thatare so prominent at Polaris are poorly developed at Eclipse,Seal, and at other showings. Similarly, the abundant marca-site that characterized Panhandle mineralization at Polaris is

not present at Eclipse, Seal, Truro, or most other showings.Only the JG showing on Grinnell Peninsula contained a longdrill intersection of marcasite with minor sphalerite, butadjacent drillholes contained little or no sulphides.

 Mineralogy, Textures, and Ore Chemistry

The Polaris orebody exhibits multiple generations of dolomite and sulphide precipitation and of carbonate andsulphide dissolution. Details of the alteration are after 

TABLE 2. Ore grade by division within Polaris Mine.

Zone Pb+Zn Fe Zn/Pb

P2 16.5 4.6 3.1

P1 22.4 4.5 3.5

K3 19.1 3.1 5.6

K2 17.3 1.7 4.3

K1 15.5 0.8 8.1

FIGURE 9. High-grade ore samples from the Polaris Mine. Designators for mine location in the keel mining areas are based on elevation and mine gridcoordinates. They are level, in metres, with 1000 being sealevel anddecreasing with depth, followed by, in metres, the latitude coordinatedivided by 10. Hence 850-176 refers to 850 level at 1760 north latitude.Keel stopes, all oriented east-west, mined the keel ore zone from 1720N or 172 stope in the south to 237 stope in the north at 2370 north latitude. (A)Marcasite replaced carbonate and banded sphalerite. 880 level by waterlinecutout. 7 cm wide. (B) Sphalerite-galena vein showing banded ore on either side and crystalline galena and sphalerite in the centre. 820 Bypass, 8 cmwide.. (C) Colloform and banded ore, 820-229, 8 cm wide. (D) Mineralizedcollapse breccia, 820-218, 8 cm wide. (E) Marcasite-rich ore showing col-lapsed fragments of banded sphalerite 880-185, 11 cm high. (F) Colloformsphalerite with dendritic galena and minor dolospar, 730-205, 9 cm high.

Page 10: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 10/18

Savard et al. (2000). The alteration that extends farthest fromthe orebody is brown, Fe-poor dolomite that replaces theoriginal limestone of the host Thumb Mountain Formation.Crystal size of the replacement dolomite increases towardsthe core of the deposit. The replacement dolomite alwayscontains some sphalerite or galena, thus is considered part of the mineralizing event. Two types of sparry dolomite are rec-ognized: 1) white, saddle dolomite, which fills vugs andfractures or that can grow replacively from finer grainedreplacement dolomite. It is Fe poor and inclusion rich andthe bulk of the fluid inclusion homogenization temperaturesrange from 85 to 105°C; 2) white to pink, Fe-rich, inclusion-

 poor saddle dolomite that fills vugs and appears to post-datethe white saddle dolospar. Most homogenization tempera-

tures fall in the range of 80 to 105°C. The δ18

O (SMOW)and δ13C (PDB) values for the replacement dolomite and thetwo types of saddle dolomite cluster tightly with δ18O =-10.0 to –8.5‰ and δ13C = -1.5 to +1.0‰. 87Sr/86Sr ratiosfor replacement dolomite and the two sparry dolomite phasesrange from 0.70822 to 0.70948. This is above the range for Middle Ordovician seawater (0.7078 to 0.7083; Savard et al.,2000).

Sphalerite occurs as small subhedral crystals disseminatedin the host dolostone; within brecciated dolostone as fineaggregates, yellow, grey, brown, and black crystals, and lightto dark brown colloform masses and banded encrustations(Fig. 9). Sphalerite δ34S values range from +2 to +13‰ witha median of +9‰ (Fig.10; Randell, 1994). Laser ablation

studies on δ34S in colloform sphalerite from Polaris(Jaroslaw Nowak, unpublished data, see Fig. 9B) indicatethat each band shows a systematic variation from 8‰ in thecolloform centre of the mass to 12‰ at the outer crystallinerim. Homogenization temperatures for sphalerite range from65 to 145°C with most of the data falling between 90 and105°C. Ice melting temperatures indicate salinity in therange of 24.6 to 31.3 wt.% (NaCl + CaCl2). Hydrocarboninclusions are rare (<0.07 mol %; Savard et al., 2000).

Galena occurs as small dendritic and skeletal intergrowthswithin colloform sphalerite, and as cubes and truncated

(octahedral) cubes, or as thin, polycrystalline veins. Galenaδ34S ranges from 1.0 to 9.4‰ with a median of 4.5‰. Lowα lead occurs in galena within the Panhandle ore. This mate-rial was separated and sold at a premium to silicon chip man-ufacturers who used it to make solder in which the electronsin the outer orbitals would not jump to the next-closest sol-der. Marcasite typically replaces carbonate, is massive, andgreen-brass, but also occurs as small needles on dolomite, or as submillimetre blades and aggregates. Limited sampling of marcasite for δ34S gives a range of 4.9 to 8.9‰.

Pyrobitumen is a common, though volumetrically small,component of the deposit occurring in vugs as crusts or blobsup to 1 cm in diameter. It occurs on top of sulphides and thetwo sparry dolomite phases, but predates calcite phases.

 Native sulphur ranges up to 4 wt.% (S. Grasby, GSC-Calgary, unpublished data). Dating of pyrobitumen by Re-Osgives 368 ± 15 Ma, indicating that it is part of the mineraliz-ing event (Selby et al., 2005). Other evidence for hydrocar-

 bon generation at Polaris is found in abundant bitumen (68%of 125 organic matter separates contain bitumen), hydrocar-

 bon fluid inclusions, thermal maturity values indicating pas-sage into the oil window, and petrographic evidence for localized, direct transformation of alginite into bitumen(L.V. Stasiuk, pers. comm., 1992; Randell, 1994).

Barite is rare within the Polaris Mine, occasionally occur-ring as 1 to 3 mm crystals sparsely coating sphalerite in vugs,

 but commonly occurs in veins, along faults, or as pore-fill incrinoidal grainstone for up to 10 km from the deposit. Barite

δ34S values range from +36 to +58‰. It commonly occurswith quartz.

