36
SUSTAINABILITY INDEX AND INTEGRATED WATER RESOURCES MANAGEMENT OF THE RIO VERDE GRANDE BASIN IN BRAZIL Edson de Oliveira Vieira Instituto de Ciências Agrárias/UFMG Samuel Sandoval Solis Land, Air and Water Resources/Univ. of California - Davis 1

SUSTAINABILITY INDEX AND INTEGRATED WATER … · 42,n.4, 1997, p. 513-530. 3. Sustainability Index •Large emphasis has been given to ... industries of the VGB Area 7,107 Km², -

  • Upload
    lynhu

  • View
    214

  • Download
    2

Embed Size (px)

Citation preview

SUSTAINABILITY INDEX AND INTEGRATED WATER RESOURCES MANAGEMENT OF THE

RIO VERDE GRANDE BASIN IN BRAZIL

Edson de Oliveira Vieira

Instituto de Ciências Agrárias/UFMG

Samuel Sandoval Solis Land, Air and Water Resources/Univ. of California - Davis

1

1. Introduction

• Verde Grande River Basin

• Several problems

• High variability in time and space of water resources

• Activities that demand a lot of water

• There is almost no infrastructure for WR

2

1. Introduction

• Droughts

• PET 2000 mm/year

• Precip 830 mm/year

30

100

200

300

400

500

600

700

800

900

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Pre

cip

itat

ion

(m

m)

Average 2000 - 2014

2014

2013

2012

Precipitation– Annual Average

2. Background

• Verde Grande Basin stands out for:

• Agricultural production (irrigated areas)

• Livestock• Expansion of Population (Urban)

• Industry (only AVG Subbasin)

• Water Conflicts have been recorded since 1980’s

4

2. Background

• In 2003, the creation of the Verde Grande river basin Committee (CBHVG –Comitê da Bacia Hidrográfica do Verde Grande) was approved by the National Water Resources Council (CNRH – Conselho Nacional de Recursos Hídricos)

• In 2011, “Water Resources Plan of the Verde Grande river basin (PRH Verde Grande)” was approved, which aimed to articulate the instruments of the National Water Resources Policy (PNRH)

5

2. Background

In the Water Plan of Verde Grande, three scenarios were envisaged for policy implementation:

• Interventions that were already planned or underway in relation to the increase in water supply - considered in the Trend Scenario.

• And Normative 1 and 2 in which performance of water management is present with successive efficiencies to increase both the water supply and efficient water use

6

2. Background

• However, in Verde Grande Basin, there are no studies that allow us to evaluate and compare the sustainability of different actions or methods of water management in different scenarios.

7

3. Sustainability Index

• Sustainable water resourcesystems are those designed andmanaged to contribute fully tothe objectives of society, nowand in the future, whilemaintaining their ecological,environmental and hydrologicalintegrity (Loucks, 1997)

8LOUCKS, D. P. Quantifying trends in system sustainability. Hydrology Science Journal. vol . 42,n.4, 1997, p. 513-530.

3. Sustainability Index

• Large emphasis has been given tothe adaptability of water resourcesand to measures that reduce thevulnerability of these systems for aproposed future scenario (Ceronet al, 2011; Sandoval-Solis et al,2011; Ceron et al, 2012; Cortés etal 2012).

• The vulnerability is the magnitudeof an adverse impact on a system.

9

Cerón,W. L.; Trujillo, A. R ; Escobar, Y. C. Modelo para el monitoreo y seguimiento de indicadoresde sostenibilidad del recurso hídrico em el sector agrícola. Cuadernos de Geografía, Vol.20, n.2,2011, p.77-89.

Cerón,W. L.; Trujillo, A. R ; Escobar, Y. C. Aplicacion del índice de sostenibilidad del recurso hídricoem la agricultura (ISRHA) para definir estrategias tecnológicas sostenibles em la microcuencaCentella. Ingenieria y Desarrollo. Universidad del Norte. Vol.30, n.2, 2012, p.160-181.

