25
Symmetric-Acyclic Decompositions of Networks Patrick Doreian University of Pittsburgh Vladimir Batagelj University of Ljubljana Anuˇ ska Ferligoj University of Ljubljana September 1, 1998 Abstract This paper presents two new developments for partitioning networks. One is the symmetric-acyclic decomposition of a network and the other is a generalized blockmodeling approach to establish such decompositions of networks. Both are founded in the Davis and Leinhardt (1972) formula- tion of a ranked clusters model as a theoretical expectation concerning the structure of human groups and affect directed ties. The actual model can be applied in a variety of contexts and we illustrate the decomposition and generalized blockmodeling with the marriage network of noble families in Ragusa (Dubrovnik) for the 18th Century and early 19th Century. 1 Introduction One major goal of social network analysis is to discern fundamental structure(s) of networks in a way that: allows us to know the structure and/or facilitates our understanding of network phenomena. The most used tool (blockmodeling) does this through partitioning networks ac- cording to well specified criteria. Blockmodeling methods were established in social network analysis to partition units in a social network in terms of the struc- tural information contained in their network ties. Hummon and Carley (1993) 1

Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

Symmetric-Acyclic DecompositionsofNetworks

Patrick DoreianUniversityof Pittsburgh

Vladimir BatageljUniversityof Ljubljana

AnuskaFerligojUniversityof Ljubljana

September1, 1998

Abstract

This paperpresentstwo new developmentsfor partitioning networks.Oneis the symmetric-acyclic decompositionof a network andthe otherisa generalizedblockmodelingapproachto establishsuchdecompositionsofnetworks. Both are foundedin the Davis and Leinhardt(1972) formula-tion of a ranked clustersmodelasa theoreticalexpectationconcerningthestructureof humangroupsandaffect directedties. The actualmodelcanbeappliedin a varietyof contexts andwe illustratethedecompositionandgeneralizedblockmodelingwith the marriagenetwork of noblefamiliesinRagusa(Dubrovnik) for the18thCenturyandearly19thCentury.

1 Intr oduction

Onemajorgoalof socialnetwork analysisis to discernfundamentalstructure(s)of networksin away that:

� allowsusto know thestructureand/or

� facilitatesour understandingof network phenomena.

Themostusedtool (blockmodeling)doesthis throughpartitioningnetworksac-cording to well specifiedcriteria. Blockmodelingmethodswere establishedinsocialnetwork analysisto partitionunitsin asocialnetwork in termsof thestruc-tural information containedin their network ties. Hummonand Carley (1993)

1

Page 2: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

showedtheblockmodelinghasbeena majorfocusof network analysts.Methodswereinvented,for example,CONCOR(Breiger, Boorman,andArabie,1975)oradaptedfrom extantclusteringmethods,for exampleSTRUCTURE(Burt, 1976).This initial work focusedon structuralequivalence(Lorrain and White, 1971)whereunitsarestructurallyequivalentif they areconnectedto therestof thenet-work in identicalways. Subsequentwork, for exampleSailer(1978)andWhiteandReitz(1983),generalizedthisconceptto regularequivalence.Intuitively, twounitsareregularlyequivalentif they areequivalentlyconnectedto equivalentoth-ers.They have thesametypesof neighbors.Furtherwork dealtwith automorphicequivalence(see,for example,Borgatti andEverett,1992,andPattison,1988).

The partition of the units of a network into clustersgeneratesa blockmodelwherethe(new) unitsaretheseclusters,calledpositions.(SeeBorgattiandEverett(1992)for aluciddiscussionof thisconcept.)Thesetof tiesbetweentwopositionsformsa block. Thoseties in a block (i.e. betweenall units in the two positions)areusedto construct– andtherebysummarize– thetiesbetweenpositions.Theimage of a blockmodelis a matrix or pictorial representationof thetiesbetweenpositions.Commonto all of theseefforts is theuseof adefinitionof equivalence,a partitioningof networks accordingto this equivalence,andthe useof a smallnumberof established– within network analysis– clusteringalgorithms.

In thispaperwewill restrictattentionto hierarchicalblockmodelswhereeachlevel (clusterof units)in thehierarchyhasaspecificstructure:only symmetrictiesareassumed.Ourpurposehereis to proposethesymmetric-acyclic decompositionof networksasa new methodwhich complementsblockmodelingandvice versa.Thecomplementarynatureof thesetechnicalapproachesmeansthey canbeusedtogetherto delineatethestructure(s)of network.

2 Acyclic Structur es

Distilling someessentialideasfrom Homans(1950),Davis andLeinhardt(1972)formulatedtwo distinctstructuralfeaturesasgeneraldescriptionsof smallgroupstructuresfor affective ties.Oneis thedifferentiationof thesegroupsinto cliques(in thesenseof a maximalcompletesubgraph)while theotheris theelaborationof ranks. Thesocialprocessesgeneratingthesetwo structuralfeaturesreinforceeachother. As a result,cliquesarefoundat distinct levels. A singlecliquemayexist asthe soleoccupantof a level or multiple cliquescando so. In this case,thereareno tiesbetweenmembersof thetwo cliques.Within cliques,every pairof membersis linked by mutual ties. Concerningcliquesat distinct levels, thehypothesizedstructureis that therewill be asymmetricties directed‘up’ fromlower ranked cliquesto higherranked cliques. No asymmetricties aredirected‘down’ from higherranked cliquesto lower level cliques. Nor aretheremutual

2

Page 3: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

Figure1: A ThreeLevel Acyclic Model

tiesbetweenunitsat differentlevels.Thenetwork usedhereis for relation‘lik es’andtheliking tiesbetweenunitsgo ‘up’. If therelationis ‘lik edby’ thenthetieswouldbedirected‘down’. Theacyclic requirementis thatthesetiesgoin asingledirection.

The ‘ideal’ modelusedby Davis andLeinhardt(1972)asan illustration oftheir rankedclustersmodelis shown in Figure1 with fivepositions(assubgroups)and threelevels. In the generalizationof the ranked clustersmodel,we do notrequiresubgroupsto bemaximalcompletesubgraphs.Weusetheterm‘position’for the subgroupsin suchmodels. The highestrankingposition is

�with two

positions,� and � , in thesecondlevel andtwo positions,� and � in the thirdlevel.

