39
TT 2006 SUSY course T. Weidberg 1 SUSY Studies @Hadron Colliders MSSM and need for models e.g. SUGRA. Limits from Tevatron. SUSY studies at LHC: inclusive analysis and discovery limits. exclusive analysis and precision measurements. Gauge Mediated SB models R parity violating models. SUSY Higgs sector Conclusions

SUSY Studies @Hadron Colliders

  • Upload
    ayasha

  • View
    53

  • Download
    0

Embed Size (px)

DESCRIPTION

SUSY Studies @Hadron Colliders. MSSM and need for models e.g. SUGRA. Limits from Tevatron. SUSY studies at LHC: inclusive analysis and discovery limits. exclusive analysis and precision measurements. Gauge Mediated SB models R parity violating models. SUSY Higgs sector Conclusions. - PowerPoint PPT Presentation

Citation preview

Page 1: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 1

SUSY Studies @Hadron Colliders

• MSSM and need for models e.g. SUGRA.• Limits from Tevatron. • SUSY studies at LHC:

– inclusive analysis and discovery limits.– exclusive analysis and precision measurements.– Gauge Mediated SB models– R parity violating models.– SUSY Higgs sector

• Conclusions

Page 2: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 2

SUSY Models

• MSSM: – R parity conservation LSP stable – LSP is neutral from cosmology– LSP is weakly interacting (why?)– ~ 100 free parameters! unified models eg

SUGRA, GMSB.

• R Parity violating models.

Page 3: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 3

Minimal SUper GRAvity

• SUSY breaking communicated through flavour-blind gravitational interactions.

• 5 Parameters assuming unified masses & couplings at GUT scale: – Scalars have mass m0, – gauginos and higgsinos m1/2, – trilinear terms A0, – ratio of vacuum expectation values of Higgs doublets β (yields

bilinear couplings and higgsino mass parameter μ2),– sign of the higgs mass term sign(μ).

• Non-minimal: > 100 parameters.• LSP is neutralino or sneutrino.

Page 4: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 4

How to shape our expectation?• Predictions very dependent on SUSY models

and parameters used.• Use different Monte Carlo generators (ISAJET,

SPYTHIA).• Different approximations in the generators

require careful tuning and comparison. • Slight variations can have dramatic change in

behaviour (channels open up or close).• Typically multi-dimensional parameter space,

hard to cover everything by simulation.→ Select benchmark parameter sets (e.g. ‘ATLAS

1-5’) to allow estimate of the search capacity of future experiments.

Masses in SUGRA:

Different parameter sets

Page 5: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 5

Page 6: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 6

Examples of SUSY Searches at Tevatron

• Jets + Missing Et (Why missing Et?)

• Tri-leptons

Page 7: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 7

Tevatron tri-leptons• Final state:

• Leptons are e, μ.• Low SM background: ‘Golden’

SUSY channel • Cuts:

– 2e: pT > 15 GeV/c– 10 < Mee < 70– MT(e,ET)>15– Track isolation– ET > 15 GeV

• D0 Run II (42pb-1): No events observed (0.0±1.4 expected).

)~)(~()~

)(~

(~~ 01

01

021

D0

Page 8: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 8

Squarks and Gluinos• Produced through SU(3)C couplings to q and g.• Due to subsequent decays signatures like neutralinos and

charginos, but with more jets. • Final states depend on exact decay channels, but again

typically involve ET and multiplicity of jets and/or leptons.• Cleanest: di-lepton (from chargino/neutralino decays),

especially same-sign (possible in gluino decays as gluino is Majorana particle).

0ig qqc®% % ' ig qq c±®% %*g tt® %% 0

ig gc®% %

D0 limits in m0/m1/2 plane for different SUGRA parameters

Page 9: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 9

SUSY @ LHC

• Discovery: jets+ Missing Et• Precision studies depend on models for SUSY

breaking.– Measure combinations of masses, reconstruct mass

differences or absolute masses.

– Branching ratios.

– Lifetimes.

– Cross-sections.

Page 10: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 10

QCD jets

ttbar

W+jets

Z+jets

4

1

T Misseff i TM E E

S/N > 10:1

Where does SM background come from?

Page 11: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 11

SM Background

• QCD NLO calculation gives much bigger background than Pythia.

• Why?Need to measure

SM background from data.

Page 12: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 12

Reach for SUSY signal at LHC

• Final states:– Jets and missing ET (0l).

– Missing ET and 1 lepton (1l).