Cortés, A. E.; Oyarzún, R. ; Kretschmer, N. ; Chaves, H. ; Soto, G. ; Soto, M. ; Amézaga, J. ; Oyarzún,J. ; Rötting, T. ; Señoret, M. ; Maturana, H. Application of the Watershed Sustainability Index to theElqui river basin, North-Central Chile. Obras y Proyectos, vol.12, 2012, p.57-69.

SANDOVAL-SOLIS, S.; McKinney, D. C.; Loucks, D. P. Sustainability index for water resourcesplanning and management. Journal of water resources planning and management. vol. 137, n.5,Sep/Out. 2011. p381-390.

3. Sustainability Index

• Sustainability index (SI) of waterresources allows the user toevaluate and compare differentmethods of management andwater uses with regard to itssustainability.

• SI takes into account measuresof Reliability, Vulnerability andResilience

10

3. Sustainability Index

• Thus, given the increasingconflicts between water users inthe Verde Grande Basin, itbecomes necessary to evaluateand compare the many actionsproposed in the Water Planusing the sustainability index,taking into account the manywater users and futurescenarios

11

4. Objectives

Evaluate water management of Verde GrandeRiver Basin, Minas Gerais State, Brazil:

• 1. Evaluate the current and future watermanagement scenarios

• 2. Calculate the Sustainability Index (SI) ofwater resources;

• 3. Evaluate and compare water demand andwater supply for activities of the WaterResources Plan of Verde Grande basin inthree scenarios of water availability.

12

13

5. Methodology

• Characterization of the study area

• Area = 31,410 km²

• Main river (VG) = 577 km

• 768,000 inhabitants at 2011, (ANA, 2011)

• 8 Subbasins (Water Plan)

ANA, Agência Nacional das Águas. Plano dos Recursos Hídricos da Bacia Hidrográfica do Rio Verde Grande-

Relatório síntese. Brasília, 2011. 182p.

14

- Area 3,098 Km²,

- Highest stretches of VGB,

- Concentrates about 48% of all

population and the almost all

industries of the VGB

Area 7,107 Km²,- Largest cattle of VGB

- Area 1,934 Km²,- Smallest subbasin of VGB - Smallest population of whole

basin - Largest irrigated area with

more than 21,000 ha irrigated

Area is 2,113 Km²,- Largest reservoir of VGB- Second largest population of

the whole basin

- Area is 7,715 Km²,- Largest Subbasin of VGB

15

0%

20%

40%

60%

80%

100%

Industry Irrigation Livestock RuralPop UrbanPop

AVG

0%

20%

40%

60%

80%

100%

Irrigation Livestock RuralPop UrbanPop

MVG_TA

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Irrigation Livestock RuralPop UrbanPop

MVG_TB

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Irrigation Livestock RuralPop UrbanPop

AG

0%

20%

40%

60%

80%

100%

Irrigation Livestock RuralPop UrbanPop

MBG

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Irrigation Livestock RuralPop UrbanPop

AVP

0%

20%

40%

60%

80%

100%

Irrigation Livestock RuralPop UrbanPop

BVP

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Irrigation Livestock RuralPop

