12
Stabilita svahu Sylabus 18

Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Stabilita svahu

Sylabus 18

Page 2: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Smykové plochy – rovinná – v hrubozrnných zeminách ev. u vrstevnatého ukloněného podloží– válcová – v jemnozrnných homogenních zeminách – obecná – nehomogenní podloží vč. stavebních prvků

Stabilita svahu

Stupeň stability obecně:

F=∑�����í�����ž����áí�í��������

∑�����í�����ž����ů�����í�í�������

Za předpokladu použití dílčích součinitelů spolehlivosti na smykové parametry:

F ≥ 1 stabilní svah

F < 1 nestabilní svah

uvažovanáSmykováplocha

X

O

R

WR

L

Metody řešení stability svahu: – analytické řešení metodami mezní rovnováhy (rovnováha sil podél uvažované smykové plochy s postupným vyhledáváním smykové plochy s nejnižší stabilitou)

– numerické modely řešící napjatostně-deformační stav, např. MKP

Page 3: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Rovinná smyková plocha – hrubozrnné (nesoudržné zeminy)

Případ bez podzemní vody Svah je na hranici stability, pokud je jeho sklon stejný jako úhel vnitřního tření zeminy.

�. ��� ! �. "#� . $%&

F='.���(.�)*

'.��(=�)*

�)(

Podmínka rovnováhy:

Stupeň stability:

tg ! tg&

Po úpravě:

- = �. "#� . $%&

Obr [2]:

Page 4: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Rovinná smyková plocha – hrubozrnné (nesoudržné zeminy)

Případ s podzemní vodou proudící rovnoběžně se svahemSvah je na hranici stability, pokud je jeho sklon přibližně poloviční než úhel vnitřního tření zeminy.

Podmínka rovnováhy:

Stupeň stability:

Obr [2]:

./0

��1. ��� 2 �3. ��� ! ��1. "#� . $%&

��� 4��1 2 �35 ! ��1. "#� . $%&

$% 4��1 2 �35 ! ��1. $%&

tg !��1

��1 2 �3$%&

6 ���1. "#� . $%ϕ��1 2 �3 . ���

���1

��1 2 �3

$%&

$%

- � ��1. "#� . $%&

Po úpravě:

≈0,5 , jelikož

γw=10kN.m-3 a γsu≈ 10-11kN.m-3

Page 5: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Konvenční metoda (Pettersonova metoda)

Konvenční metoda, někdy též zvaná Pettersonova vychází z momentové výminky rovnováhy na kruhové smykové ploše. Stupeň stability je definován jako poměr momentu stabilizujícího ku momentu destabilizujícímu po smykové ploše resp. poměr sil na poloměru smykové kružnice. Používá principu rozdělení svahu na proužky.

αX O

R

h

b

n

S BC

W

n+1

N

u/ γ

w

α+α -α

W=γ·b·h·1

BC=l

( )[ ]∑

∑ ′⋅−+′=

αϕ

sinW

tgulNlcF

Obr [3]:

Page 6: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Bishopova metodaBishopova metoda je založena na obdobném principu jako metoda konvenční, jen navíc uvažuje vliv meziproužkových sil dle obr.

( )∑∑

⋅′+⋅′−+−+′= +

F

tgtgtgXXubWbc

WF nn αϕ

αϕα 1

cos1

sin

11

( )∑∑ ⋅′+

′⋅−+′=

F

tgtgubWbc

WF αϕα

ϕα sin

cossin

1

Dosazením ze složkového obrazce sil do rovnice pro konvenční metodu dostaneme rovnici pro tzv. rigorózní Bishopovu metodu:

Zanedbáme-li v rovnici () hodnoty svislých meziproužkových sil, jejichž rozdíl je malý, dostáváme rovnici pro zjednodušenou, avšak běžně nazývanou Bishopovu metodu

Řešení je iterační.