There are at three phases of calcite that post-date the mainmineralizing event. The first is a fine-grained, grey calcitethat appears to have grown at a fluid interface and is associ-ated with small needles of pyrite. The second phase of cal-cite consists of small, clear crystals less than 5 mm in length.The third phase consists of 2 to 5 cm, often doubly termi-nated, brown crystals. Small crystals of brown sphaleriterarely occur between the second and third phases of calcite.Homogenization temperatures for calcite range from 75 to

K. Dewing, R.J. Sharp, and E. Turner

664

15

20

10

5

0

Numberofanalyses

0 +2-2-4-6<-7 +4 +6 +10+8 +12 +14 +16 +18 +20 +22 +24 +26 +28 +30 +32 +34 +38 +40 +42 +44 +46 +48 +50 >50+36

+18

+18

5

5

+20 +22 +24 +26 +28 +30

+20 +22 +24 +26 +28 +30

BAY FIORD FM.

BAUMANN FIORD FM.

34δ S

OTHER

BariteEvaporite

SPHALERITE

TyphoonStor m

Seal

Somerset Island

Polaris Allen Branch

Stanley Head

Eclipse BaconTr uro SnowblindRooker y Stuar t

Cornwallis-LCI

Markham PtHarrisonBass Fault

Bathurst

Dundas

JGLizHornby Zn

 Auror aShiells

Simba

BK

Grinnell PeninsulaTrigger 

Sulphur isotope values (per mil)

FIGURE 10. Sulphur isotopes from sphalerite in the Polaris District colour coded by location. Data from Davies and Krouse (1975), Randell (1994), andMitchell (2000), and as well as unpublished GSC data.

Page 11: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 11/18

Synopsis of the Polaris Zn-Pb District, Canadian Arctic Islands, Nunavut

66

175°C with most of the data above120°C. Ice melting temperaturesindicate salinity in the range of 0.0to 0.9 wt.% NaCl equiv. Calcite hasδ18O and δ13C values (PDB) of 5.0to 25.4‰ and -25.1 to -5.1‰,respectively. 87Sr/86Sr ratios for replacement calcite range from

0.70796 to 0.70883 (Savard et al.,2000).

Other Zn-Pb showings havesimple paragenetic sequences and asubset of the ore textures seen atPolaris (Fig. 11). The smallestshowings only contain fracture-fill-ing crystalline sphalerite (± galena,marcasite); larger showings exhibitsome replacement of carbonate bysphalerite in addition to the frac-ture-filling phases; the largestshowings (Eclipse, Truro) exhibit

 barite, marcasite replacement of carbonate, minor collapse breccias,

 banded aggregate and colloformsphalerite in addition to fracturefilling and replacement crystallinesphalerite.

 Alteration Mineralogy/Chemistry

Geology of Dolomitized Body

The dolomite halo shows sharpmargins on its downdip (east) andsouthern limits, but extends 550 mup dip where it is exposed on sur-face on the Polaris Peninsula (Figs.

7, 12; Sharp and Dewing, 2004).Carbonate beds in the overlyingIrene Bay Formation are dolomi-tized directly over the orebody, butthe upper surface of the dolomitehalo drops to lower stratigraphiclevels with increasing distancefrom the orebody. Thinning of theupper Thumb Mountain Formationand collapse of the overlying IreneBay Formation starts at the edge of the dolomitized halo indicating theremoval of some calcite materialduring the dolomitization. Collapse

continues towards the centre of thedeposit indicating that upper Thumb Mountain Formationcontinued to be thinned even after it was dolomitized. TheThumb Mountain Formation is thinned by 50% in the ore-

 body (Figs. 8, 12). Few beds within the dolomite halo escapedolomitization; even apparently impermeable lime mudstone

 beds are dolomitized. All beds outside of the dolomitizedhalo are limestone in the vicinity of Polaris.

Breccias occur only within the dolomitized halo aroundthe orebody and always contain at least some mineralization.Brecciation is thus considered to be part of the mineralizing

event. Breccias are concentrated in certain stratigraphicintervals away from the orebody, but become thicker andcoalesce towards the orebody. There is a general (though notinfallible) progression from pseudobreccia and crackle brec-cia to collapse or solution breccia towards the core of theorebody (Fig. 12). Collapse breccias are common within theorebody but pervasive overprinting and replacement by zinc-lead-iron sulphide mineralization makes it difficult to recog-nize carbonate textures.

The gradation from pseudobreccia to crackle breccia tocollapse or solution breccia towards the orebody is presum-

FIGURE 11. Alteration and sulphide textures from the Polaris District. Somerset Island: (A) Crackle andmosaic breccia with chalcocite and calcite. Storm showing ddh ST60 76.4 m. (B) Massive chalcocite cement-ing brecciated Allen Bay Formation. Storm showing ddh ST60, 75.65 m (C) Solution breccia, Storm show-ing ddh ST60, 138.4 m (D) Storm Showing. Chalcopyrite and bornite in dolomite-lined vug being replaced

 by digenite. Storm showing ddh ST60, 45 m x10. Photo by N.S.F. Wilson, GSC Calgary. View is 5 mm wide.(E) Pseudobrecciated Turner Cliffs Formation. Seal showing ddh AB95-2, 161 to 215 m. Dundas Island: (F)Sphalerite and marcasite on collapse breccia clast. Grinnell Peninsula: (G) Marcasite and trace sphaleritereplacing carbonate. JG showing ddh 99-10, 34.0 m (H) Marcasite replacing brecciated carbonate andcemented by dolospar. Liz showing ddh LZ01, 18.4 m

Page 12: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 12/18

ably a result of increasing dissolution. Pseudobreccia isformed in porous and permeable beds where acidic fluidmigrating away from the site of ore deposition began toremove carbonate. Removal of carbonate reduced thestrength of the pseudobrecciated beds and these began to col-lapse. Crackle breccia formed as blocks of pseudobrecciacrumbled and settled into the newly created void space andas undissolved beds adjusted due to the overall thinning of the Thumb Mountain Formation. The increasingly porousand permeable crackle breccia zones were then further dis-

solved creating solution and collapse breccias (Fig. 12).Pseudobreccia is only recognized on the fringes of thedolomitized halo as it has been overprinted by more intense

 brecciation and mineralization closer to the orebody.