BVG

Water Demand by Subbasin

Geography of themodel

• 6 Control points• 3 in Verde Grande River

• 1 in Gorutuba River

• 1 in Mosquito River

• 1 in Verde Pequeno River

16

17

Million m³/year

Performance Criteria

18

1. Reliability (Frequency of sucess)

𝑅𝑒𝑙𝑖 =𝑁𝑜. 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝐷𝑡

𝑖 = 0

𝑛

𝐷𝑡𝑖 = ቐ

𝑋𝑇𝑎𝑟𝑔𝑒𝑡,𝑡𝑖 − 𝑋𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑑,𝑡

𝑖 , 𝐼𝑓 𝑋𝑇𝑎𝑟𝑔𝑒𝑡,𝑡𝑖 > 𝑋𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑑,𝑡

𝑖

0 , 𝐼𝑓 𝑋𝑇𝑎𝑟𝑔𝑒𝑡,𝑡𝑖 = 𝑋𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑑,𝑡

𝑖

Deficits

2. Resilience (Quickness of recovery)

𝑅𝑒𝑠𝑖 =𝑁𝑜. 𝑡𝑖𝑚𝑒𝑠 𝐷𝑡

𝑖 = 0 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝐷𝑡𝑖 > 0

𝑁𝑜. 𝑡𝑖𝑚𝑒𝑠 𝐷𝑡𝑖 > 0 𝑜𝑐𝑜𝑟𝑟𝑒𝑑

3. Vulnerability (Severity of deficits)

𝑉𝑢𝑙𝑖 =

σ𝑡=0𝑡=𝑛𝐷𝑡

𝑖

𝑁𝑜. 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝐷𝑡𝑖 > 0 𝑜𝑐𝑜𝑟𝑟𝑒𝑑

𝑋𝑇𝑎𝑟𝑔𝑒𝑡𝑖

𝐷𝑡𝑖 = Deficits𝑋𝑇𝑎𝑟𝑔𝑒𝑡𝑖 = 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑

𝑋𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑑𝑖 = 𝑤𝑎𝑡𝑒𝑟 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑑

t = time periodi = water user

4. Maximum Deficit

𝑀𝑎𝑥 𝐷𝑒𝑓𝑖 =max 𝐷𝑎𝑛𝑛𝑢𝑎𝑙

𝑖

𝑊𝑎𝑡𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑𝑖

Sustainability Index

• Sustainability (SI) Index proposed bySandoval-Solis et al. (2011) variation ofLoucks’ SI (Loucks 1997)

• Values vary from 0 – 1

• There is implicit weighting becausethe index gives added weight to thecriteria with worst performence

19

𝑆𝐼𝑖 = 𝑅𝑒𝑙𝑖 ∗ 𝑅𝑒𝑠𝑖 ∗ 1 − 𝑉𝑢𝑙𝑖 ∗ 1 − 𝑀𝑎𝑥 𝐷𝑒𝑓𝑖ൗ1 4

𝑆𝐼𝑖 = ෑ

𝑚=1

𝑀

𝐶𝑚𝑖

1𝑀

𝐶𝑚𝑖 = Performance Criteria

M = No. of Performance Criteria

𝑆𝐺𝐺𝑟𝑜𝑢𝑝𝐾 =

𝑖=1∈𝑘

𝑖=𝑗=𝑘

𝑊𝑢𝑠𝑒𝑟 𝑖 x 𝑆𝐼𝑈𝑠𝑒𝑟 𝑖

WEAP Software

• Input data:

• Land use

• Land cover information

• Climate

• Precipitation

• Temperature

• Relative Humidity

• Wind Velocity

• Stream flow

• Reservoir data

20

WEAP Software

• Demand data: (Water Users)

• Urban Population

• Rural Population

• Livestock

• Irrigation

• Industry (AVG)

21

WEAP Software

• Period of analysis:

• Time step - Monthly

• 2000 – 2014 – Historic (Calibration andValidation)

• 2015 – 2030 – Future Scenarios

22

23

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

Jan

-00

May

-01

Sep

-02

Jan

-04

May

-05

Sep

-06

Jan

-08

May

-09

Sep

-10

Jan

-12

May

-13

Sep

-14

Jan

-16

May

-17

Sep

-18

Jan

-20

May

-21

Sep

-22

Jan

-24

May

-25

Sep

-26

Jan

-28

May

-29

Sep

-30

Wat

er R

equ

irem

ent (

Mill

m³) Irrig_AVG

Pecuaria_AVGPopRural_AVGPopUrban_AVG

Historic

Future Data (Water Plan)

