40
Surface States of Rashba Spin-Split Type and Topological Insulators BiBulk = Semi-metal, Surface =Spin-split metal (Rashba effect) Bi 1-x Sb x , Bi 2 Se 3 : Bulk = Insulator (Topological Insulator) Surface = Spin-split metal (Topological Metal) T. Hirahara , 1 Y. Sakamoto , 1 M. Yamada 1 , Y. Saisyu, 1 H. Miyazaki, 2 S. Kimura, 2 T. Okuda, 3,4 G. Bihlmayer, 5 E. V. Chulkov 6 , S. Hasegawa 1 1 Dept. Phys., Univ. Tokyo 2 UVSOR 3 ISSP, Univ. Tokyo 4 HSRC 5 Julich, Germany 6 San Sebastian, Spain WS10-ETOLDs 20106135 min Valencia, Spain

Surface States of Rashba Spin -Split Type and Topological ... · 1. metallic spin-split surface state . 2. chiral spin texture in Fermi surface. 3. absence of back scattering in surface

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Surface States of Rashba Spin-Split Type and Topological Insulators

    Bi: Bulk = Semi-metal, Surface =Spin-split metal (Rashba effect)

    Bi1-xSbx , Bi2Se3 ↓: Bulk = Insulator (Topological Insulator)

    Surface = Spin-split metal (Topological Metal)

    T. Hirahara,1 Y. Sakamoto,1 M. Yamada1, Y. Saisyu,1 H. Miyazaki,2

    S. Kimura,2 T. Okuda,3,4 G. Bihlmayer,5 E. V. Chulkov6 , S. Hasegawa1

    1 Dept. Phys., Univ. Tokyo 2 UVSOR 3 ISSP, Univ. Tokyo 4 HSRC 5 Julich, Germany 6 San Sebastian, Spain

    WS10-ETOLDs 2010年6月1日 35 min (Valencia, Spain)

  • Surface States

    Bulk States

    Dangling Bonds AdsorbatesSurface States

    Surface States ― Shockley & Tamm States ―

    Metals Semiconductors

    Clean Surfaces Adsorbed Surfaces(Surface Alloys)

    -Low-D Electronic Systems-Broken (Inversion) Symmetry-New Periodicity

    decouple from bulk states

  • Thin Film and InterfaceThin Film

    Surface state of thin film

    Quantum well state

    Bulk state

    Interaction(Hybridization)

    SubstrateEx: Interaction between QWS and surface state

    QWS’s are spin-split ← Spin-split surface state due to Rashba-effect

    Spill out at interface⇒ MIGS(Gap state)

    K. He, et al., PRL101, 107604 (2008)

  • Various Surface States

    1. Shockley states (extended)Tamm states (localized)

    Chemical bonding, Potential(Previous slide)

    2. Image statesImage charge

    3. Surface space-charge layerBending of bulk bands

    4. Topological surface statesSpin-orbit coupling ← Edge states of Q(S)H phase

    Valence band

    Conduction band

    Image charge

    Surface

    HgTe (QW), Bi1-xSbx, Bi2Te3, Bi2Se3,

  • MonAtomic Layer of Ag: Si (111)-√3×√3-Ag Surface

    2D Metal

    Clean Si(111)-7x7

    DepositMonolayer of Ag

    STM

  • Surface-state bands of Monolayer Ag : Si(111)-√3x√3-AgS. Hasegawa, et al., Prog. Surf. Sci. 60 (1999) 89. T. Hirahara, et al., e-J. Surf. Sci. Nanotech. 2 (2004) 141.T. Hirahara, et al., Surf. Sci. 563 (2004) 191.

    Free-electron

    Metallic

    Fermi Circle

    Isotropic, Metallic, Free-electron-like Surface state

    Band Dispersion Fermi Surface Mapping

    m*=0.13me

    Wave Vector k[110] (Å-1)-

    Wav

    e Ve

    ctor

    k[1

    12](

    Å-1 )

    -

    Parabolic Dispersion

    E = h k2m*2 2

    ARPES

    Fermi Level Fermi Level

  • Various Surface Sates

    ** mk

    mpE

    22

    222 ==

    Wavenumber k

    Ener

    gy E

    ValenceBand

    ConductionBand

    222 )()( pcmcE +=

    kcpcE ±=±=

    0=m

    Free-Electron-like

    Massless Dirac Fermion

    Si(111)-√3×√3-Ag

    Au(111)Bi(111)

    Graphene(Monolayer Graphite)