– Opposite sign leptons (OS).– Same charge leptons (SS).– Three leptons (3l).

• Reach depends on tan and sign

Page 13: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 13

Page 14: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 14

Supersymmetric Decay Cascades• Heavier supersymmetric particles decay in cascades ending in

LSP.

– Neutralinos & charginos: Typically 2 body decays when kinematically allowed, otherwise 3 body decay ( ) through virtual gauge bosons or sleptons/squarks.

– Charginos (for example from ) can decay through

with an isolated lepton in the final state.

– Long decay chains → several high pT daughters.

– Spherical events.

– Gluino is Majorana fermion → can decay to either ℓ+ or ℓ-. Possibility to have same-charge decay chains on both sides.

• Simplest signatures for SUSY:

– Multiple jets (some of them hard) + missing ET.

– Several leptons + missing ET.

01Wc c± ±®

g qqc±®%

01ffc c®% %

Page 15: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 15

Chargino and Neutralino Production at Hadron Colliders

• Indirectly:– Result of decay chain of heavier sparticles.

• Directly:– Through EW couplings to squarks, , W, Z.

• s-channel gauge boson production• t-channel squark exchange• interference

Page 16: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 16

Precision Measurements• Measurements of sparticle masses.• .

– Select bb with mbb around h mass, add hard jet in event → mbbj, depends on mq.

• – Endpoint of dilepton (same flavour) mass spectrum:

measurement of mass difference.

• Combination allows model independent way to establish sparticle masses.

• After 1y ATLAS (10 fb-1) expect:

0 02 1c c-% %

0 02 1L Rq q q qc c± ± + -® ® ®%% % %l l l l

0 0 02 1 1Lq q hq bbqc c c® ® ®% % % %

0 02 1

3%, 6%, 9%, 12%qL lR

m m m mc c

s s s s±

» » » »% %% %

~

Page 17: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 17

higgs

• hbbar + Etmiss

• Needs b-tagging.

Page 18: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 18

Min M(bbj)=>m(squark)

Page 19: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 19

Lepton Pairs ll0

102

End point M(ll) gives mass difference

)( 01

02 mm

Page 20: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 20

Squark Masses

• End point )~( 0

1 Lqm

llqlqlqq RL02

02

~~

01( )Lm q

Page 21: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 21

Search for MSSM Stop

• 3rd generation left-right mixing → stop can be light (accessible at Tevatron).

• Production rate 10% of rate for t of same mass.• • Signature: Di-lepton• Other possible stop decays:

or with decay signatures bbℓ±jjET and bbjjjjET.

~~~,~~111 bbtttpp

01 1t cc®% % 0

1 1t bWc®% %

Page 22: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 22

High tanβ• For tanβ > 8 final state leptons dominated by . • Large tanβ is theoretically

motivated & favoured by LEP2.

• Tevatron standard trilepton search:

• Improved trigger and reconstruction in Run II.

• ATLAS: reconstruct m (cuts on jet shape, isolation etc.), endpoint gives ∆m. id ???

)~)(~()~

)(~

(~~ 01

01

021

01

02

~~~

Page 23: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 23

Gauge mediated symmetry breaking (GMSB)

• Gauge interactions mediate SUSY breaking.• 6 fundamental parameters:

– Number of equivalent messenger fields N5,– scale factor for gravitino mass CGrav,– tanβ,– sign(μ),– messenger mass Mm,– Ratio of SUSY breaking scale to messenger scale Λ.

• LSP is gravitino with mass «1GeV,Unlike SUGRA

• NLSP either neutralino (small N5) or slepton (large N5).• Small tanβ: slepton masses degenerate, large tanβ: lightest

slepton.• Lifetime model-dependent (c from μm to km).

WGm m»%

Rt%

Page 24: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 24

GMSB with neutralino NLSP

• Phenomenology as for SUGRA, but decay into lightest neutralino is followed by its subsequent decay yielding a photon and ET.

• – Production of pairs provides clear two- signature

(+ET).– SUSY masses can be determined from kinematics

(combine same-flavour, opposite-charge leptons → mℓℓ, then pick smaller mℓℓ, and 2 mℓ distributions give 4 endpoints to determine 3 masses.

– Decay length from Dalitz decays (2% of decays). Can be >1km for large Cgrav.

02c%

0 02 1R Gc c g± ± + - + -® ® ®% %% %l l l l l l

01

cct

%01 Ge ec + -® %%

Page 25: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 25

GSMB search at Tevatron

• Signature (for long lifetime): two non-pointing + missing ET.