Clay Mineral Assemblages

There is a zonation of clay mineral assemblages withinthe host rocks away from the ore (Fig. 13; Héroux et al.,1996, 1999). Six clay mineral assemblages are present: 1)the background sedimentary clay assemblage in the CapePhillips Formation consists of illite>interstratified

illite/smectite>chlorite; 2) the background clay mineralassemblage for the Thumb Mountain Formation isillite>chlorite>interstratified illite/chlorite; 3) the Irene BayFormation and less commonly the uppermost part of theThumb Mountain Formation contains a background chlorite-corrensite assemblage (chlorite+corrensite+chlorite/smectitemixed layer)>illite, interstratified with illite/smectite; 4)directly over the main orebody in the upper part of theThumb Mountain and in the Irene Bay formations is a pureillite facies (with traces of chlorite) containing well crystal-

lized illite with few swelling layers; 5) within 250 m of theore in the Thumb Mountain Formation is a coarse kaoliniteassemblage. It contains kaolinite and illite, with some tracesof chlorite. The kaolinite to illite ratio is always much higher in the 2 to 16 micron fraction than in the <2 micron fraction.Scanning electronic microscopy shows that this kaolinite is

 present as large vermicules filling the porosity in dolostone;6) within 1000 m of the orebody in the Thumb MountainFormation is a fine kaolinite assemblage containing illite andkaolinite with trace chlorite. The illite to kaolinite ratio is

K. Dewing, R.J. Sharp, and E. Turner

666

pseudobreccia

complete sulphidereplacement of carbonateclasts

unmineralizedpseudobreccia

mineralized collapse brecciareplacing crackle breccia

crackle brecciafrom internal collapse of pseudobreccia bed

mineralized crackle brecciareplacing pseudobreccia

Edge of dolomiteEdge of mineable ore

NORTHSHOWING

CENTERSHOWING

SOUTHSHOWING

Loon 

Lake 

Chert Marker 

Green Marker Oci

Oct-u

Oct-lIrene Bay Formation

Thumb Mountain Formation -upper 

Thumb Mountain Formation -lower 

dol

dol

Collapse Breccia

Crackle Breccia

Pseudobreccia

700 N1800 N 800 N1900 N 900 N2000 N 1000 N2100 N 1100 N2200 N 1200 N2300 N 1300 N2400 N 1400 N2500 N 1500 N2600 N 1600 N2700 N 1700 N

Oct-1

OScp-A

OScp-B

FIGURE 12. Lower part: Long section through Polaris Mine hung on the base of the Chert Marker (M-Ch) showing distribution of dolomitization and brec-

cia types. Note the thinning of the upper Thumb Mountain Formation starting at the edge of the dolomitization and continuing towards the centre of the ore- body. Section length 2000 m, location shown on inset map. No vertical exaggeration. Upper part: Schematic figure showing the distribution of breccia fab-rics within the upper Thumb Mountain Formation at Polaris Mine (roughly between 1400 and 1650 N). Pseudobreccia forms in porous beds far from the ore-

 body and grades into crackle and collapse breccia closer to the ore. x2 vertical exaggeration.

Page 13: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 13/18

Synopsis of the Polaris Zn-Pb District, Canadian Arctic Islands, Nunavut

66

about the same in the less than 2 micron fraction as in the 2to 16 micron fraction.

Organic Matter Alteration

Reflectance of organic matter (R o) in the impermeableCape Phillips and Irene Bay formations near the ore showshigher values than away from the ore (Fig. 13; Randell,1994; Héroux et al., 1996, 1999). Above the orebody, grap-

tolites in the Cape Phillips Formation exhibit a R o of 1.35%,twice the expected background value (R o=0.7%) for thislithostratigraphic unit as determined from remote diamonddrillholes and outcrops. R o values from the Irene BayFormation are also 50% higher than background above theore zone. These values decrease away from the ore, attaining

 background values at 1.2 km radius from the mine. In con-trast, Ro values from the upper Thumb Mountain Formationwithin the ore deposit are 20% lower than the expected R o

 background (R o=0.5% rather than 0.75%). This “suppres-sive” effect is also shown by decreasing Ro values withdepth. The difference between the lowest and the highest R ovalues, occurring respectively near the bottom and the top of at the same diamond drill, is twice the lower value.

Cu-Rich Mineralization and Associated Alteration

Alteration at the copper-rich showings at Storm andHornby Zn includes fracturing to crackle breccia; smallzones of mosaic packbreccias with calcite, pyrite, and subor-dinate chalcocite cement; pervasive hematite staining; andrare malachite/chalcocite on fractures. Mineralization is usu-ally accompanied by medium to coarsely crystalline dolomi-tization and local dedolomitization of the host lithology;minor sparry dolomite; pockets of silicification; limonitestaining and hematization; crackle and mosaic breccias withsolution-rounding clasts. Chalcocite and bornite are the mostcommon copper sulphides, with lesser chalcopyrite (Fig. 11).Accessory copper minerals include cuprite, covellite, and

native copper. Malachite and azurite occur as surface stainand are associated with iron oxides in drill core. Pyrite is themain non-copper sulphide but small veins of sphalerite andgalena occur. Fluid inclusion homogenization temperatureson sparry dolomite yield 100 to 120°C and ice melting tem-

 peratures indicate salinities >35 wt.% NaCl eq. Sphaleritehas a δ34S value of 8.5 ‰, whereas two samples of chal-cocite yielded δ34S values of –9.5 and +10.7 ‰.

Two diagenetic events are documented at the Storm show-ing. The first was dolomitization accompanied by precipita-tion of pyrite, chalcopyrite, and lesser bornite. Silica, in the

form of cryptocrystalline quartz, minor sphalerite, andgalena, were deposited at the margins of the alteration sys-tem. The second event was minor dissolution and dedolomi-tization of dolomite, dissolution of galena, and precipitationof zinc oxides, covellite, chalcocite, bornite, native copper,iron oxide, and malachite. Bornite, covellite and chalcocitereplace pyrite and chalcopyrite and fill fissures within therock. These copper minerals were subsequently altered to

malachite and azurite. Calcite precipitation accompanied thesecond event.

The copper mineralization in the Polaris district is thoughtto be directly associated with the main zinc mineralizingevent because 1) Zn-Pb mineralization occurs with or over-laps copper mineralization and 2) both were formed bysaline brines of similar composition and temperature.Copper mineralization occurs at the contact between theAllen Bay and Cape Storm formations, possibly reflecting alocal source of metals.