We presenta new tool, calledthe symmetric-acyclic decompositionmethod,for verifying the presence(or not) of an acyclic structurecharacteristicof therankedclustersmodel.Thenetworksconsideredherehave directedties. Theim-ageof a ‘pure’ rankedclustersmodelis anacyclic directedgraph.Any departuresfrom sucha structurearenotallowed.

Table1 containsan examplethat is usedto illustrate the symmetric-acyclicdecompositiondescribedin the next sectionandblockmodelingapproach.Thesign‘ � ’ representsa0. Theitalicized1’s representtiesthatareinconsistentwith asymmetricstructureinsideclustersandbold1’srepresenttiesthatareinconsistentwith the acyclic structure.Suchties fall into two categories. Oneconcernstiesbetweenblocks and the other concernsties within (diagonal)blocks. The ties�� , and � � � belongto thefirst categoryandviolatetheacyclic requirement.Within the diagonalblocks, � � , � � � , and � � � violation the symmetryrequirement.SeeFigure2.

3

Page 4: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

Table1: A Relation �� � � � � � � � � � � � � � � � �� � 1 1 � � � � � � � � � 1 � � � � � �� 1 � 1 � � � � � � � � � � � � � � � �� 1 1 � � � � � � � � � � � � � � � � �� � 1 � � 1 � � � � � � � � � � � � � �� � � 1 1 � � � � � � � � � � � � � � �

� � � 1 � � 1 1 � � � � � � � � � � �� � � � � 1 � � 1 � � � � � � � � � � �� � � � � 1 1 1 � � � � � � � � � � � �� � � 1 1 � � � � � 1 1 � � � � � � � �� � � 1 � 1 � � � 1 � � � � � � � � � �� � � � � � � � � 1 1 � � � � � � � � �� � � 1 � � � � � � � � � 1 � � � � � � 1 � � � � � � � � � � 1 � 1 1 � � � �� � 1 � � � � � � � � � � 1 � 1 � � � �� � � � � � � � � � � � � 1 1 � � 1 � �� � � � � 1 � � � � 1 � � � 1 � � 1 � �� � � � 1 � � � � � � � � � � 1 1 � 1 1� � � � � � � � � � � 1 � � � � 1 1 � 1� � � � � � � � � � � � � 1 � � � 1 1 �

4

Page 5: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

a

bc

de

j

kl

m

n o

f

g

hi

p

q

r

s

PajekFigure2: Graphof theRelationin Table1

5

Page 6: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

3 EstablishingSymmetric-AcyclicDecompositionsof Networks

Let ���! #"%$'&("*)#&,+-+,+.&/"1032 bea finite setof units. Theunitsarerelatedby binaryrelation �546�879�which determinesanetwork

N �;:<�=&>�@?Thenetwork canberepresentedby agraphwith unitsasvertices.

A clusteringC �A B�C$D&>�E),&,+-+,+-&>�EFG2 , where �IHJ46� areclusters, partitionstherelation � into blocks �K:L�IHM&>�ON'?P�Q�SRT�IHJ7U�ONEachsuchblock consistsof unitsbelongingto clusters�IH and �ON andall thearcsleadingfrom cluster �IH to cluster �ON . If �V�W , a block �K:X�IHY&>�IHZ? is called adiagonalblock.

WesaythataclusteringC overtherelation � is asymmetric-acyclicclusteringif f

� all subgraphsinducedby clustersfrom C containonly bidirectionalarcs(edges); and

� eachclosedwalk in :<�=&[�@? is entirelycontainedin asingleclusterof C.

3.1 Ideal Structures

A relation �\4]�^7_� hasa symmetric-acyclicdecomposition:L`a&>bc? if f thereexist relationsa&>bd46�879� suchthat

� :M`a&>be? is apartitionof � , `gfhbi�Q� and `gRgbi�kj ,� ` is symmetric,l�m`on $ , and

� b is acyclic in :<�=&[�@? , `OpqRgbQrE�spI�tj ,where uk� v:w"x&("y?{zC"�|d�2 is the identity relation, �sp is the transitive andreflexiveclosureof relation � , andtheoperationr denotestheproductof relations�}$qrE�~)E�i v:w"x&(��?Iz����=z�:w"��}$/�C�h���C)>��?>2 .Theorem 1 If a relation � 4W��7�� has a symmetric-acyclicdecomposition:M`a&>be? then `��Q��RT� n $ and bi�Q����`

6

Page 7: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

C3

C2

C1

C4

C6

C5

C3

C2

C1

C4

C6

C5

Figure3: A FourLevel Acyclic Graphfor Relationin Table1 andits HasseGraph

Thereflexive and transitiveclosure `Op of relation ` is an equivalencerelation,equalto thestrongconnectivityrelation in :<�=&>�@? . Let �s� denotesthe factor set�c��`Op . �s� is a symmetric-acyclicclustering. Therelation � definedon �s� by

� ���5�i�v"�| � �3�9|U�8z�"�b}�is acyclic.

If therelationshown in Table1 had0sinsteadof theitalicized1sandthebold1sit wouldhaveasymmetric-acyclic decomposition.As such,it is anidealmodelandwe confineattentionto it in this section. The ideal model for this relationis drawn on the left in Figure3 with six positions: �C$��^ � & � & � 2 , �E)c�� � & � 2 ,�E�E�5 ' �& � & � 2 , �I�I�5 � & � &[��2 , �E�I�5 ��*& & � &[�/2 , and �E�E�A � & � &[�G&D��2 .

The cover relation �L� , analogousto the Hasserelation of an order, can bedefinedalsofor anacyclic relation � by

�X������K�Qr �where � denotesthetransitiveclosureof relation � .

We obtain �X� from � by deletingeacharc :Z"x&[��? with thepropertythat thereexistsapathof lengthat least2 from " to � .