Obr [3]:

Page 7: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Metoda JanbuJanbuova metoda spadá do kategorie metod stanovujících stupeň stability po obecné smykové ploše. Opět je smyková plocha rozdělena na proužky. Janbu předpokládá znalost umístění působiště meziproužkových sil a normálových sil na bázi proužku. Schéma svahu a sil působících na jednotlivý proužek :

Tato metoda je označována též za rigorózní, neboť jsou uplatňovány všechny 3 výminky rovnováhy. Pro výpočet stupně stability se používá rovnice:

( )

( )[ ]∑

=+

=

+

⋅+−+∆+−

+⋅∆⋅⋅′+

′⋅

∆+−+

=n

iiiiiiba

n

iii

i

ii

iiief

WTTQEE

x

F

ux

WTTc

F

11

1

2

1

tan

tan1tantan

1

tan

α

ααϕ

ϕ

Obr [4]:

Page 8: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Příklad 1:Posuďte stabilitu svahu silničního násypu výšky 3 m se sklonem svahu 1:1,5, který je vybudován na pevném podloží. Materiálem násypu je hlinitý štěrk GM (siGr dle

ČSN EN ISO 14688-1) s charakteristickými hodnotami c´k=3 kPa, ϕ´k=32°, γk=19 kN.m-3. Uvažované proměnné charakteristické zatížení násypu je plošné spojité fQk=10 kN.m-2, působící 1 m od hrany svahu. Hladina podzemní vody nebyla v podloží zastižena.

fQk=10kN.m-3

W6W5

W4

W3

W2

W1

T6

T5

T4

T3

T2T1

N6

N5

N4

N3

N2N1

S

α4

α6

α5

α3

α2α1

F1

R=7m

Násyp GM (siGr)

Pevné podloží

1:1,5

3 m

L=7,01 m

b1 b2 b3 b4 b5 b6

0,52 m1 m

Page 9: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Řešení:Pro výpočet použije 3. návrhový přístup (3.NP) dle ČSN EN 1997-1. Návrhové parametry zemin se stanoví z charakteristických hodnot při aplikaci dílčích součinitelů na materiál γM na soudržnost a úhel vnitřního tření viz ČSN EN 1997-1 Tabulka A4: c´d=c´k/γc´=3/1,25=2,4 kPa, ϕ´d=arctg(tg ϕ´k/γϕ´)=arctg(tg 32/1,25)=26,56°, γ´d=γ´k/γγ=19/1=19 kN.m-3.

Pro stanovení návrhového zatížení u výpočtu stability svahu dle 3.NP se použije soubor dat součinitelů A2. Návrhová hodnota zatížení je: fQd=fQk.γQ=10.1,3=13 kN.m-2, kde γQ je

dílčí součinitel pro proměnné zatížení – soubor dat A2 viz ČSN EN 1997-1 Tabulka A3.

Řešení stability svahu spočívá ve vyhledání kritické smykové plochy, pro kterou je stupeň stability nejnižší. V případě násypu na pevném podloží bude kritická smyková plocha procházet patou svahu a pouze násypem, který má nižší smykovou pevnost než podloží.

V následujícím bude ukázán princip ručního výpočtu stupně stability konvenční (Pettersonovou) a Bishopovou (zjednodušenou) metodou pro jednu zvolenou válcovou smykovou plochu. Obě metody spočívají v rozdělení svahu na n dílků. Počet dílků může výrazně ovlivnit přesnost výsledného stupně stability, proto se doporučuje u běžných a středně složitých úloh volit rozdělení svahu na min. 16 až 30 dílků. Pro názornost a demonstraci úlohy bylo v př. 1 zvoleno rozdělení na pouze 6 dílků.

Vlastní tíha dílků se rozdělí do směru normálového (kolmého na smykovou plochu) a tangenciálního (tečna ke smykové ploše).