Structure and Deformation

The primary control on the location of showings withinthe Polaris District is structural. Mineralization occurs infour distinct structural settings: 1) along strike-slip and tear faults that separate the east margin (Harrison, Agpan,Aquarius showings) and west margin (Liz-Tiger-Simba, BK,Trigger) of the Boothia Uplift from the adjacent Parry Islandand Central Ellesmere fold belts; 2) in grabens and half grabens along extensionally reactivated, Boothia-aged thrustfaults (Eclipse, Rookery, Hornby, Dundas, Abbott, Bacon);3) in the axial region of east-west trending anticlines (StuartRiver, Caribou, Baillie Hamilton, high-grade zones withinPolaris Mine); and 4) on an east-west-trending fault onSomerset Island marked by a line of small grabens and facieschange (Seal, Storm). This structure directly lines up withthe southern bounding fault of the Proterozoic Borden Basin

on Baffin Island and thus is presumably the reactivation of  basement faults reflected in the overlying Paleozoic strata.

There is a second-order, stratigraphic control on the loca-tion of mineralization within the sedimentary pile and on themineralogy of the showing. Limestone units that are overlain

 by less permeable shale, evaporite, or argillaceous dolostoneunits are preferentially mineralized. These include theThumb Mountain, Blue Fiord, and Allen Bay formations.Cu-Fe±Zn-Pb mineralization (Storm Cu, Hornby Cu,Eclipse, Tern Lake) occurs only within Silurian strata, either at the contact between the Allen Bay and overlying CapeStorm formations (Storm, Tern Lake), or where EarlyDevonian synorogenic clastic strata overlie Silurian strata(Hornby Cu, Eclipse).

Two showings on eastern Cornwallis Island located alongthe shelf margin contact between the basinal Cape PhillipsFormation and the platformal Barlow Inlet Formation (LauraLakes and Cape) have no obvious associated structures andappear to be stratigraphically controlled showings.

Genetic Models

The model for the Polaris deposit (Fig. 14) invokes asource of metal ions within the stratigraphic column, sincestrontium or lead isotopes show no indication of basement or 

 basal clastics being involved. Metals are then carried in sul-

graptolite reflectance at baseof Cape Phillips Formation

Ro-Vi.eq.(%)

1.3

1.0

0.7

0.40 500 1000

Distance from ore body (m)

Illite

FineKaolinite

(backgroundfor base of 

Cape Phillips)

CoarseKaolinite

C hl o r i t e  / C o r r e ns i t e 

Ore

OScp-A

OScp-R

Oci

Oct-u

Oct-l

b ac k g r o u nd c l ay m i ne r al s 

FIGURE 13. Schematic long section through the Polaris Mine showing thedistribution of clay mineral assemblages and graptolite reflectance in theoverlying Cape Phillips Formation. Stratigraphic column shown on the left(north) side. Details in Randell (1994) and Héroux et al. (1996).

Page 14: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 14/18

 phate-rich brines through aquifers deep in the stratigraphic

column. Driven by an orogenic process, either the LateDevonian Ellesmerian Orogeny or the mid-Carboniferousopening of the Sverdrup Basin, circulating fluids rose alongfaults until they encountered the organic-rich, permeableThumb Mountain Formation limestone overlain by theimpermeable Irene Bay Formation shale.

Bacterial sulphate reduction reduces sulphate to H2Susing the abundant algal organic matter in the upper ThumbMountain Formation as a reductant. The resulting H2S has ashift in δ34S values of -15‰ (Fig. 10). The H2S reacts inor-ganically with zinc, lead, and iron ions to produce sulphideswith a δ34S value of about 10‰. Released hydrogen ions dis-solve carbonate resulting in dissolution breccias and other dissolution fabrics. It is proposed that excess sulphate was

expelled from the system and produced a halo of barite up to10 km from the deposit with δ34S values of 40 to 60‰.Evidence of a temporal link between barite and ore is basedon one sample from the 930-124 stope at Polaris that hassphalerite that pre- and post-dates barite, proximity toPolaris (barite is common only on southern Little CornwallisIsland), heavy sulphur isotope values, and occurrence withmarcasite.

Temperatures measured from fluid inclusions and inferredfrom the thermal maturity data indicate a range of 80 to105°C. This is the appropriate range for bacterial sulphatereduction (Machel et al., 1995). Thermochemical sulphatereduction is unlikely to have been active since 1) the tem-

 peratures are too low (≥140°C is needed); 2) there is no

 blocky calcite with strongly negative δ13C values, which istypically produced during thermochemical sulphate reduc-tion; 3) there is fractionation of the sulphur isotopes, a

 process that does not occur during thermochemical sulphatereduction (Machel et al., 1995); and 4) the δ34S in individualsphalerite masses is inhomogeneous, typically showing avariation from 8‰ in the colloform centre of the mass to12‰ at the outer crystalline rim. Presumably this reflects

 pulses of fluid activity, with bacterial sulphate reduction pro-ducing a gas cap with strongly fractionated H2S, followed bythe introduction of metal-rich brine, rapid precipitation of 

amorphous colloform sphalerite, followed by slower precip-itation of crystalline sphalerite as the gas cap is depleted andgas slowly produced by ongoing bacterial sulphate reduc-tion.

This model fails to explain many of the showings onGrinnell Peninsula, at the Seal deposit on Somerset Island, or at Bass Point on Bathurst Island, where the δ34S of sphaleriteis about the same as marine sulphate (25 to 30‰). These

showings also lack barite and some have sphalerite in calciteveins. Grinnell and Somerset are beyond the northern or southern limits of the Baumann Fiord and Bay Fiord evapor-ites and may reflect the long distance transport of thermo-chemical sulphate reduction generated gas. If so, the δ34S of individual crystals should be homogeneous.

Exploration Methods

 Historical 

Exploration cycles in the district typically started with prospecting, stream sediment heavy mineral sampling, andmore recently, airborne hyperspectral surveys. These activi-ties have been followed by property-scale mapping, soil

sampling, clay and thermal maturity analysis, gravity, IP, andmagnetic surveys. Targets identified were then drilled.