Using theHassegraphH � :<� � &#�L��? we candescribetheset ¡ of all acyclicclusteringswith symmetricclustersover � :

� theminimumnumberof clustersis equalto ¢I£ � , where � is thelengthofthelongestpathin H;

� themaximumnumberof clustersis equalto ¤-¥�¦(§¨�s� ;7

Page 8: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

� ¤,¥�¦/§C¡��©¢ if f H is apath;

� each � -clustering(partition into � clusters)is determinedby a � -set(a setwith � elements)of “compatibleindependent”verticesof H.

Two verticesªx&[«¬|9�@� areindependentif f they arenot connectedby apathinH. A pairof sets

� &[�®­6�s� is compatibleif f

¯ �v"%$'&("*)C| � �3�°$>&[��)�|U�8z�:w"%$E�S�°$%�g��)~��"*)'?All pairsof setsin a � -sethave to becompatible.Theclustersareunionsof thesetscorrespondingto verticesfrom thesetsof a � -set. We notethat,asa specialcase,anasymmetrictie down a rankedclustersmodelleadsto anincompatibility.

For the idealizedrelation shown in Table 1, the graphof the relation � ispresentedon theleft sideof Figure3. To obtaintheHassegraphH (seetherightsideof Figure3) two arcs :L�I�#&>�C$±? (giventhepath �I�D�E)D�C$ ) and :X�E�#&>�E)>? (giventhe path �E�[�I�D�E) ) have to be deleted. The longestpath in H haslength3 andthereforethenumberof levelsis 4. FromH weseethatthefollowing symmetric-acyclic clusterings(whereonlycompatibleclusterscanbegroupedtogether)exist:

C � $ � B�C$D&[�E)afg�E�,&>�E�qfh�I�#&>�E�.2C� ) � B�C$D&[�E),&>�E�qfh�I�afh�E�,&>�E�.2

C � � � B�C$D&[�E)afg�E�,&>�I�#&>�E�qfh�E�.2C �� � B�C$D&[�E),&>�I�afh�E�,&>�E�qfh�E�.2C� $ � B�C$D&[�E)afg�E�,&>�E�,&>�I�,&>�E�-2

C �) � B�C$D&[�E),&>�E�,&>�I�afh�E�-&>�E�-2C �� � B�C$D&[�E),&>�E�qfh�E�,&>�I�,&>�E�-2C �� � B�C$D&[�E),&>�E�qfh�E�,&>�I�,&>�E�-2C�� � B�C$D&[�E),&>�E�qfh�I�#&>�E�-&>�E�-2

C � $ � B�C$D&[�E),&>�E�,&>�I�,&>�E�,&>�E�-2

Wecanintroduce,in ¡ , anoperation

C $x² C )E�© B�C$%Rh�E)³z��C$I| C $'&>�E)³| C ),2E�� Bj32For example

C� $ ² C

� � � C� $

It is easyto verify that :M¡~&.²´? is asemilattice(associative,commutative,idem-potent,with anabsorptionelement).

Thesemilatticeof clusteringsfor ourexampleis presentedin Figure4.

8

Page 9: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

C61

C53 C52 C54 C51 C55

C42 C41 C44 C43

Figure4: Semilattice

3.2 RelationsWithout a Symmetric-AcyclicDecomposition

Thereareseveralpossibleapproachesto networksthatdonothaveanexactrankedclustersstructure(andsoarenot ideal).

Thesymmetric-acyclic decomposition:M`a&>be? describedabovecanbeimprovedby setting `µ�Q��Rg� n $ and bi�Q�S� `where ` replaces in the definition of b . In the ideal casethis still producesthe asymmetric-acyclic decomposition;but in the nonidealcaseit removes all‘asymmetricerrors’from diagonalblocks.

3.2.1 DeletingAr cs

Thisprovidesusefulinformationeventhough� hasnosymmetric-acyclic decom-position.Theset

¶ � `gR�:L���³`¨?givesusasymmetricarcsinsidetheotherwisesymmetricclassesof � . ForTable1,¶

identifiesexactlythethreeasymmetricties,theitalicized0s,within thediagonalblocks

¶ �5 v:· �& � ?'&G:X�°& � ?'&G:w�G& � ?D2 . If theonly violationsof thesymmetric-acyclicassumptionconcernedsymmetry, theanalysiswouldbecomplete.In theexample,b is not acyclic andwe have to deletesomearcsto make it acyclic. Here, theitalicized 1s above the diagonalwould be locatedanddeletedleaving an exactmodel(with the violationsnoted). In general,however, the identificationof thesmallestnumberof violationsof acyclicity is notaneasyproblem.

9

Page 10: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

3.2.2 Iteration of the Symmetric-Acyclic Decomposition

Also, we caniteratetheabove decompositionprocedureuntil we obtaina graphwithout edges.

Let �¨¸Cz¹��� , �~¸�zº�k� andset �Pz¹�t» . Thenrepeatthefollowing steps:

� determinethesymmetricpartof �CH (theedges)

`yHJz¹�©:L�CH3Rh� n $H ?¼�³u(½�¾� if no edgeexists, `yH¿�Qj , stopiterating,

� shrinksymmetriccomponents,producinganew reducedgraph :·�OHÁÀy$'&>�CHÁÀy$±?determinedby: �PHÂÀy$Ãzº���OHX��` pH

�CHÁÀy$Izº�5 v: � &>�Ä?Ez°�v"�| � �3�9|U�8z�"����*2� increasethecounterof steps�Pz¹���y£t¢ .Theobtainedclusteringsarenested(andform ahierarchy)andall clustersare

stronglyconnected.If the final clusteringis not acyclic we make an additionalstepin which we factorizethe graphaccordingto strongconnectivity. Thefinalgraphis thecondensationof original network (Harary, Norman,andCartwright,1965).

Thisprocedureis implementedin Pajek– aprogramfor largenetworkanalysis(BatageljandMrvar, 1998).

3.3 GeneralizedBlockmodelingApproach

As a third approachgeneralizedblockmodelingcan be used. Blockmodeling,as initially proposed,seeksto clustertogetherunits having substantiallysimilarpatternsof relationshipswith therestof theunitsof thenetwork.