    Topological Surface StateBi2Se3

    SpinSpin

    SpinSpinSpin-degenerate

    Spin-degenerate

    ValenceBand

    ValenceBand

    ValenceBand

    ConductionBand

    ConductionBand

    ConductionBand

  • Rashba Effect in Surface States

    Time reversal symmetry E(k, ↑)=E(- k, ↓)

    Inversion symmetry E(k, ↑)=E(- k,↑)

    E(k, ↑)=E(k, ↓)

    Bloch theoryE(k+G, ↑)=E(k,↑)

    E(G/2, ↑)=E(G/2, ↓)

    ))()( ( pxgradVmc

    xVpm

    H σ ×++= ⋅22 41

    21

    Kramers Degeneracy

    Only at some symmetric points

    Spin-orbit coupling Hamiltonian

    Symmetry

    E. I. Rashba, Sov. Phys. Solid State 2, 1109(1960)

  • Atomically Flat Ultrathin Bi Film on Si(111)-7×7

    1600Å× 1600ÅT. Nagao et al., PRL 93 105501(2004)

    T. Nagao et al.,Surf. Sci. 590, L247-252 (2005).

    Bi

    Si

    XTEM

    Surface States

    STM

    Bi(111)

    Bi[111]

  • ARPES:Electronic States of Bi Quantum Films

    Quantum-Well StatesSurface States:

    Electrical Cond. Of Bi Film = Surface-State Conduction

    T. Hirahara, et al., PRB 75, 035422 (‘07)

    Bin

    ding

    Ene

    rgy

    (eV

    )

    Wavenumber (Å-1) Wavenumber (Å-1) Wavenumber (Å-1)

  • kx

    ky

    kx

    ky

  • Spin-resolved ARPES

    Binding Energy (eV)

    0.25°

    0.75°

    1.25°

    2.25°

    3.25°

    1.75°

    2.75°

    3.75°

    4.75°

    5.75°

    Binding Energy (eV)

    0.25°

    5.75°

    Consistent with the Rashba modelmax ~ +0.75

    Ep = 3 eV7 BL

    0 0.6-0.6

    EF20406080

    1000 0.1 0.2-0.1-0.2Γ

    (Å-1)kΓM

    Bin

    ding

    Ene

    rgy

    (meV

    )

    T. Hirahara, et al., New J. Phys.10, 083038 (2008)

  • Spin-resolved band mapping

    Size of the markers

    Magnitude of the spin polarization

    =

    Qualitative consistency between experiment and calculation concerning the k-dependence of the spin polarization

    Asymmetric spin structure withrespect to Γ and M

  • vacuum

    First-principles calculationfor free-standing Bi slabsincluding SOC

    vacuumBi

    Dispersion of a symmetric 10BL Bi slab

    Pure Bi・Semi-metal in Bulk・Conduction band and valence band are connected by the spin-split surface states

    Red: Spin-UpBlue: Spin-Down

    Bihlmayer(Juhlich, Germany)

  • Spin-Texture Structure in Fermi Surface

    ( )pxgradVmc

    H σSOC ×= ⋅ )(241

  • Various Surface States

    1. Shockley states (extended)Tamm states (localized)

    Chemical bonding, Potential(Previous slide)

    2. Image statesImage charge

    3. Surface space-charge layerBending of bulk bands

    4. Topological surface statesSpin-orbit coupling ← Edge states of Q(S)H phase

    Valence band

    Conduction band

    Image charge

    Surface

    HgTe (QW), Bi1-xSbx, Bi2Te3, Bi2Se3,

  • Hall Effect

    -

    +E

    Magnetic FieldB

    VHall Voltage

    Edwin H. Hall (1879)

  • Landau Levels

    gap

    Band Insulator →Metallic edge state

  • Usual Band Insulator

    Quantum Hall Sate

  • Spin Hall Effect

    -

    +E

    Without external magnetic fieldNon-magnetic materials

    pxgradVmc

    H σSOC ×⋅= )(41

    2

    }Effective Magnetic Field

    Spin-Orbit Interaction⇒Moving electrons feel effective

    magnetic field due to electrical field.

    ⇒Spin interact with Mag. field⇒Spin flow

    perpendicular to electric field

  • Spin flow at edges⇒Spin accumulation

    at edges⇒chiral edge states

    -

    +E

    Surface states:Spin-split due to Rashba effect or Topological insulators

    Spin Hall Effect

  • E

    Spin Current flowing at Edges

    -E

  • Quantum (Spin) Hall Sate Without Magnetic Field!