Page 10: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Řešení:Výpočet stupně stability Pettersonovou metodou je patrný z tabulky 1. Proměnné spojité zatížení násypu působí na těleso nad smykovou plochou v délce 0,52 m na dílku č.6. Proto bude vlastní tíha dílku č.6 navýšena o sílu F1=fQd.0,52 =13.0,52 = 6,76 kN.m-1.

i xi (m) αi (°) bi (m) li (m) Ai (m2) Wi (kN.m-1) Ni (kN.m-1) Ti (kN.m-1)

1 0,4 3,2 1,0 1,0 0,33 6,291 6,281 0,349

2 1,2 10,1 1,0 1,0 0,90 17,028 16,764 2,986

3 2,2 18,6 1,0 1,1 1,31 24,865 23,568 7,926

4 3,2 27,5 1,0 1,1 1,55 29,442 26,110 13,607

5 4,2 37,3 1,0 1,3 1,49 28,320 22,537 17,149

6 5,1 46,5 1,0 1,5 0,63 18,677 12,866 13,539

7,01 108,126 55,554

Tabulka 1: Výpočet stability svahu Pettersonovou metodou

276,1554,55

01,7.4,256,26.126,108..=+=

+=

∑∑ tg

T

LctgNF

i

ddi ϕ

V případě nulových pórových tlaků se Pettersonův vztah zjednoduší na:

Stupeň stability dle Pettersona F ≥ 1, tudíž je svah na řešené smykové ploše stabilní.

Page 11: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Řešení:Stupeň stability dle Bishopovy zjednodušené metody se zanedbáním svislých meziproužkových sil se řeší iteračně dle vztahu:

∑∑ +

−+=

geo

idi

diiiid

ii

F

buWbc

WF αϕα

ϕα sin.tan

cos

tan)..(.

sin

1

V první iteraci je vhodné kvůli rychlejší konvergenci do jmenovatele dosadit za stupeň stability hodnotu F z konvenční Pettersonovy metody. Iterační výpočet probíhá do té doby, dokud se hodnota F dosazená do vzorce nerovná spočtené hodnotě F– viz tabulka 2.

Tabulka 2: Výpočet stability svahu Bishopovou metodou

∑(A/B1) ∑(A/B2) ∑(A/B3) ∑(A/B4) ∑(A/B5)

5,442 5,446 5,447 5,447 5,447

10,367 10,394 10,398 10,399 10,399

13,831 13,894 13,905 13,906 13,907

16,036 16,144 16,161 16,164 16,165

16,033 16,179 16,203 16,207 16,208

12,070 12,211 12,233 12,237 12,238

73,779 74,268 74,348 74,361 74,363

∑∑+

−+=

geoi

idi

diiiid

i

F

buWbc

B

Aαϕα

ϕsin.tan

cos

tan)..(.

F1=F z Pettersonovy metody =1,276, F2=1,328, F3=1,337, F4=1,338, F5=1,339, F6=1,339.Po čtvrté iteraci se již hodnoty F neliší, stupeň stability dle Bishopa je F= 1,338 ≥ 1, tudíž je svah na řešené smykové ploše stabilní.

Page 12: Sylab 18 Stabilita svahu - departments.fsv.cvut.czdepartments.fsv.cvut.cz/k135/data/wp-upload/2016/12/sylab_18-stabilita-svahu.pdf · Bishopova metoda Bishopova metoda je založena

Literatura

[1] Janbu,N.: Slope stability computations. In: Embankment-dam engineering. John Wiley&Sons, New York, 1973, s. 46-86.

[2] Lamboj,L., Štěpánek, Z: Mechanika zemin a zakládání staveb, skriptum ČVUT, 2005

[3] Vaníček,I.: Mechanika zemin, skriptum ČVUT, 2001

[4] Vaníček,M, Jirásko, D.: EC 7 – Navrhování geotechnických konstrukcí, Část 2 – Zemní konstrukce (Národní specifikace a doporučení) (v přípravě)