37
Supporting Information Allylic hydroxylation of triterpenoids by a plant cytochrome P450 triggers key chemical transformations that produce a variety of bitter compounds Shohei Takase 1 , Kota Kera 2 , Yoshiki Nagashima 2 , Kazuto Mannen 2 , Tsutomu Hosouchi 2 , Sayaka Shinpo 2 , Moeka Kawashima 1 , Yuki Kotake 1 , Hiroki Yamada 1 , Yusuke Saga 1 , Junnosuke Otaka 1 , Hiroshi Araya 1 , Masaaki Kotera 3 , Hideyuki Suzuki 2 *, and Tetsuo Kushiro 1 * 1 School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; 2 Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan; 3 Development Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan S1

Supporting Information...Experimental Classification of 27,127 total contigs for RNA seq analysis 27,127 total contigs derived from the M. charantia, transcriptome assembly were subjected

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

  • Supporting Information

    Allylic hydroxylation of triterpenoids by a plant cytochrome P450 triggers key chemical transformations that produce a variety of bitter compounds

    Shohei Takase1, Kota Kera2, Yoshiki Nagashima2, Kazuto Mannen2, Tsutomu Hosouchi2, Sayaka Shinpo2, Moeka Kawashima1, Yuki Kotake1, Hiroki Yamada1, Yusuke Saga1, Junnosuke Otaka1, Hiroshi Araya1, Masaaki Kotera3, Hideyuki Suzuki2*, and Tetsuo Kushiro1*

    1School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; 2Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan; 3Development Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

    S1

  • Experimental

    Classification of 27,127 total contigs for RNA seq analysis 27,127 total contigs derived from the M. charantia, transcriptome assembly were subjected to additional validation and annotation. BLASTx program based homology search was conducted against an NCBI non-redundant (nr) protein database for all unigenes, and best aligning results were selected to annotate the unigenes. In order to compare the gene expression patterns among the ten tissues, we performed a series of analysis as explained below. First, RNA-seq total genes from ten tissues obtained by three sequencers (GAIIx, HiSeq and Rapid) were independently normalized by centering and scaling using average and standard deviation, respectively. The average of the three normalized values were regarded as the relative expression level of the genes, and were used in the following analyses. Consequently, principal component analysis (PCA) and hierarchical clustering was carried out to overview the relationship among plant tissues in the viewpoint of expression levels. We used Scikit-learn, an open-source machine-learning library https://scikit-learn.org/. In the hierarchical clustering, we adopted the weighted method and correlation metric. The first principal component clearly separated leaves and others, whilst the second principal component clearly separated flowers and others. Plot of plant tissues on the first and the third principal component scores, clearly separated fruits and others. To sum up, the ten plant tissues were classified into four, i.e., leaves, flowers, fruits and others. Cumulative contribution rates of the principal components showed that the first three components gave as sufficient variance as about 80%. The hierarchical clustering provided the same conclusion as that of PCA, that is, the ten plant tissues were classified into four, i.e., leaves, flowers, fruits and others. In order to visualize the distribution of the annotation, we used KAAS (KEGG Automatic Annotation Server, https://www.genome.jp/kegg/kaas/) applying the SBH (single-directional best hit) approach against the default set of genome-sequenced organisms. The genes were grouped according to the annotations using KAAS, and their expression levels were calculated by summing up the normalized expression levels of the corresponding genes. We focused on the enzyme classification, CYP classification, glycosyltransferase classification and metabolic pathways. Expression levels of the annotated genes were classified according to the enzyme classification provided as the IUBMB's Enzyme List (also known as the EC numbers). Some oxidoreductases (such as EC 1.1, EC 1.11, and EC 1.14), transferases (such as EC 2.1, EC 2.3, EC 2.4, and EC 2.7), hydrolases (such as EC 3.1, EC 3.4, EC 3.6) and lyases (such as EC4.1 and EC 4.2) were highly expressed in most plant tissues. Among them, expression levels of some enzymes (such as EC 1.11, EC 2.3, EC 3.4, and EC 4.1) were shown to be tissue-specific. Among the CYP genes, CYP88 family genes were expressed significantly, but they depended on the plant tissues. CYP73, CYP74 and CYP75 family genes also showed relatively high expressions. Most glycosyltransferases belonged to those for storage polysaccharides and structural polysaccharides, but these also depended on plant tissues. Glycosyltransferases that act on hydrophobic molecules and trehalose were also shown to be expressed relatively high. Regarding metabolic pathways, leaves generally express genes for energy metabolism. Other significant expressions include those for carbohydrate metabolism and amino acid metabolism. It was also found that the expression levels differed significantly dependent on the plant tissues for energy metabolism and biosynthesis of secondary metabolism. Leaves were also found to highly express genes related to photosynthesis.