A blockmodelconsistsof structuresobtainedby identifying all unitsfrom thesameclusterof theclusteringC. For anexactdefinitionof ablockmodelwehaveto bepreciseaboutwhich blocksproduceanarc in the reducedgraphandwhichdo not. Here,the reducedgraphis thegraphversionof theblockmodelandcanbepresentedalsoby a relationalmatrix,calledalsoan imagematrix.

Blockmodeling,asan empiricalprocedure,is basedon the ideathatunits ina network canbe groupedaccordingto the extent to which they areequivalent,accordingto somemeaningfuldefinitionof equivalence.In general,andwithoutsurprise,differentdefinitionsof equivalenceleadto distinctpartitions.Two defi-nitionsof equivalencewereextensively treatedin thelastthreedecades:structural

10

Page 11: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

Table2: Characterizationsof Typesof Blocks

null nul all 0 (exceptmaybediagonal)complete com all 1 (exceptmaybediagonal)row-regular rre eachrow is ¢ -coveredcol-regular cre eachcolumnis ¢ -coveredrow-dominant rdo � all 1 row (exceptmaybediagonal)col-dominant cdo � all 1 column(exceptmaybediagonal)regular reg 1-coveredrowsand1-coveredcolumnsnon-null one � at leastone1

andregularequivalence.An appropriategeneralizationof theequivalenceideaisonewhereeachblock, of a particularpartition, is free to conformto a differentequivalenceidea. This led Batagelj(1997)andDoreian,Batagelj,andFerligoj(1994) to the definition of several typesof connectioninside and betweentheclustersasdifferenttypesof blocks.Someof themarepresentedin Table2. Fromthedefinitionof structuralequivalenceit follows that therearetwo basicblocks:null andcomplete(Batagelj,Ferligoj,andDoreian,1992).Batagelj,Doreian,andFerligoj (1992)provedthatregularequivalenceproducestwo typesof blocks:nullandregular(seeTable2).

Anotherblock type, introducedhere,is necessaryfor the symmetric-acyclicdecompositionof networks.This is thesymmetricblock. A block is symmetricifÅ "x&[�Æ|U�IHJ7��ONCz�:w"����ÄÇ �3�~"y?Notethatfor nondiagonalblocksthisconditioninvolvesapairof blocks�K:L�IHM&>�ON'?and �K:L�ON#&>�IHZ? .3.3.1 Formalization of Blockmodeling

Thepointof departureis, asbefore,anetwork with asetof units, � , andarelation� 4 ��7�� . Let È be a set of positionsor imagesof clustersof units. LetÉ zG� � È denoteamappingwhichmapseachunit to its position.Theclusterofunits �Ê:ZË/? with thesameposition ËI|UÈ is

�¬:wË/?P� É n $ :wË/?P�5 #"�|9�dz É :w"y?P�tË>2Therefore

C : É ?O�i B�Ê:ZË/?Iz�ËE|UÈÊ2is apartition(clustering)of thesetof units � .

A (generalized)blockmodelis anorderedquadrupleM �;:XÈ9&>Ì�&>ÍÊ&/ÎJ? where:

11

Page 12: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

� È is asetof positions;

� ÌÏ4�È�7UÈ is a setof connectionsbetweenpositions;

� Í is a setof predicatesusedto describethe typesof connectionsbetweenclustersin anetwork; weassumethatnul |UÍ ;

� A mappingÎlz�Ì � ÍQ�� nul 2 assignspredicatesto connections.

A (surjective)mappingÉ zG� � È determinesablockmodel,M , of anetworkN if f it satisfiestheconditions:

Å :ZËD&[Ðs?E|UÌWz�Ψ:ZËD&[Ðs?.:L�¬:wË/?'&[�Ê:wÐs?(?and Å :wËD&(Ðs?I|UÈ�7UÈk�³ÌÏz nul :L�¬:wË/?D&>�¬:XÐs?/?

Let Ñ bean equivalencerelationover � . It partitionsthesetof units � intoclusters Ò "1Óy�i G�Ê|Æ�dz�"VÑk�*2We saythat Ñ is compatiblewith Í or a Í -equivalenceoveranetwork N if f

Å "x&[�Ê|Æ�=&y�vÔk|_Í�z�Ôc: Ò "1ÓL& Ò ��ÓÕ?It is easyto verify that the notion of compatibility for Í �\ nul & reg 2 reducesto the usualdefinition of regular equivalence.Similarly, compatibility for ÍÖ� nul & com2 reducesto structuralequivalence.

For a compatibleequivalenceÑ themappingÉ z("_×� Ò "1Ó determinesa block-modelwith È;���e�}Ñ .

3.3.2 Optimization

Theproblemof establishingapartitionof unitsin anetwork in termsof aselectedtypeof equivalenceis aspecialcaseof clustering problem thatcanbeformulatedasanoptimizationproblem:determinetheclusteringC p for which

Ø : C p ?O�tÙ¬Ú·ÛC Ü,Ý

Ø : C ?whereC is a clusteringof a givensetof units � , Þ is thesetof all feasibleclus-teringsand

Ø z°Þ � IR thecriterion function.Criterionfunction

Ø : C ? hasto besensitive to selectedtypeof equivalence:

Ø : C ?O�k»sÇ C determinesanequivalenceof theselectedtype+12

Page 13: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

3.3.3 Criterion Functions

Oneof thepossiblewaysof constructinga criterionfunctionthatdirectly reflectstheselectedtypeof equivalenceis to measurethefit of aclusteringto anidealonewith perfectrelationswithin eachclusterandbetweenclustersaccordingto theselectedtypeof equivalence.

Givena clusteringC �] B�C$>&>�E),&,+,+-+-&>�EFG2 , let ß�:L�Ià�&>�Iá-? denotethesetof allidealblockscorrespondingto block �K:X�Ià�&>�Iá.? . Thentheglobalerrorof clusteringC canbeexpressedas

Ø : C ?O� âã�ä,å ã�æ Ü C

Ù=ÚçÛè Ü.évê ã ä å ã æ/ë � :L�K:X�Ià�&>�Iá-?'&>�Ä?wheretheterm � :X�K:L�Ià�&>�Iá.?D&>�? measuresthedifference(error)betweentheblock�K:L�Ià�&>�Iá-? andthe idealblock � . The function � hasto be compatiblewith theselectedtypeof equivalence.

