24
1 Surface Plasmons devices and leakage Surface Plasmons devices and leakage radiation microscopy radiation microscopy A.Drezet (ISIS- Univ. Louis Pasteur, Strasbourg, France) A. Hohenau, D. Koller, F. R. Aussenegg, J.R Krenn Nano - Optics Group Institute of Physics Univ. Graz, Austria nanooptics.uni-graz.at arseille , 1.10. 2007

Surface Plasmons devices and leakage radiation microscopy

  • Upload
    munin

  • View
    45

  • Download
    0

Embed Size (px)

DESCRIPTION

Surface Plasmons devices and leakage radiation microscopy. A.Drezet (ISIS- Univ. Louis Pasteur, Strasbourg, France) A. Hohenau, D. Koller, F. R. Aussenegg, J.R Krenn Nano - Optics Group ● Institute of Physics ● Univ. Graz, Austria nanooptics.uni-graz.at. - PowerPoint PPT Presentation

Citation preview

Page 1: Surface Plasmons devices and leakage                   radiation microscopy

1Surface Plasmons devices and leakage Surface Plasmons devices and leakage radiation microscopy radiation microscopy

A.Drezet

(ISIS- Univ. Louis Pasteur, Strasbourg, France)

A. Hohenau, D. Koller, F. R. Aussenegg, J.R Krenn

Nano - Optics Group ● Institute of Physics ● Univ. Graz, Austria

nanooptics.uni-graz.at

Marseille , 1.10. 2007

Page 2: Surface Plasmons devices and leakage                   radiation microscopy

2

Surface Plasmon polaritons (SPPs) at a single interface

Dielectric(Air,SiO2)

Metal (Au,Ag)

E,B

z

Raether, Surface Plasmons (Springer, Berlin, 1988).Genet and Ebbesen, Nature 445, 39 (2007).Drezet et al., Micron 38, 427 (2007).

SPP

100nm

10nm

Hy

md

mdSPP ck

Page 3: Surface Plasmons devices and leakage                   radiation microscopy

3

SPP dispersion relation on a 70 nm thick gold film

Au/glass

Au/air

1Re mkx

12 m

Johnson and Christy, PRB 6, 4370 (1972).

Total Internalreflection

KSPP

Page 4: Surface Plasmons devices and leakage                   radiation microscopy

4

Au/glass

Au/air

12 m

mLSPP

SPP dispersion relation on a 70 nm thick gold film

"21

xSPP kL

Page 5: Surface Plasmons devices and leakage                   radiation microscopy

5

Leakage Radiation (LR) SPP modes

air

metalglass

SPP

LRLR

z

Air side

Glass side

LR

Hecht et al., PRL 77 ,1889 (1986).A. Bouhelier et al., PRB 63, 155404 (2001).

m

mLR

1

Resinn glass

Page 6: Surface Plasmons devices and leakage                   radiation microscopy

6

"sin2

xLRglass kn

LR cone

H. J Simon, J. K. Guha, Opt. Comm. 18, 391 (1976).

SPP

LR2

LR cone

22//

// )''()'(

1)(

kkkkI

Leakage Radiation cone

Rough Ag surface

Page 7: Surface Plasmons devices and leakage                   radiation microscopy

7

IO

Au

LR

SPP

CCD

LRO2

SPP

Lens

NSOM (near field scanning optical microscope)

Polar.

15 µm

Page 8: Surface Plasmons devices and leakage                   radiation microscopy

8

Quantum dots (CdTe/ZnTe)

=514 nm

SPP

NSOM

Brun et al., Europhys. Lett. 64 , 634 (2003)

Rdistance hole-tip (nm)

Addressing a nanoobject with SPP

R

eI

SPPLR /

4.2 K

Page 9: Surface Plasmons devices and leakage                   radiation microscopy

9

Leakage Radiation Microscopy (LRM)

Stepanov et al., Optics Letters 30, 1524 (2005).Hohenau et al., Optics Letters 30 ,893 (2005).