Geological techniques have focused on property-scalemapping of alteration indicators, such as the distribution of dolomite, carbonate dissolution fabrics, barite, and sulphideoccurrences and textures. Stream sediment heavy mineralsampling has proven effective in locating showings, but soilsampling often gives results that are hard to interpret, pre-sumably due to the lack of soil development and chemicalweathering in the permafrost zone. Clay mineral and organicmatter alteration techniques (described above; Héroux et al.,1999) are effective in locating showings and providing vec-tors to the area of maximum alteration. Airborne hyperspec-tral surveys employed by Noranda on Grinnell Peninsula

located numerous new showings, but other airborne tech-niques (e.g. EM) failed to locate any new showings. ThePolaris Mine responded well to IP and gravity surveys, witha whopping 2.2 milligal residual gravity anomaly over thedeposit, although the gravity anomaly is influenced more bythe large body of dolomite within limestone rather than sul-

 phide within dolomite. IP located the Polaris deposit, but

K. Dewing, R.J. Sharp, and E. Turner

668

dolomite

limestone

Bariteδ S

34= 40-60‰

δ S34

= 25‰

δ  S 3 4 

= 5  - 1 5  ‰ 

Pb,Zn,Fe <140 Co

B   S   R   6   0   -  8   0   

C   o  

H 2 S

 A n h  y d  r  i  t e 

B a  y F  i  o r  d   S      O

        4

       & 

    m      e

        t       a         l       s

AQ U I T AR D 

O R G  AN I C R I C H 

FIGURE 14. Genetic model for the Polaris Mine showing the origin of metaland sulphate-rich fluids in the sedimentary pile, transport as a single fluidto site of ore precipitation, reduction and fractionation by bacterial sulphatereduction (BSR), combination of isotopically light H2S and metal ions toform ore and create acidic fluids, and expulsion of isotopically heavy sul-

 phate to produce a barite halo. Legend as for Figure 8.

Exploration Feasibility Production Exploration

     n     u      m      b      e      r

      o       f

      s       h     o      w      i     n     g       s 

      d       i     s      c      o 

     v     e      r     e       d       (       c      u      m

 .      )  

Year 

1

10

100

1000

1960 1980 2000 2020 2040

136

82

Polaris(ore body)

Polaris(north showing)

Eclipse

FIGURE 15. Graph of number of known showings versus year of discovery.Eighty-two showings are known and the best-fit curve indicates that asmany as fifty showings remain to be found.

Page 15: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 15/18

Synopsis of the Polaris Zn-Pb District, Canadian Arctic Islands, Nunavut

66

elsewhere in the district has pro-vided numerous false positives dueto salt-water lenses (taliks) withinthe permafrost and remains of uncertain value.

 Potential for New Targets

Exploration potential exists for 

additional deposits within thePolaris District. The curve showingnumber of known showings versusyear indicates that many showingsremain to be found (Fig. 15). Thedifficult logistics and short summer season often governed explorationinstead of geology, so undiscov-ered showings could be significant.

The district may respond well toa second exploration cycle built onmore sophisticated explorationtechniques. Exploration startingwith hyperspectral surveys to iden-tify areas of iron oxides, barite, andclay mineral alteration could befollowed by thermal maturity sam-

 pling spatially associated with potential structurally controlledfluid conduits, pathfinder geo-chemical surveys (Zn, Pb, Cd, Cu,Ba, Fe), and then the more tradi-tional methods described above.

Highest priorities for additionalexploration (Fig. 16) should be 1)

 poorly explored, Devonian-filledhalf grabens at Rookery Creek,

Taylor River, and Eleanor River onCornwallis Island; on BaillieHamilton Island; and along theIcefield fault on GrinnellPeninsula; 2) Liz-Tiger-Simbatrend on Grinnell Peninsula; 3) carbonate-hosted, copper-rich showings associated with the Allen Bay-Cape Stormformational contact in the vicinity of faults northeast of Resolute Bay, and on structures parallel to the Aston-BattyLine on Somerset Island and on southern Devon Island; and4) unexplained thermal anomalies at Victor Creek northeast-ern Cornwallis Island described by Héroux et al. (1999), and5) buried Thumb Mountain Formation on eastern BathurstIsland

There is another, as yet untested, deposit model for a sep-arate type of lead-zinc mineralization in the district.Absolute dating of the Nanisivik deposit on northern BaffinIsland (Sherlock et al., 2003) has yielded a MiddleOrdovician age (461 Ma or Chayzan) for the mineralizationand associated alteration of volcanic dykes. This result,while controversial, indicates that some potential exists for iron-rich, carbonate-hosted deposits in areas that overlie theancestral Borden Basin (Fig. 17). The age of mineralizationas determined by Sherlock et al. (2003) is synchronous withthe deposition of the Bay Fiord Formation. The intraplatfor-

mal basin that developed and accommodated evaporites of the Bay Fiord Formation may have resulted from the onsetof subduction under the North American continent and theassociated drag from the down-going slab. The “MelvilleArch” (Figs. 3, 17) might have been the resulting peripheral

 bulge.

Knowledge Gaps

The following knowledge gaps need to be addressed for 

effective future exploration:

 Mapping 

• 1:50 000 mapping is required on Cornwallis Island tolocate small, Ellesmerian-aged structures that are

 beyond the resolution of the current 1:250 000 map.These structures controlled fluid flow at Polaris and onnortheast Cornwallis Island (Jober, 2005). Locatingthese potential fluid conduits would help target explo-ration.

• 1:50 000 mapping is required on Somerset Island in the

76°

74°

98° 96° 94° 92 °100° 

100°  98° 96° 94° 92 °

73°

75°

77°77°

76°

75°

74°

73°

10000

kmm

0

      B       O        O       T      H      I      A      U       P      L      I      F      T

      B       O        O       T      H      I      A      U       P      L      I      F      T

PARRYISLANDSFOLDBELT

CENTRALELLESMEREFOLD BELT

Prince of Wales Is. Somerset Is.

Cornwallis Is.

Devon Is.

BathurstIs.

 ARCHEANmetamorphic basement

CAMBRIAN to ORDOVICIANpassive margin carbonate &evaporite rocks

ORDOVICIAN & SILURIANplatformal rocksbasinal and

SILURIAN & DEVONIANconformable base

DEVONIANabove unconformity

DEVONIAN

Ellesmerian clastics

CARBONIFEROUS & PERMIANSverdrup Basin

normal fault - mapped at surface- inferred under water 

anticline axis - mapped at surface

Prospect

reverse or thrust fault - mapped at surface- inferred under water 

D        e     v     

 o     n     I        s     l        a     n     

 d       

1

2

4

5

6

7

122

8

9

100

111

3

1) Cu and Zn along the Aston-Batty line2)

3) Cu at Allen Bay - Cape Storm contact

4)

5) Devonian graben at Taylor  River 

6) Under-explored prospects at CD and Northwest Arm (BHP, DIAND Assessment ReportNo. 083639)

7) Under-explored prospect at Rookery Creek8) Unexplained thermal anomaly at Victor Creek9)

10) Liz-Simba trend of mineralization11) Icefield fault zone and associated Devonian-

filled grabens12) Buried Thumb Mountain Formation on Eastern

Bathurst Island

Cu and Zn on structures parallel to the Aston-Batty line

onstructures parallel to the Aston-Batty line onsouthwestern Devon IslandCu at Allen Bay - Cape Storm contact alongstructure from Bacon Zn showingUnderexplored - fi lled

Under-explored Devonian-filled graben on BaillieHamilton Island

FIGURE 16. Prospects for Zn-Pb or Cu potential within the Polaris District that these authors consider to havehigh potential.