0

5000000

10000000

15000000

20000000

25000000

30000000

Jan

-00

Mar

-01

May

-02

Jul-

03

Sep

-04

No

v-05

Jan

-07

Mar

-08

May

-09

Jul-

10

Sep

-11

No

v-12

Jan

-14

Mar

-15

May

-16

Jul-

17

Sep

-18

No

v-19

Jan

-21

Mar

-22

May

-23

Jul-

24

Sep

-25

No

v-26

Jan

-28

Mar

-29

May

-30

Wat

er R

equ

irem

ent (

Mill

m³)

Irrig_AVGPecuaria_AVGPopRural_AVGPopUrban_AVG

Historic DataFuture Data (Water Plan)

Water Required – MVG_TAWater Required - AVG

Water Demand Foreseen in Water Plan of Verde Grande

24

Scenarios of Analysis

• Baseline (no actions)

• Trend

• Normative 1

• Normative 2

25

ACTIONS Nº

Start

Year

Import water from Congonhas Dam 2m³/s 1 2018

Water Diversion From São Francisco River 1.5m³/s 2 2020

Water Diversion From São Francisco River 1.5 (3m³/s) 3 2025

Water Diversion From São Francisco River 1.5 (4.5m³/s) 4 2028

Rio Verde Dam 0.15m³/s 5 2025

Cocos Dam 0.05m³/s 6 2025

Pedras Dam 0.04m³/s 7 2028

Mamonas Dam 0.05m³/s 8 2028

São Domingos Dam 0.42m³/s 9 2028

SCENARIOS 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Trend 1 1 1 1 1 1 1 1 1 1 1 1 1

Normative 1 1 1 1,2 1,2 1,2 1,2 1,2 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Normative 2 1 1 1,2 1,2 1,2 1,2 1,2 1 - 6 1 - 6 1 - 6 1 - 9 1 - 9 1 - 9

26

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1/1

/20

00

6/1

/20

00

11/1

/200

0

4/1

/20

01

9/1

/20

01

2/1

/20

02

7/1

/20

02

12/1

/200

2

5/1

/20

03

10/1

/200

3

3/1

/20

04

8/1

/20

04

1/1

/20

05

6/1

/20

05

11/1

/200

5

4/1

/20

06

9/1

/20

06

2/1

/20

07

7/1

/20

07

12/1

/200

7

5/1

/20

08

10/1

/200

8

3/1

/20

09

8/1

/20

09

1/1

/20

10

6/1

/20

10

11/1

/201

0

4/1

/20

11

9/1

/20

11

2/1

/20

12

7/1

/20

12

12/1

/201

2

5/1

/20

13

10/1

/201

3

3/1

/20

14

8/1

/20

14

Stre

amfl

ow

(m³/

s)

Observed (m3/s)

Predicted (m3/s)

STATISTICMean, m³/s 7.83Median, m³/s 2.95Standard Deviation, m³/s 10.44Pearson's Correlation 0.91Coefficient of Determination 0.82Index of Agreement (Willmott) 0.95Coefficient of Efficiency (Nash) 0.82

Calibration

27

STATISTICMean, m³/s 12.10Median, m³/s 6.15Standard Deviation, m³/s 13.92Pearson's Correlation 0.83Coefficient of Determination 0.70Index of Agreement (Willmott) 0.90Coefficient of Efficiency (Nash) 0.69

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1/1

/200

0

6/1

/200

0

11/1

/200

0

4/1/

2001

9/1/

2001

2/1/

2002

7/1/

2002

12/1

/200

2

5/1/

2003

10/1

/200

3

3/1

/200

4

8/1

/200

4

1/1

/200

5

6/1

/200

5

11/1

/200

5

4/1

/200

6

9/1

/200

6

2/1

/200

7

7/1

/200

7

12/1

/200

7

5/1

/200

8

10/1

/200

8

3/1

/200

9

8/1

/200

9

1/1

/201

0

6/1

/201

0

11/1

/201

0

4/1

/201

1

9/1

/201

1

2/1

/201

2

7/1

/201

2

12/1

/201

2

5/1

/201

3

10/1

/201

3

3/1

/201

4

8/1

/201

4

Stre

amfl

ow

(m³/

s)