Givenasetof typesof connectionÍ andablock �K:L�Ià�&>�Iá-?'&a�Ià�&>�Iá~4�� , wecandeterminethestrongest(accordingto theorderingof theset Í ) type Ô whichis satisfiedthemostby �K:L�Ià�&[�Iá.? . In this caseweset

Ψ: É :L�IàG?'& É :X�Iá.?(?P��ÔTheobtainedoptimizationproblemcanbesolvedby localoptimization,using,

for examplea relocationalgorithm(Batagelj,DoreianandFerligoj,1992).

3.3.4 Pre-SpecifiedBlockmodels

The pre-specifiedblockmodelingstartswith a blockmodelspecified,in termsofsubstance,prior to an analysis. Batagelj,Ferligoj, andDoreian(1998)presentedmethodswhereasetof observedrelationsarefittedto apre-specifiedblockmodel.Given a network, a set of ideal blocks is selected,a reducedmodel is formu-lated, and partitionsare establishedby minimizing the criterion function. Thepre-specifiedblockmodelingis supportedby the programMODEL 2 (Batagelj,1996b).

In the exampleof the next section,the pre-specifiedblockmodelis acyclicwith symmetricdiagonalblocks. For example for a clusteringinto 4 clusterssymmetric-acyclic typeof modelscanbespecifiedin thefollowing way:

sym nul nul nulnul,one sym nul nulnul,one nul,one sym nulnul,one nul,one nul,one sym

13

Page 14: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

In concreteanalyses,symon thediagonal,andits subtypesnul andcom,usuallyareadded.

In our discussionthusfar, all errorsarealike in thesensethat they contributein thesamefashionto thetotalnumberof errors.Giventherankedclustersmodel,it is possibleto arguethatsomeerrorsaremoreconsequentialthanothers.Follow-ing this logic, asymmetricties down from a higherto a lower level arethemostserious.Thecomputedcriterionfunctioncanincludehaving a higherpenaltyfortheseties(e.g.,100). Asymmetrictieswithin clustersseemthenext mostimpor-tant type of error. The modificationto the criterion function canhave a milderpenaltyfor theseties (e.g.,10). Finally, errorsin the blocksbelow the main di-agonalcanbe specifiedasminor (e.g.,1). Therefore,the penaltymatrix for theexampleabovecanbethefollowing one

10 100 100 1001 10 100 1001 1 10 1001 1 1 10

4 Applications

4.1 ConstructedExample

If theinconsistencieswith therankedclustersmodelin therelationin Table1 arenot present,all methodsdelineatethe true structurecorrectly. Also, if only theviolations of the symmetryconditionwere present,all methodsare successful.The(optimized)blockmodelcorrectlyreportsthethreeviolationsof thesymme-try conditionaserrors. In contrast,the presenceof the violationsof the acyclicconditionareconsequential.

With all of the inconsistenciesshown in Table1 in thedata,theoptimizationapproachlocatestheclusterscorrectlyandreportsall of the5 inconsistenciesaserrors.Themodelspecificationandpenaltiesweredeterminedasdescribedin theprevious section. However, the symmetric-asymmetricdecompositiongoesnotfareaswell. Thereasonsfor thisareevidentin Figure2 representingthenetworkfrom Table1. The six clustersareseparatedin thefigureandthe two line typesaredistinguished.The thick lines representsymmetricties while the thin linesrepresentasymmetricties (with the directionshown). In thedecomposition,thealgorithmestablishesin the first step ' �& � & � 2 , � & � 2 and � & � &>��2 correctlyassubsetsinternallyconnectedthroughmutualtiesandnotconnectedin thatway toany otherunits. The remainingthreeclustersareidentifiedalsoasbeinglinkedinternally throughmutual ties. The presenceof the mutual tie between� and connectsthe cluster � & � & � 2 to cluster ���& & � &[�Y?D2 and the mutual tie between

14

Page 15: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

� and � connectsthe secondof theseclustersto � & � &[�G&D��2 . Therefore,all threeclustersareconnectedvia symmetricties. Whenthesymmetriccomponentsareshrunk,thereare only four units for the next iteration. As threeof them havesymmetrictiesthealgorithmendsafterseconditerationwith only two levels.Thefirst consistsof cluster ' �& � & � 2 andthesecondoneof all otherunits.

Onemethodologicalinterpretationis that theoptimizationapproachis robustin thepresenceof violationsof theacyclic conditionwhile thesymmetric-acyclicdecompositionis not. Thelatterprocedureassumesperfectacyclic data.In con-trast,theblockmodelingoptimizationconcedesthe presenceof someerrorsandreportspartitionswith errorsratherthanbeoverly affectedby theerrors.

4.2 RagusanFamilies Marriage Network

Krivosic (1990)collectedinterestingdataaboutthepopulationof Ragusa(Dubrovnik),a republicfor mostof its history. Healsoconstructedtwo matricesdescribingthemarriagenetworks of the Ragusannoblefamiliesin the 16th centuryandin the18thcentury(andthebeginningof 19thcentury).Thematrixof marriagerelationfor thesecondperiodis presentedin Table3. While thesedataaresimilar to thewell known Padgettmarriagenetwork for theelite Florentinefamiliesin the15thcentury, they aredirectedandvalued.Menmarryingwomenandwomenmarryingmenaredistinguished.Therelationin Table3 is ‘men marryingwomen’.

Ragusawassettledin 7thcentury, asreportedby ConstantinePorphyrogenite,by fugitivesfrom Epidaurumafter its destruction.Ragusawasfor a time underByzantineprotection,becominga freecommuneasearlyas12thcentury. Ragusaquickly grew into a free city-state.They prosperedunhinderedthanksprimarilyto their clever diplomacy andgreatskill in balancingthegreatpowers,formallyrecognizingandpayingtributealternatelyto onethenanother. Napoleon,havingdestroyed the VenetianRepublicin 1797,put an endto the Republicof Ragusain 1806, which subsequentlycameunderAustrian control until the fall of theAustro-Hungarianmonarchyin 1918.