LRM on 50 nm Au film

=800 nm

IO

Au

LR

SPP

CCD

laser

O1

LRO2

SPP

Lensµm 20SPPL

Page 10: Surface Plasmons devices and leakage                   radiation microscopy

10

2SPPP

Bragg condition:

SPP 2D Bragg reflectors

Drezet et al., Europhys.Lett. 74, 693 (2006)

Page 11: Surface Plasmons devices and leakage                   radiation microscopy

11

SPP interferometer

V=1, R= 0.95

2D dipole model

Page 12: Surface Plasmons devices and leakage                   radiation microscopy

12

LRM: Imaging the direct and the Fourier space

Drezet et al., APL 89, 091117 (2006).

Page 13: Surface Plasmons devices and leakage                   radiation microscopy

13

A) SPP dispersion in the direct space

(A)

L R20 µm

T

Bragg mirror (out of resonance)

)cos(2 in

SPPP

Bragg condition:

nmP

nm

nm

inSPP

555

45 ,785

800

65 800 innm

Page 14: Surface Plasmons devices and leakage                   radiation microscopy

14

10 20 30 40

1

00

(B)In

tens

ity (

arbi

trar

y un

its)

x (µm)

0.5

10 µm

µmk

LSPP

SPP 202

1"

SPP decay in the direct space

Page 15: Surface Plasmons devices and leakage                   radiation microscopy

15

LRM (Fourier)

k (1/µm)

Inte

nsity

(ar

bitr

ary

units

)

0

1

8.0 8.27.8

(A)

0.5

L

Drezet et al., Appl.Phys.Lett. 89, 091117 (2006).

2"2'//

1

SPPSPP kkkI

µmk

LSPP

SPP 202

1"

B) SPP dispersion in the Fourier space

Page 16: Surface Plasmons devices and leakage                   radiation microscopy

16

(a)

(A)

L R20 µm

T

T

(C) T (D)

RLL

C) SPP Fourier optics

(B)

R

T

L

C

Page 17: Surface Plasmons devices and leakage                   radiation microscopy

17

Reflectance 90%

Appl.Phys.Lett. 86, 074104 (2005) Interferences

SPP in plane elliptical cavity

Page 18: Surface Plasmons devices and leakage                   radiation microscopy

18

Phase difference

Inte

nsi

ty (

a. u

.)

D1

D2

Braggmirror

ridge

Ditlbacher et al.,APL. 81, 1762 (2002).Drezet et al., Plasmonics (2006).

SEM

SPP in plane interferometry

15 µm

LRM

Phase difference

Page 19: Surface Plasmons devices and leakage                   radiation microscopy

19

SPP in plane demultiplexer-plasmonic crystal

b

3

a

e1e2

550 nm

=750 nm

=800 nm

Drezet et al., Nanolett. (pub. on line15 mai 2007).

30 µm

21,

1SPPd

2

2,2

SPPd

LRM

SPPAu

Plasmonic crystal

Page 20: Surface Plasmons devices and leakage                   radiation microscopy

20

SPP in plane Tritter = beam splitter 3 inputs-3outputs

15 µm

e1

e2

500nm

32 SPPa 3

SPPd

21 finalorinc kfk

LRM (direct) (Fourier)

d

(Ewald sphere)

Page 21: Surface Plasmons devices and leakage                   radiation microscopy

21

SPP in plane reflection microscope (M=3)

10 µm

10 µm

F1F2

10 µm

2 µm

SPP

Drezet et al. Submitted to Optics letters (2007).

400 nm

theory

LRM

Page 22: Surface Plasmons devices and leakage                   radiation microscopy

22

10 µm

Inte

nsity

(ar

b.un

its)

X (µm)

2 µm

1 µm

500 nm

1.4 µm

3 µm

6 µm

Page 23: Surface Plasmons devices and leakage                   radiation microscopy

23

• LRM is a straightforward and reliable technique

for probing SPP fields in direct and Fourier space.

•LRM allows precise quantitative analysis of SPP

propagations.

•Fast method: alternative to PSTM, NSOM, NFO

Summary

Page 24: Surface Plasmons devices and leakage                   radiation microscopy

24

http://nanooptics.uni-graz.at