Observed (m3/s)

Predicted (m3/s)

Calibration

RESULTS

28

29

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Baseline Tendencial Normative 1 Normative 2

AVG - Vulnerability Irrigation

livestock

RuralPop

UrbanPop

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Baseline Tendencial Normative 1 Normative 2

AVG - Max Deficit Irrigation

livestock

RuralPop

UrbanPop

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Baseline Tendencial Normative 1 Normative 2

AVG - Resilience Irrigation

livestock

RuralPop

UrbanPop

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Baseline Tendencial Normative 1 Normative 2

AVG - Reliability (Volume)Irrigation

livestock

RuralPop

UrbanPop

30

0.0

20.0

40.0

60.0

80.0

100.0

Baseline Tendencial Normative 1 Normative 2

MVG_TB - Reliability (Volume)Irrigation

livestock

RuralPop

UrbanPop

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Baseline Tendencial Normative 1 Normative 2

MVG_TB - VulnerabilityIrrigation

livestock

RuralPop

UrbanPop

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Baseline Tendencial Normative 1 Normative 2

MVG_TB - Max DeficitIrrigation

livestock

RuralPop

UrbanPop

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Baseline Tendencial Normative 1 Normative 2

MVG_TB - Resilience

Irrigation

livestock

RuralPop

UrbanPop

Baseline

vs

Trend Scenario

19.4%

48.3%

31.8%29.9%

28.0%

1.1%

6.5%

26.5%

50.6%50.2%

34.2%

29.7%

0%

10%

20%

30%

40%

50%

60%

AVG MVG_TA MVG_TB AG MBG AVP BVP BVG

Sust

ain

abili

ty In

dex

(%

) Baseline

Trend Scenario

Sustainability Index

Baseline

vs

Normative 1

19.4%

48.3%

31.8%29.9%

28.0%

1.1%

6.5%

26.5%

54.7% 55.6%

41.4%

30.4%

29.0%

39.6%

0%

10%

20%

30%

40%

50%

60%

AVG MVG_TA MVG_TB AG MBG AVP BVP BVG

Sust

ain

abili

ty In

dex

(%

)

Baseline

Normative 1

Sustainability Index

Baseline

vs

Normative 2

Sustainability Index19.3%

47.8%

31.2% 30.0% 27.9%

1.1%

6.1%

25.5%

54.3% 54.5%

40.1%31.6%

30.2%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AVG MVG_TA MVG_TB AG MBG AVP BVP BVG

Sust

ain

abili

ty In

dex

(%

)

Baseline

Normative 2

34

Sustainability Index of VG BasinSustainability Index by Group

0%

20%

40%

60%

80%

100%

Irrigation livestock RuralPop UrbanPop

Baseline Trend Normative 1 Normative 2

24.8%

28.2%

31.3%

41.7%

10%

15%

20%

25%

30%

35%

40%

45%

Baseline Trend Normative 1 Normative2

• The Sustainability Index identified policies that improved the water availability of Verde Grande for the future.

• The Sustainability index shows that water supply in all scenarios in VGB is still unsustainable because the maximum deficit problem has not been solved.

• The comparison of the SG among different water users identified that the water policies have significantly improved the water supply only for the Urban Population user.

• Considering the whole VGB, there are no significant improvements in water supply with implementation of the policies proposed by the Water Resources Plan for the Verde Grande river basin.

35

CONCLUSIONS

OBRIGADO

THANK YOU

GRACIAS

GRAZIE

MERCI

SHUKRAN

XIE XIE

오브리

با تشکر از شما

36