TheRagusannobility evolvedin the12thcenturythroughthe14thcenturyandwasfinally establishedby statutein 1332.After 1332nonew family wasaccepteduntil thelargeearthquake in 1667.

In Ragusaall political power wasin the handsof malenoblesolder than18years. They weremembersof the GreatCouncil (Consiliummajus) which hadthelegislativefunction.Everyyear, 11membersof theSmallCouncil(Consiliumminus) wereelected.Togetherwith a duke – who waselectedfor a periodof onemonth– it hadbothexecutiveandrepresentative functions.Themainpower wasin thehandsof theSenat(Consiliumrogatorum) which had45 memberselectedfor oneyear.

This organizationpreventedany singlefamily, unlike theMedici in Florence,

15

Page 16: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

from prevailing. Neverthelessthe historiansagreethat the Sorgo family wasallthetimeamongthemostinfluential.For example:

� in the 17th century, 50 % of dukesandsenatorswere from the followingfive families– Bona,Gondola,Goze,Menze,andSorgo;

� in the18thcentury, 56% of senatorswerefrom fivefamilies– Sorgo,Goze,Zamagna,Caboga,andGeorgi;

� in the last 8 yearsof Republic,50 % of dukes were from five families:Sorgo,Goze,Gradis,Bona,andRagnina.

A majorproblemfacingtheRagusannoblefamilieswasalsothatby decreasesof their numbersandthe lack of noblefamiliesin the neighboringareas(whichwereunderTurkish control), they becamemoreandmorecloselyrelated(1566– “quasi tutti siamocongionti in terzo et in quarto grado di consanguinitaetaffinita” ) – the marriagesbetweenrelativesof only 3rd and 4th removeswerefrequent.

4.2.1 Earlier Analyses

Batagelj(1996a)foundthatthemostinfluentialfamilies,accordingto theindicesof centrality, in thesecondperiod(18thand19thcentury)wereSorgo,Bona,andalsoZamagna,Cerva andMenze. He obtainedtwo basicclustersfor this periodby usingthegeneralizedblockmodelingapproach:

Cluster 1: Basilio, Bona, Bonda,Caboga,Cerva, Georgi, Ghetaldi,Gondola,Goze,Gradi,Menze,Poza,Saraca,Sorgo,Tudisi,andZamagna.

Cluster 2: Bosdari,Bucchia,Natali,Pauli, Ragnina,Resti,andSlatarich.

Thesecondclustercontainsall new families,acceptedaftertheearthquake.Thestructureobtainedby Batageljis anexampleof acenter-peripherymodel.

Mostmarriageswereamongthefamiliesof thefirst cluster, therewasnomarriageamongfamiliesof thesecondcluster, andtherewereonly few marriagesbetweenthetwo clusters.

4.2.2 Network Decomposition

In this sectiononly theRagusanfamiliesmarriagenetwork of thesecondperiodis analyzed.Therelationalmatrix from Table3 wasbinarized.

By theacyclic decompositionwith respectto strongconnectivity, threelevelswereobtained(seeFigure5). In thefirst andthethird levelonly singlefamiliesarepresent.Themiddle level consistsof a cluster � with several families. Themenfrom the familiesof thefirst level choosewivesfrom the familiesof the second

16

Page 17: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

Table3: RagusanNobleFamiliesMarriageNetwork, 18thand19thCentury

12

34

56

78

910

1112

1314

1516

1718

1920

2122

23B

asili

o1

ìììììììììììììììììììì

1

ìì

Bon

a2

ìììììì

1

ììì 2

ì 2

ììììììì 1

ìì

Bon

da3

ìììììììììììììììììììì

2

ìì

Bos

dari

4

ì 1

ìììììììììììììììììììì

1B

ucch

ia5

ìììììììììììì

1

ìììììììììì

Cab

oga

6

ìììììì

1

ììììì 1

1

ìììì

1

ì 1

ììC

erva

7

ì 1

ììì 1

ìììììì

1

ììììììì 1ìì

Geo

rgi

8

ì 12

ììì 1

ìììììììì

4

ìììììì

1G

heta

ldi

9

ì 1

ììììì 1

ì 1

ììì 1

ìììì

1

ìììì

Gon

dola

10

ì 1

ììììììììììììììììììììì

Goz

e11

12

1

ììììììì 2

2

ìììììììì

21

ì

Gra

di12

ìììììììììì

1

ìììì

1

ìììì

3

ìì

Men

ze13

ììììì 1

ìì

1

ììììììììììììì 1

Nat

ali

14

ììììììììììììììììììììììì

Paul

i15

ì 1

ììììììììììììììììììììì

Poz

a16

ìì

2

ììììììì 1

ìììì

1

ìììì

1

ìì

Rag

nina

17

ì 11

ììììììì 1ììììììììì 1

ìì

Res

ti18

ììììììììììì 1ìììììììììì

1S

arac

a19

ìììììììì

1

ìììììììììììììì

Sla

taric

h20

ììììììììììììììììììììììì

Sor

go21

ì 21

ììììììì 1ìììììììì

11

ì 1T

udis

i22

ìììììììììììììììììììì

1

ìì

Zam

agna

23

ì 1

ìììììì

2

ììììììììììì 1

ìì

17

Page 18: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

Bosdari

C

Natali Slatarich

Bucchia Pauli Ragnina Resti

Figure5: Acyclic Modelof RagusanFamilies

levelandthemenfromthesecondlevel choosewivesfrom thefamiliesof thethirdlevel. It is worth noting that five familiesaresourcesin the network providinghusbandsto the large ‘middle’ clusterof families,amongwhich husbands(andwives)circulate. Thesefamiliesare transmitters andtherearetwo familiesthataresinks.