    S2

  • Table S1 The list of prim

    ers used in this study

    S3

    Nam

    e (for sub-cloning)Sequence

    VectorM

    ulti cloning siteM

    cCBS_Bam

    HI-N

    5'-GAG

    AGG

    ATCC

    ATGTG

    GAG

    GTTAAAG

    GTG

    GG

    AGC

    -3'M

    cCBS_SalI-C

    5'-TTCC

    GTC

    GAC

    TTATTCG

    GTC

    AAAACC

    CTATG

    GC

    -3'C

    YP81AQ19_N

    otI_N5'-AAG

    GG

    CG

    GC

    CG

    CATG

    GAG

    AATATTTTGC

    TGTATTTC

    TC-3'

    CYP81AQ

    19_NotI_C

    5'-TAGTG

    CG

    GC

    CG

    CTC

    ATTTTCTAAC

    AAGAC

    CAAC

    TTC-3'

    CYP88L7_N

    otI_N5'-AAG

    CTTG

    CG

    GC

    CG

    CATG

    GAAC

    TTTTGAG

    CAATTTTG

    GG

    GC

    C-3'

    CYP88L7_SpeI_C

    5'-AAGC

    TTACTAG

    TCTAATAAC

    TTGG

    GAG

    CTTAG

    TTATGTTG

    G-3'

    CYP88L8_N

    otI_N5'-AG

    CTG

    CG

    GC

    CG

    CATG

    GAAATAC

    TGAAC

    AATTTTTGG

    GC

    TC-3'

    CYP88L8_SpeI_C

    5'-AGC

    TACTAG

    TCTAATAAC

    TTTGG

    AGTTTAG

    TTATTTTGG

    TGAG

    -3'C

    YP81AQ19_Bam

    HI_N

    5'-AAACC

    CG

    GATC

    CATG

    GAG

    AATATTTTGC

    TGTATTTC

    TCAC

    TCTC

    -3'C

    YP81AQ19_SalI_C

    5'-AAACC

    CG

    TCG

    ACTC

    ATTTTCTAAC

    AAGAC

    CAAC

    TTCTTC

    CAC

    C-3'

    LjCR

    P_NotI_N

    5'-AAGG

    GC

    GG

    CC

    GC

    ATGG

    AAGAATC

    AAGC

    TCC

    ATGAAG

    -3'LjC

    RP_PacI_C

    5'-TTAATTAATCAC

    CATAC

    ATCAC

    GC

    AAATAC-3'

    Nam

    e (for RT-PC

    R)

    SequenceM

    cCBS_Fw

    5'-ACG

    GC

    AAGTG

    TGG

    GAG

    TTCTG

    -3'M

    cCBS_R

    v5'-TC

    GG

    AAGTTTG

    CTTTC

    GATG

    G-3'

    CYP81AQ

    19_Fw5'-G

    ATGTC

    TCATTTG

    CTC

    AACAATC

    CA-3'

    CYP81AQ

    19_Rv

    5'-TCG

    CAATG

    TCTC

    GG

    CG

    ATTA-3'C

    YP88L7_Fw5'-G

    GTG

    GAG

    GG

    TTTGG

    AGG

    AA-3'C

    YP88L7_Rv

    5'-GAAAAC

    AGG

    CC

    CC

    AAGAAAAC

    -3'M

    cActin_Fw5'-C

    ACTC

    AACC

    CAAAG

    GC

    TAACAG

    AGA-3'

    McActin_R

    v5'-C

    CATC

    ACC

    AGAATC

    CAG

    CAC

    A-3'

    pESC-U

    RA

    pESC-LEU

    211121

  • Table S2 C

    ontigs from R

    NA

    -seq analysis of M. charantia highly correlated w

    ith McC

    BS gene in

    ConfeitoG

    UIplus analysis. These contigs w

    ere annotated by BLA

    STX search.