Page 16: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 16/18

area of the Aston-Batty Line to better define its locationand look for additional alteration indicators.

• Mapping and prospecting in stratigraphy younger thanthe Middle Ordovician Thumb Mountain Formation.The Allen Bay-Cape Storm contact in the vicinity of faults on Somerset, Cornwallis, Grinnell, and Devonislands may be analogous with the Storm copper show-ing and should be revisited.

• The Devonian stratigraphy is complex and poorlyunderstood. New data on the age of the base of eachsubbasin are desirable. Many of the Devonian-filled half 

grabens on Cornwallis, Grinnell, and Bathurst islandshave never been mapped in detail or prospected.

Geochemistry

• Geochemical characterization of the alteration haloshould be improved as a guide to exploration: 1) chem-istry of dolomite associated with alteration versusregional burial dolomite; 2) barite distribution; 3) hyper-spectral, PIMA and ASTER response of alteration prod-ucts (barite, dolomite, clay); and 4) thermal alteration of organic matter across the district

• Organic matter studies to 1) characterize hydrocarbongeneration around the Polaris deposit and perform mass

 balance calculations; and 2) continue mapping thermalmaturity indicators to look for buried orebodies in areasof exploration interest.

Geophysics

• Higher resolution regional gravity and aeromagnetic

surveys would better locate basement structures that partially control structures in overlying Paleozoic strata.

• Shallow seismic surveys of Pb-Zn prospects using alow-energy source may offer an alternate way to pin-

 point drill targets.

Acknowledgements

The authors thank Michael Gunning, Victoria Yehl, ChrisHarrison, and Wayne Goodfellow for the many suggestionsthey made to improve this paper. TeckCominco Ltd. iswarmly thanked for providing data on the Polaris, Storm,Truro, and Eclipse deposits, as well as for logistical supportin 2001. Polar Continental Shelf Project and Technical Field

and Support Services, both of Natural Resources Canada,helped with logistical support.

References

Christensen, J.N., Halliday, A.N., Leigh, K.E., Randell, R.N., and Kesler,S.E., 1995, Direct dating of sulphides by Rb-Sr: A critical test using thePolaris Mississippi-Valley-type Zn-Pb deposit: Geochimica etCosmochimica Acta, v. 59, p. 5191-5197.

Davies, G.R., and Krouse, H.R., 1975, Sulphur isotope distribution inPaleozoic sulphate evaporites, Canadian Arctic Archipelago:Geological Survey of Canada, Report of Activities 75-1B, p. 221-225.

de Freitas, T.A., and Mayr, U., 1993, Middle Paleozoic tear faulting, basindevelopment, and basin uplift, central Canadian arctic: CanadianJournal of Earth Science, v. 30, p. 603-620.

de Freitas, T.A., Trettin, H.P., Dixon, O.A., and Mallamo, M., 1999, SilurianSystem of the Canadian Arctic Archipelago: Bulletin of Canadian

Petroleum Geology, v. 47, p. 136-193.Dewing, K., and Turner, E., 2003, Structural Setting of the Cornwallis Lead-

Zinc District, Arctic Islands, Nunavut: Geological Survey of Canada,Current Research. B-4, 9 p.

Dewing, K., Harrison, J.C., Pratt, B.R., and Mayr, U., 2004, A probable Late Neoproterozoic age for the Kennedy Channel and Ella Bay formations,northeastern Ellesmere Island and its implications for passive marginhistory of the Canadian Arctic: Canadian Journal of Earth Sciences, v.41, p. 1013-1025.

Disnar, J.R., and Héroux, Y., 1995, Dégradation et lessivage des hydrocar- bures de la formation ordovicienne de Thumb Mountain encaissant legîte Zn-Pb de Polaris (Territoires du Nord-Ouest, Canada): CanadianJournal of Earth Sciences, v. 32, p. 1017-1034.

Gentzis, T., de Freitas, T., Goodarzi, F., Melchin, M., and Lenz, A.C., 1996,Thermal maturity of lower Paleozoic sedimentary successions in ArcticCanada: American Association of Petroleum Geologists Bulletin, v. 80,

 p. 1065-1084.

Harrison, J.C., 1995, Melville Island’s Salt-Based Fold Belt, Arctic Canada:Geological Survey of Canada, Bulletin 472, 331 p.

Harrison, J.C., and de Freitas, T., 1996, New showings and new geologicalsettings for mineral exploration in the Arctic Islands: GeologicalSurvey of Canada, Current Research 1996-B, p. 81-91.

Heal, G.E.N., 1976, The Wrigley-Lou and Polaris-Truro lead zinc deposits, Northwest Territories: Unpub. M.Sc. thesis, University of Alberta,Edmonton, Alberta, 172 p.

Heaman, L.M., LeCheminant, A.N., and Rainbird, R.H., 1992, Nature andtiming of Franklin igneous events, Canada; Implications for a lateProterozoic mantle plume and the break-up of Laurentia: Earth andPlanetary Science Letters, v. 109, p. 117-131.

K. Dewing, R.J. Sharp, and E. Turner

670

   Q    u  e

  e   nM  a   u   d

    B    l  o

  c    k

   C  o   m   m    i   t   t  e

  eB  a   y 

    B    l  o

  c    k     T     h

   e     l   o

   nT

   e   c    t   o

   n     i   c

Z   o   n   e

 A

B

BORDENBASIN

?

?

?