Theinternalstructureof thesecondcluster(themiddle level in Figure5) canberevealedby theiterationof thesymmetric-acyclic decompositionmethod.Thesymmetriccomponentsof themiddlecluster � are:

� �C$�W Bona,Bonda,Caboga,Cerva, Goze,Gradi, Menze,Sorgo, Zam-agna2

� �E)E�i Ghetaldi,Saraca2� �E�E�i Basilio 2� �I�Ã�i Georgi 2� �E�E�i Gondola2� �E�E�i Poza2� �ÃíI�i Tudisi 2

18

Page 19: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

Basilio

C1

Georgi

C2

Gondola

Poza

Tudisi

Figure6: TheGraphof SevenFirst OrderSymmetricComponentsof theMiddleCluster

C1’Georgi Gondola

Figure7: TheGraphof ThreeSecondOrderSymmetricComponentsof theMid-dle Cluster

19

Page 20: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

Basilio

Bona

Bonda

Bosdari Bucchia

Caboga

Cerva

Georgi

Ghetaldi

Gondola

Goze

Gradi Menze

Natali

Pauli

Poza

RagninaResti

Saraca

Slatarich

Sorgo

Tudisi

Zamagna

Pajek

Figure8: Acyclic-SymmetricDecompositionof RagusanFamiliesNetwork

The graphof the seven (first order)symmetriccomponents(clusters)of thecluster � is presentedin Figure6. This reducedgraphhasthree(secondorder)symmetriccomponents:

� � �$ �i B�C$D&>�E),&>�E�-&>�E�,&>�ÃíD2� �@�) �i Georgi 2� �@�� �i Gondola2

Their reducedgraph(seeFigure7) is a singlesymmetriccomponent.All threestepsof thehierarchicaldecompositioncanbeseenin Figure8.

20

Page 21: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

4.2.3 Blockmodeling Approach

Basedon threelevels network decompositiontwo pre-specifiedmodelscan beassumed.Thefirst oneis

nul,reg,sym nul nulcre,rre nul,reg,sym nulcre,rre cre,rre nul,reg,sym

Thesecondpre-specifiedmodelis similar to thefirst one. Theonly differenceisthat the type ‘reg’ is excludedfrom the diagonalelements(this modelhasmorepreciselydefinedblocksin thelowertrianglethanin thegeneralcasefrom Section3.3.4):

nul,sym nul nulcre,rre nul,sym nulcre,rre cre,rre nul,sym

Only the secondmodel is symmetric-acyclic. The penaltiesin eachcell wereassumedin accordancewith Section3.3.4. For both modelsthesameclusteringof familieswasobtained(compareFigure9):

Cluster 1: Natali,Slatarich.

Cluster 2: Basilio, Bona, Bonda,Caboga,Cerva, Georgi, Ghetaldi,Gondola,Goze,Gradi,Menze,Poza,Saraca,Sorgo,Tudisi,Zamagna.

Cluster 3: Bosdari,Bucchia,Pauli, Ragnina,Resti.Thepermutedoriginal relationalmatrix for this clusteringis givenin Table4.

Theobtainedmodelsare

nul nul nulcre reg nulnul rre nul

andnul nul nulcre sym nulnul rre nul

Thefirst onehasno errorsandin thesecondonethereare28 errorsin themiddlediagonalblock. Theseerrorsareproducedby non-symmetricties.

For the clusteringswith larger numberof clusters(4, 5 or 6) the solutionsfor thefirst modelhave no errors.All obtainedclusteringshave thesamesecondcluster. Therearesomesplits,aswecanexpectfrom thetheoryof decomposition,of thefirst and/orthethird cluster.

Whenthe structureinside the clusterin oneof the levels of the symmetric-acyclic decompositionis not clearlysymmetricsomeothertypesof thestructurecanbe testedby applyingtheblockmodelingapproachto this clusterseparately.In thiscaseanappropriatemodelshouldbepre-specified.As theiterativedecom-positionis basedon thesymmetriccomponentsof theclustertheblockmodeling

21

Page 22: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

Table4: PermutedRagusanFamiliesMarriageNetwork, 18thand19thCentury

1420

13

710

1219

2223

28

96

1311

1621

45

1517

18N

atal

i14

ììììììììììììììììììììììì

Sla

taric

h20

ììììììììììììììììììììììì

Bas

ilio

1

ììììììììììììììììì 1

ììììì

Bon

da3

ììììììììììììììììì 2

ììììì

Cer

va7

ìììììììììì 1

ìì 1

1

ìì 1

ììììì

Gon

dola

10

ìììììììììì 1

ìììììììììììì

Gra

di12

ììììììììììììììì 1

13

ììììì

Sar

aca

19

ìììììììììììì 1

ìììììììììì

Tud

isi

22

ììììììììììììììììì 1ììììì

Zam

agna

23

ìììììììììì 1

ì 2

ìììì 1ììììì

Bon

a2

ìììì 1

ììììììììì 2

2ì 1ììììì

Geo

rgi

8

ììì 2

1

ìììì 1

1

ììììì 4ìììììì

Ghe

tald

i9

1

ìììì 1

ì 1

ìì 1

1

ììììììììììì

Cab

oga

61

ììì 1

ìì 1

ìììììì 1ìì 1

ììììì

Men

ze13

ììììììììì 1

ìì 1

1ììììììììì

Goz

e11

ìì 1

1

ìì 2

ì 1

ì 2ìììì 2

ì 2

ììììì

Poz

a16

ììì 2

ììììììììììì 1

11

ììììì

Sor

go21

ì 1

ì 1

ììììì 1

2ìììì 1

ì 1

ììììì

Bos

dari

4

ììììììììì 1

1ìììììììììììì

Buc

chia

5

ìììììììììììììì 1

ìììììììì

Paul

i15

ìììììììììì 1

ìììììììììììì

Rag

nina

17

ììì 1

ìììììì 1

ìììì 1

ì 1

ììììì

Res

ti18

ìììììì 1ìì 1

ììììììììììììì

22

Page 23: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

approachis more appropriateto searchfor also other typesof structures(e.g.,center-peripherystructure).

Usingpre-specifiedblockmodelingon thesubgraphinducedby thecluster �thefollowing resultswereobtained:

� symmetric clustersmodel ( nul 2 on out-diagonaland com,sym2 on thediagonalwith penalties1) givesfor 7 clustersthe sameclusteringaswasobtainedat thefirst stepof theiterativeprocedure;

� center-periphery model ( nul,one2 with penalty 1 on the out-diaginal, com2 with penalty10 on thediagonal, nul 2 with penalty100asthefirstdiagonalelement)givesthefollowing 4 clustersof � :

Periphery: Basilio, Bonda,Cerva, Gondola,Gradi, Saraca,Tudisi, Zam-agna.Center 1: Caboga,Menze.Center 2: Bona,Georgi, Ghetaldi.Center 3: Goze,Poza,Sorgo.

which areconsideredalsoin theorderingof thesecondclusterin Table4.