• Backgrounds: jets and e faking photons.

Run II:Run I:

TeVGeVm 8.78,105)~( 01

GeVm 75)~( 01

Messenger mass scale

Page 26: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 26

GSMB with slepton NLSP •

– Signature contains final state leptons & missing ET.

– Dilepton mass spectrum has steps given by difference of slepton and neutralino mass.

• N5>1, Cgrav = 5×103: NLSP is stau. Decay length 1km. Low velocity quasi-stable particles resemble muons: measure TOF in μ-detector. Study

0i R Gc ® ®% %% l l l l

ATLAS

01c%

02c%

0 02 1 1Rc c t t® ® ®%% % %l l l l l l

slow

Page 27: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 27

R-parity violation (RPV)

• Can be broken into 3 distinct interaction terms with strengths λ, λ’ and λ”:– λ ≠ 0: Nl violation in

– λ’ ≠ 0: Nl violation in and

– λ” ≠ 0: NB violation in

• To be consistent with proton lifetime: either lepton or baryon number violated.

• Dilutes ET signature but λ and λ’ give multi-jet, multi-lepton events, which are easy to isolate.

• Strategy: completely reconstruct LSP decay.

01c n+ -®% l l

01 qqc n®%

01 qqc ®% l

01 qqqc ®%

Page 28: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 28

SM bounds on RPV opeators

• Charged-current universality

(→e)/(→e)• Bound on the mass of e

• Neutrino-less double-beta decay

• Atomic parity violation• D0-D0 mixing• Rℓ→ had(Z0)/ ℓ(Z0)

• (→e)/( →μ)

• Br(D+→K0*μ+μ)/ Br(D+→K0*e+e)

• μ deep-inelastic scattering

• Br(→ )

• Heavy nucleon decay• n - n oscillations

All in remarkable agreement with SM predictions.

Page 29: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 29

RPV with λ ≠ 0

• • >4ℓ Signature easy to detect. • Mass of neutralino from

dilepton mass spectrum end point (LHC: σm ≈ 180MeV).

• Combining candidates at edge with events in h→bb peak allow reconstruction of (LHC: σm ≈ 5GeV).

Wrong combinations

Correct combinations

End point

01c n + -®% l l

02c%

Page 30: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 30

RPV with λ’ ≠ 0•

– Fully reconstructable with dilepton signature.

• – More diffcult.

– Missing ET is less than in SUGRA.

– Rely on additional leptons from cascade decays and large jet multiplicity.

• di-gluinos produce like-sign fermions in 1/8 of time (+2j) CDF Run I: no events

01 qqc ®% l

01 qqc n®%

, ,

,L L R

e e

g c c s s d d

d ec sn n

®¯ ¯ ¯

%% % %

l l

Page 31: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 31

Baryon number violating RPV• Most challenging, as decays like provide no

signatures like missing ET, or special lepton or quark flavour (b) tags.

• Look for dilepton signature from

• Signature: minimum 6 jets (3 jets from other neutralino) + 2 leptons, typically around 12 jets (from cascade involving squarks and gluinos).

• Then: combine triplets of jets and require two combinations/event within 20 GeV. Then combine with leptons and reconstruct decay fully.

01 cdsc ®%

0 02 1

3R

jets

l l l lc c + -® ®]

%% %

Page 32: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 32

3 jet Mass Reconstruction

Page 33: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 33

An indirect evidence for SUSY: H±

• If light enough: produced in t → bH+

• For small tanβ: H+ → cs, large tanβ: H+ →

• CDF:– Direct search: excess over SM of events with leptons– Indirect search: ‘dissappearance’, depletion of SM decay t →

bW (less di-lepton and ℓ+j).

Page 34: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 34

SUSY Higgs

• MSSM depends on tan and m(A).

• Many decay modes important e.g.– h – A enhanced cf SM). mass

reconstruction?

Page 35: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 35

h

Q1: What is the reducible background?

Q2: What is the irreducible background?

Page 36: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 36

A

Page 37: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 37

Page 38: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 38

Summary of current SUSY analyses

Page 39: SUSY Studies @Hadron Colliders

TT 2006 SUSY course T. Weidberg 39

Conclusions

• Interesting existing limits from Tevatron• Run II @ Tevatron has chance to discover

SUSY.• LHC will allow for discovery and precision

SUSY PHYSICS.– Discovery or exclusion of low energy SUSY.

– Precision measurements of masses, cross-sections and branching ratios.

– Tests of unified theories (e.g. SUGRA).