FURY & HECLA

BASIN

Neoproterozoic

Cambrian-Early Ordovician

460 MaMiddle Ordovician

480 MaEarly Ordovician

N S

Precambrian tectonic elements

Mesoproterozoic basins(subsurface/exposed)

 A-B Aston-Batty Line

s u b d u c t i n g s l a b 

500 km

75°

70°

100° 90° 80°

FIGURE 17. Top. Distribution of Precambrian tectono-stratigraphic ele-ments and their inferred distribution below the Paleozoic cover (modifiedfrom Jackson, 2000). Outcrops of Proterozoic sedimentary basins in red.Location of Proterozoic sedimentary basins in blue. Nanisivik Mine shown

 by yellow star. Line A-B shows location of Aston Batty Line on northernSomerset Island. Bottom. Possible configuration of the northern margin of Laurentia in the Early and Middle Ordovician showing the postulated onset

of subduction below Laurentia and the formation of an intraplatformal basin(Bay Fiord Formation) and a peripheral bulge.

Page 17: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 17/18

Synopsis of the Polaris Zn-Pb District, Canadian Arctic Islands, Nunavut

67

Henrichsen, M., 2003, Structural geometry and kinematics of deformationin the Stanley Head Region, western Cornwallis Island, Nunavut:Unpub. M.Sc. thesis, University of British Columbia, Vancouver,British Columbia, 147 p.

Héroux, Y., Chagnon, A., and Savard, M., 1996, Organic matter and clayanomalies associated with base-metal sulfide deposits: Ore GeologyReviews, v. 11, p. 157-173.

Héroux, Y., Chagnon, A., Dewing, K., and Rose, H.R., 1999, The carbon-ate-hosted base-metal sulphide Polaris deposit in the Canadian Arctic:Organic matter alteration and clay diagenesis, in Glikson, M., andMastalerz, M., eds., Organic Matter and Mineralisation: ThermalAlteration, Hydrocarbon Generation and Role in Metallogenesis:Kluwer Academic Publisher, p. 260-295.

Jackson, G.D., 2000, Geology of the Clyde-Cockburn Land map area, north-central Baffin Island, Nunavut: Geological Survey of Canada, Memoir 440. 303 p.

Jober, S.-A. 2005, Structural geology of the Stuart River – Caribou Lakeregion, eastern Cornwallis Island, Nunavut: Unpub. M.Sc. thesis,University of New Brunswick, Fredricton, New Brunswick, 104 p.

Jowett, C., 1975, Nature of the ore-forming fluids of the Polaris lead-zincdeposit, Little Cornwallis Island, N.W.T., from fluid inclusion studies:Canadian Institute of Mining and Metallurgy Bulletin, v. 68, p. 124-129.

Kerr, J.W., 1977, Cornwallis lead-zinc district; Mississippi Valley-typedeposits controlled by stratigraphy and tectonics: Canadian Journal of Earth Sciences, v. 14, p. 1402-1426.

Machel, H.G., Krouse, H.R., and Sassen R., 1995, Products and distin-guishing criteria of bacterial and thermochemical sulfate reduction:Applied Geochemistry, v. 10, p. 373-389.

Mayr, U., 1978, Stratigraphy and Correlation of Lower PaleozoicFormations, Subsurface of Cornwallis, Devon, Somerset, and RussellIslands, Canadian Arctic Archipelago: Geological Survey of Canada,Bulletin 276, 55 p.

Mayr, U., Packard. J.J., Goodbody, Q.H., Okulitch, A.V., Rice, R.J.,Goodarzi, F., and Stewart, K.R., 1994, The Phanerozoic Geology of Southern Ellesmere and Northern Kent Islands, Canadian ArcticArchipelago: Geological Survey of Canada, Bulletin 470, 298 p.

Mayr, U., de Freitas, T., Beauchamp, B., and Eisbacher, G., 1998, TheGeology of Devon Island North of 76°, Canadian Arctic Archipelago:Geological Survey of Canada, Bulletin 526, 500 p.

Miall, A.D., 1986, Effects of Caledonian tectonism in Arctic Canada:Geology, v. 14, p. 904-907.

Miall, A.D., and Gibling, M., 1978, The Siluro-Devonian clastic wedge of Somerset Island, Arctic Canada, and some regional paleogeographicimplications: Sedimentary Geology, v. 21, p. 85-127.

Mitchell, I., 2000, The Mineralising Fluids, Stable Sulphur Isotopes, andRadiogenic Age of the Bermuda Pb-Zn showing, Nunavut, Canada:Unpub. B.Sc. thesis, University of Waterloo, Waterloo, Ontario, 65 p.

Muir, I.D, and Rust, B.R., 1982, Sedimentology of a Lower Devoniancoastal alluvial fan complex; the Snowblind Bay Formation of Cornwallis Island, Northwest Territories, Canada: Bulletin of CanadianPetroleum Geology. v. 30, p. 245-263.

Muraro, T.W., 1974, Lead-zinc mining on Little Cornwallis Island, in Wren,A.E., and Cruz, R.B., eds., Proceedings of the 1973 NationalConvention, Canadian Society of Exploration Geophysists, p. 230-234.

 Nentwich, F.W., 1987, Stratigraphy and Sedimentology of the Ordovicianand Silurian Brodeur Group, Northern Brodeur Peninsula, BaffinIsland, Unpub. Ph.D. thesis, University of Alberta, Edmonton, Alberta,457 p.

 Nentwich, F.W., and Jones, B., 1989, Stratigraphy and sedimentology of Ordovician and Silurian strata, northern Brodeur Peninsula, BaffinIsland: Bulletin of Canadian Petroleum Geology, v. 37, 428-442.

Okulitch, A.V., comp., 1991, Geology of the Canadian Arctic Archipelago, Northwest Territories and North Greenland, Figure 2 in Trettin, H.P.,ed., Geology of the Innuitian Orogen and Arctic Platform of Canadaand Greenland: Geological Survey of Canada, Geology of Canada No.3 (also Geological Society of America, Geology of North America, v.E). 1:2,000,000 scale, 1 sheet.

Okulitch, A.V., Packard, J.J., and Zolnai, A.I., 1986, Evolution of theBoothia Uplift, Arctic Canada: Canadian Journal of Earth Sciences, v.23, p. 350-358.

Planchy, J., 1998, Zinc, in Sachs, J., ed., Metal prices in the United States through1998: minerals.usgs.gov/ minerals/pubs/commodity/zinc/720798.pdf 

Randell, R.N., 1994, Geology of the Polaris Zn-Pb Mississippi Valley-TypeDeposit, Canadian Arctic Archipelago: Unpub. Ph.D. thesis, Universityof Toronto, Toronto, Ontario, 736 p.