    Spin-Orbit Interaction→ Electric field = Effective magnetic field

    for moving electrons→ Bulk; insulator

    Surface; Spin-split metal (Kramers degeneracy is lifted)Spin flow

    Bulk; insulatorSurface; (Topologically protected)

    (Chiral) Dirac Fermion

    {

  • Quantum spin Hall phases and topological insulators

    2D QSH phase

    3D topological insulators

    • bulk = gapped• Gapless edge states

    Carry spin current Robust against weak non-

    magnetic impurities orinteraction (topological metal)

    Spin-orbit coupling

    Bi1-xSbx (0.07

  • Co-deposition of Bi & Sb on Si(111)-7x7 at RT: RHEED observation

    30 Å(7 BL) ultrathin film• Sharp spots of 1x1 periodicity(001)• Kikuchi pattern

    Bi Bi0.91Sb0.09

    Bi0.78Sb0.22Bi0.86Sb0.14

  • Stoichiometry estimation by CLS

    (a) Bi0.92Sb0.08 (b) Bi0.84Sb0.16

    Relat ive Binding Energy (eV)

    Sb

    Bi

    5d5/ 2

    5d3/ 2

    4d3/ 2 4d5/ 2

    hν = 80 eV

    ~ 11.4 ~ 5.411.07 15.88

    J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).Good match!

    (Sbが8.8%) (Sbが18.5%)

  • Comparison

    Bi

    Bi0.86Sb0.14

    Bi

    Bi0.86Sb0.14Band dispersionFermi Surface Almost same}Bi0.86Sb0.14 and Bi

    The surface states at EF are almost the same between Bi and Bi0.86Sb0.14.

  • CCW

    CW

    Helicity dependence - dichroism effect -

    Normalized FS

    39Å Bi0.84Sb0.16

    kΓーM

    kΓーk

    kΓーM

    kΓーk

  • Resistivity

    insulating

    metallic

    insulator-to-metal transition

    Pure Bi240Å

    240Å

    100Å

    30Å

    Bi0.9Sb0.1

    ⇒Surface State

    ⇒Bulk State

    The surface is metallic, while bulk is insulating.

    In situ Micro-Four-Point Probe Measurement in UHV

    Bi0.9Sb0.1

    The surface is metallic, while bulk is (semi)metal.

    Bi

    T. Hirahara, et al,PRB81,165422 (‘10).

  • Time-Reversal SymmetryE(k,↑)=E(-k,↓)

    ψinitialπ-rotation

    ψscattered1

    ψinitial-π-rotation

    ψscatter2

    Ψscatter2 = -Ψscatter1

    2π-rotation of spin

    ψ2π-rotation

    ψ

    ψ2π-rotation

    ψ Ψscatter1 +Ψscatter2=0

    Destructive interference ⇒ No backscatteringSpinor

  • Topological surface states protected from back scattering by chiral spin texture

    Yazdani Group, Nature 460, 1106 (2009)

    Fermi Surface mapped by ARPES

    STS (dI/dV) map at Fermi level

    FT pattern

    ( )kI( )

    ( ) ( )∫ += kdqkIkIqJDOS

    2

    calculate

    Spin-dependentscattering

    Initialstate

    Finalstate

    Back scattering of surface-state electrons are suppressed because spin flip does not occur at scattering.

    ( )( ) ( ) ( )∫ ++= kdqkIqkkSkI

    qSJDOS2,

  • Role of spin in quasiparticle interference on Bi Surface

    J. I. Pascual et al., PRL 93, 196802(2004).

    Bi(110)Bi(111)T. K. Kim et al., PRB 72, 085440(2005).

    Spin-conserving scattering process

  • Crystal Structure of Bi2Se3H. Zhang, et al., Nature Physics (May 2009)

  • Electronic Structure of Bi2Se3 (Theory)

    H. Zhang, et al., Nature Physics (May 2009)

    IsolatedAtoms(AtomicOrbital)

    Atomic Bondings

    Split due to Crystal Field

    Spin-Orbit Intercation

    Conduction Band

    Valence Band

    Surface StateDirac Cone

  • Growth and Band Structure of Bi2Se3Y. Sakamoto, et al., Phys. Rev. B81,165432 (2010)

    Quintuple Layer-by-Layer Growth

    Bulk Crystal Y. Xia, et al., Nature Physics 2009 (May)