5 Discussion

Theabove analysescanall be locatedwithin thedomainof blockmodelingin sofar asthey weredesignedto partitionsocialnetworks. However, severalconclu-sionscanbedrawn from theseanalysesandareworthstressing.Ontheblockmod-elingside,weemphasizethattheanalysesweredonewith thegeneralizedversionof blockmodelingandpre-specifiedmodelswereused.Both representmajorde-parturesfrom conventionalblockmodeling.Onthesymmetric-acyclic side,this isa new methodthatforcesanalyststo look insidetheblocksof ablockmodel.

With the blockmodelingspecificationof the ranked clustersmodel,andnet-works that do not fit exactly, attentionhasto be paid to asymmetricties withindiagonalblocksandthetiesthatviolatetheacyclic specification.Theblockmod-eling approachenablesusto weighteachtypeof violation. It is alsoappropriatewhenthenetwork datadonotfit therankedclustersmodelperfectly. Ontheothersidethesymmetric-acyclic approachis veryefficient for very largenetworks,butis lessrobustto theviolationsof theacyclic assumptionof themodels.

Finally, the symmetric-acyclic decompositionmethodhasits origins firmlyin substance.It was a considerationof the ranked clustersmodel that lead usto formulateboth the new block type andthe decompositionitself. This seemsveryappropriateastheinitial formulationof blockmodelingwasalsogroundedintheoreticalconcerns.

23

Page 24: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

All computationswere doneby programsPajek and MODEL 2 which arefreely availablefor noncommercialuseat theaddress:http://vlado.fmf.uni-lj.si/pub/networks.

References

[1] BATAGELJ,V. (1996a),“RagusanFamiliesMarriageNetworks,” in Devel-opmentsin Data Analysis, Eds.A. Ferligoj andA. Kramberger, Ljubljana:FDV, p.p.217–228.

[2] BATAGELJ, V. (1996b), “MODEL 2 – Program for GeneralizedPre-SpecifiedBlockmodeling”,manual,Ljubljana.

[3] BATAGELJ, V. (1997), “Notes on Blockmodeling,” Social Networks, 19,143–155.

[4] BATAGELJ,V., DOREIAN, P., andFERLIGOJ,A. (1992),“An Optimiza-tionalApproachto RegularEquivalence,” SocialNetworks, 14, 121–135.

[5] BATAGELJ,V., FERLIGOJ,A., andDOREIAN, P. (1992),“Direct andIn-directMethodsfor StructuralEquivalence,” SocialNetworks, 14, 63–90.

[6] BATAGELJ, V., FERLIGOJ,A., and DOREIAN, P. (1998), “Fitting Pre-SpecifiedBlockmodels,” in DataScience, Classification,andRelatedMeth-ods, Eds.,C. Hayashi,N. Ohsumi,K. Yajima,Y. Tanaka,H. H. Bock,andY.Baba”,Tokyo: SpringerVerlag,p.p.199-206.

[7] BATAGELJ,V., andMRVAR, A. (1998),“Pajek – Programfor LargeNet-work Analysis,” Connections(to appear).

[8] BORGATTI, S.P., and EVERETT, M.G. (1992), “Notions of PositionsinSocialNetwork Analysis,” in Sociological Methodology, Ed.,P.V. Marsden,SanFrancisco:Jossey-bass,pp.1–35.

[9] BREIGER,R.L., BOORMAN, S.A., and ARABIE, P. (1975), “An Algo-rithm for ClusteringRelationalDatawith Applicationsto SocialNetworkAnalysisandComparisonto MultidimensionalScaling,” Journal of Mathe-maticalPsychology, 12, 328–383.

[10] BURT, R.S.(1976),“Positionsin Networks,” SocialForces, 55, 93–122.

[11] DAVIS, J.A.,andLEINHARDT, S.(1972),“The Structureof PositiveInter-personalRelationsin SmallGroups,” in Sociological Theoriesin Progress,Volume2, Ed.,J.Berger, Boston:HoughtonMif flin, pp.218–251.

24

Page 25: Symmetric-Acyclic Decompositions of Networksvlado.fmf.uni-lj.si/pub/preprint/Joc00.pdf · X K Qr where denotes the transitive closure of relation . We obtain X from by deleting each

[12] DOREIAN, P., BATAGELJ, V., and FERLIGOJ,A. (1994), “PartitioningNetworkson GeneralizedConceptsof Equivalence,” Journal of Mathemati-cal Sociology, 19, 1–27.

[13] HARARY, F, NORMAN, R.Z., andCARTWRIGHT, D. (1965),StructuralModels:AnIntroductionto theTheoryof DirectedGraphs, New York: JohnWiley & Sons.

[14] HOMANS, G.C.(1950),TheHumanGroup, London:RoutledgeandKeganPaul.

[15] HUMMON, N.P., andCARLEY, K. (1993), “Social Networks as NormalScience,” SocialNetworks, 15, 71–106.

[16] KRIVOSIC, S. (1990),StanovnistvoDubrovnikai demografske promjeneuproslosti, Dubrovnik: ZavodzapovjesneznanostiJAZU u Dubrovniku.

[17] LORRAIN, F., andWHITE, H.C. (1971),“StructuralEquivalenceof Indi-vidualsin SocialNetworks,” Journalof MathematicalSociology, 1, 49–80.

[18] PATTISON,P. (1988),“Network Models;SomeCommentsonPapersin thisSpecialIssue,” SocialNetworks, 10, 383–411.

[19] SAILER, L.D. (1978), “Structural Equivalence: Meaningand Definition,ComputationandApplication,” SocialNetworks, 1, 73–90.

[20] WHITE, D.R.,andREITZ, K.P. (1983),“GraphandSemigroupHomomor-phismson Networksof Relations,” SocialNetworks, 5, 193–234.

25