Randell, R.N., and Anderson, G.M., 1997, Geology of the Polaris Zn-Pbdeposit and surrounding area, Canadian Arctic Archipelago, inSangster, D.F., ed., Carbonate-Hosted Lead-Zinc Deposits: Society of Economic Geologists, Special Publication No. 4, p. 307-319.

Randell, R.N., Héroux , Y., Chagnon, A., and Anderson, G.M., 1997,Organic matter and clay minerals at the Polaris Zn-Pb deposit,Canadian Arctic Archipelago, in Sangster, D.F., ed., Carbonate-HostedLead-Zinc Deposits, Society of Economic Geologists, SpecialPublication No. 4, p. 320-329.

Rose, S.R.A., 1999, Sedimentology and diagenesis of the lower Blue FiordFormation carbonates in a prospective Mississippi-Valley-type (Pb-Zn)setting, Bathurst Island, N.W.T.: Unpub. M.Sc. thesis, University of Calgary, Calgary, Alberta, 172 p.

Sanford, B.V., and Grant, A.C., 2000, Geological framework of theOrdovician System in the southeast Arctic Platform, Nunavut, inMcCracken, A.D., and Bolton, T.E., eds., Geology and Paleontology of the Southeast Arctic Platform and Southern Baffin Island, Nunavut:Geological Survey of Canada, Bulletin 557, p. 13-38.

Savard, M.M., Chi, G., Sami, T., Williams-Jones, A.E., and Leigh, K., 2000,Fluid inclusion and carbon, oxygen, and strontium isotope study of thePolaris Mississippi Valley-type Zn-Pb deposit, Canadian ArcticArchipelago: Implications for ore genesis: Mineralium Deposita, v. 35,

 p. 495-510.

Selby, D., Creaser, R.A., Dewing, K., and Fowler, M., 2005. Evaluation of  bitumen as a 187Re-187Os geochronometer for hydrocarbon matura-tion and migration: A case study from the Polaris MVT deposit,Canada: Earth and Planetary Science Letters, v. 235, p. 1-15.

Sharp, R.J., and Dewing, K., 2004, Dolomitization and brecciation at theMississippi-Valley type Zn-Pb Polaris Mine, central Arctic Islands,

 Nunavut, in Packard, J.J., and Davies, G.R., eds., Dolomites: TheSpectrum - Mechanisms, Models, Reservoir Development: CanadianSociety of Petroleum Geology Core Conference, p. 27.

Sharp, R.J., Ste-Marie, C.P., and Lorenzini, C., 1995a, Field study of PolarisMine area, NWT, Canada, in Misra, K.C., ed., Carbonate-Hosted Lead-Zinc-Fluorite-Barite Deposits of North America: Guidebook Series, v.22, p. 38-41.

Sharp, R.J., Ste-Marie, C.P., Lorenzini, C., Leigh, K.E., Dewing, K., Héroux, Y., and Chagnon, A., 1995b, A field guide to the geology of the PolarisMine, Little Cornwallis Island, Northwest Territories, Canada, inMisra, K.C., ed., Carbonate-Hosted Lead-Zinc-Fluorite-Barite Deposits

of North America: Guidebook Series, v. 22, p. 19-37.Sherlock, R.L., Lee, J.K.E., and Cousens, B., 2003, Geological and

geochronological constraints on the timing of mineralization at the Nanisivik Zinc-Lead Mississippi Valley-type deposit, Northern BaffinIsland, Nunavut, Canada: Geological Association of Canada, AnnualMeeting, Vancouver, Abstract no. 124, 1 p.

Stewart, W.D., 1987, Late Proterozoic to Early Tertiary Stratigraphy of Somerset Island and Northern Boothia Peninsula, District of Franklin,

 N.W.T.: Geological Survey of Canada, Paper 83-26, 78 p.

Symons, D.T.A., and Sangster, D.F., 1992, Late Devonian paleomagneticage for the Polaris Mississippi Valley-type Zn-Pb deposit, CanadianArctic Archipelago: Canadian Journal of Earth Sciences, v. 29, p. 15-25.

Thorsteinsson, R., 1984, A sulphide deposit containing galena, in the Lower Devonian Disappointment Bay Formation on Baillie Hamilton Island,Canadian Arctic Archipelago: Geological Survey of Canada, Paper 84-1B, p. 269-274.

 ——— 1986, Geology of Cornwallis Island and neighbouring smaller islands, Canadian Arctic Archipelago: Geological Survey of Canada,Map 1626A, scale 1:250,000.

Thorsteinsson, R., and Mayr, U., 1987, The Sedimentary Rocks of DevonIsland, Canadian Arctic Archipelago: Geological Survey of Canada,Memoir 411, 182 p.

Thorsteinsson, R., and Tozer, E.T., 1970, Geology of the ArcticArchipelago, in Douglas, R.J.W., ed., Geology and Economic Mineralsof Canada: Geological Survey of Canada, Economic Geology Reportno. 1, p. 547-590.

Thorsteinsson, R., and Uyeno, T.T., 1980, Stratigraphy and Conodonts of Upper Silurian and Lower Devonian Rocks in the Environs of theBoothia Uplift, Canadian Arctic Archipelago: Geological Survey of Canada, Bulletin 292, 75p.

Page 18: Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

7/27/2019 Synopsis of the Polaris Zn-pb District, Canadian Arctic Islands, Nunavut

http://slidepdf.com/reader/full/synopsis-of-the-polaris-zn-pb-district-canadian-arctic-islands-nunavut 18/18

Trettin, H.P., 1969, Lower Paleozoic sediments of northwestern BaffinIsland, District of Franklin. Geological Survey of Canada, Bulletin 157,70 p.

Trettin, H.P. (ed.) 1991: Geology of the Innuitian Orogen and ArcticPlatform of Canada and Greenland: Geological Survey of Canada,Geology of Canada no. 3 (also Geological Society of America, Geologyof North America v. E), 569 p.

Trettin, H.P., 1994, Pre-Carboniferous Geology of the Northern Part of theArctic Islands: Hazen Fold Belt and Adjacent Parts of central EllesmereFold Belt, Ellesmere Island: Geological Survey of Canada, Bulletin430, 248 p.

Turner, E.C., and Dewing, K. 2004, Geology, Little Cornwallis Island andRookery Creek (Cornwallis Island), High Arctic, Nunavut: GeologicalSurvey of Canada, Open File 1780, 1:50 000 scale.

K. Dewing, R.J. Sharp, and E. Turner

672