    RHEED

    RHEED Oscillation

  • Various Surface Sates

    ** mk

    mpE

    22

    222 ==

    Wavenumber k

    Ener

    gy E

    ValenceBand

    ConductionBand

    222 )()( pcmcE +=

    kcpcE ±=±=

    0=m

    Free-Electron-like

    Massless Dirac Fermion

    Si(111)-√3×√3-Ag

    Au(111)Bi(111)

    Graphene(Monolayer Graphite)

    Topological Surface StateBi2Se3

    SpinSpin

    SpinSpinSpin-degenerate

    Spin-degenerate

    ValenceBand

    ValenceBand

    ValenceBand

    ConductionBand

    ConductionBand

    ConductionBand

  • Summary: Compare Bi1-xSbx , Bi2Se3with Bi

    Both of Bi1-xSbx and Bi show

    1. metallic spin-split surface state

    2. chiral spin texture in Fermi surface

    3. absence of back scattering in surface state

    The unique properties of topological insulators may be detected in Spin flow.

    ⇒ These are not unique properties of topological insulators.Surface Rashba effect bring about them.

    4. Chiral Dirac cone in surface state: Bi2Se3

  • A

    A A

    Mag. Tip

    3-tip STM

    Spin Transport Measurements

    Surface states:Spin-Split BandsDue to Rashba Eff.Tip Separation<Spin Relaxation Length

    Strong Spin-Orbit Interaction⇒Electric field is seen to be

    effect magnetic field for flowing electrons

    ⇒Spin flow perpendicular to Current and spin:

    Spin AccumulationNon-Mag.

    MaterialWithout Mag. Field

    Bi and AlloyBi, Bi1-xSbx, Bi2Te3, Bi2Se3

    Topological Insulator

    ))()( ( pxgradVmc

    xVpm

    H σ ×++= ⋅22 41

    21

  • Coating CNT Tips with Compounds and Multi-Layers→ Various Measurements

    ・Metal → Ohmic or Schottky Contacts W, PtIr・Dielectric (Insulator) → Nano-FET effect SiO2・Magnetic → Spintronics、MFM CoFe・Superconducting → Andreev Ref.、SC devices Nb3Sn, NbN・Insulator/Metal Multi-Layers → STM in liquid、Biochemical

    Probes SiOx/Ti

    Functionalized CNT Tips with Coating

    CNT Nb3Sn

    5 nm CNT

    Nb3Sn

    10 nm

    CoFe

    CNT

    CoFe

    5 nm

    5 nm

    SiOX Ti CNT Ti SiOX

    H. Konishi, et al., JJAP 45, 3690 (‘06)H. Konishi, et al., RSI 78, 013703(‘07)

    CNT Coating by Pulsed Laser Deposition (PLD)

  • 磁化

    2

    132;31 I

    VVR −=T. Tono Master Thesis (2009)

    Inverse Spin Hall Effect+Mag. Tip⇒ Broken of Green’s Reciprocal Theorem

    Spin Distribution by Spin Hall Effect

    Non-Mag. TipNon-Mag. Tip

    Non-Mag. Tip

    Mag. TipBi(111)

    Dev

    iatio

    n in

    Res

    ista

    nce(

    Ω) 0312231123 ≠++ ;;; RRR

    d

    Magnetization

    Número de diapositiva 1Número de diapositiva 2Número de diapositiva 3Número de diapositiva 4Número de diapositiva 5Número de diapositiva 6Número de diapositiva 7Rashba Effect in Surface StatesAtomically Flat Ultrathin Bi Film on Si(111)-7×7 Número de diapositiva 10Número de diapositiva 11Spin-resolved ARPESSpin-resolved band mappingNúmero de diapositiva 14Spin-Texture Structure in Fermi SurfaceNúmero de diapositiva 16Número de diapositiva 17Número de diapositiva 18Número de diapositiva 19Número de diapositiva 20Número de diapositiva 21Número de diapositiva 22Quantum (Spin) Hall Sate Without Magnetic Field!Quantum spin Hall phases and topological insulatorsCo-deposition of Bi & Sb on Si(111)-7x7 at RT: RHEED observation Stoichiometry estimation by CLSComparisonHelicity dependence - dichroism effect -ResistivityNúmero de diapositiva 30Topological surface states protected from back scattering by chiral spin textureRole of spin in quasiparticle interference on Bi SurfaceNúmero de diapositiva 33Número de diapositiva 34Número de diapositiva 35Número de diapositiva 36Summary: Compare Bi1-xSbx , Bi2Se3with Bi Número de diapositiva 38Functionalized CNT Tips with CoatingNúmero de diapositiva 40