    S4

    Feature IDR

    ename

    Description

    M01391

    McC

    BSgb|AEM

    42982.1| cucurbitadienol synthase [Siraitia grosvenorii]

    M00873

    CYP88L8

    ref|XP_004164374.1| PRED

    ICTED

    : beta-amyrin 11-oxidase-like [C

    ucumis sativus]

    M01465

    CYP81AQ

    19ref|XP_004151921.1| PR

    EDIC

    TED: LO

    W Q

    UALITY PR

    OTEIN

    : cytochrome P450 81D

    1-like [Cucum

    is sativus]M

    03390ref|XP_004133794.1| PR

    EDIC

    TED: cytochrom

    e b5-like [Cucum

    is sativus]M

    03394ref|XP_004136172.1| PR

    EDIC

    TED: ABC

    transporter C fam

    ily mem

    ber 4-like [Cucum

    is sativus]M

    04110C

    YP88L7ref|XP_004164374.1| PR

    EDIC

    TED: beta-am

    yrin 11-oxidase-like [Cucum

    is sativus]M

    04600em

    b|CAN

    72427.1| hypothetical protein VITISV_008825 [Vitis vinifera]M

    05208ref|XP_004146353.1| PR

    EDIC

    TED: probable 1-deoxy-D

    -xylulose-5-phosphate synthase 2, chloroplastic-like [Cucum

    is sativus]M

    05234ref|XP_004142907.1| PR

    EDIC

    TED: squalene m

    onooxygenase-like [Cucum

    is sativus]M

    08299em

    b|CAN

    72427.1| hypothetical protein VITISV_008825 [Vitis vinifera]M

    11752N

    o hits foundM

    12380N

    o hits foundM

    14136N

    o hits foundM

    14201ref|XP_004161745.1| PR

    EDIC

    TED: LO

    W Q

    UALITY PR

    OTEIN

    : uncharacterized protein C5H

    10.03-like [Cucum

    is sativus]M

    16398ref|XP_004135271.1| PR

    EDIC

    TED: inorganic phosphate transporter 2-1, chloroplastic-like [C

    ucumis sativus]

    M19783

    ref|XP_004134262.1| PRED

    ICTED

    : protein FEZ-like [Cucum

    is sativus]M

    23291N

    o hits foundM

    25354N

    o hits foundM

    25927N

    o hits found

  • Figure S1 LC/MS-MS chromatogram of yeast extracts from expression of CYP81AQ19 and other CYP81As (CYP81A_1 ~ CYP 81A_6), identified from RNA-seq data of M. charantia, together with McCBS and LjCPR. Only CYP81AQ19 was shown to produce a hydroxylated product 2. DOS: dioxidosqualene, ES: ergosterol, OS: oxidosqualene, CB: cucurbitadienol.

    0 10 20 30 40 50 60 70

    Time (min)

    0

    100

    0

    100

    0

    100

    0

    100

    0

    100

    0

    100

    0

    10053.72

    33.21 50.2263.7847.0423.18

    53.85

    47.1850.09

    47.28 53.82

    33.29 58.40

    54.0147.28

    50.38

    53.8847.29

    50.3333.289.27

    53.8747.34

    50.42 63.8058.4533.40

    53.6547.07

    50.26 58.2833.2127.39

    CYP81AQ19

    CYP81A_1!

    CYP81A_2!

    CYP81A_3!

    CYP81A_4!

    CYP81A_5!

    CYP81A_6!

    CBOSESDOS2

    S5

  • DOS:dioxidosqualene!ES:ergosterol!OS:oxidosqualeneCB:cucurbitadienol

    Figure S2 MS spectra of peaks obtained from LC/MS-MS analysis of yeast extracts from CYP81AQ19 expression with McCBS.

    ES

    DOS

    CB

    OS

    CYP81AQ19product (2)

    [M + H - H2O]+

    [M + H]+=443.39O

    O

    [M + H]+=427.39

    [M + H]+=397.35

    [M + H]+=427.39

    O

    HO

    H H

    HOHH

    S6

  • S7

    Figure S3 Enlarged LC/MS-MS chromatogram (Fig. 3) of yeast extracts from expression of CYP81AQ19, CYP88L7, and co-expression of CYP88L7 and CYP81AQ19 along with McCBS. MS spectra of each circled peaks are shown in Fig. S3.

    McCBS + CYP81AQ192

    McCBS + CYP88L7

    McCBS + CYP88L7 + CYP81AQ19

  • S8

    Figure S4 MS spectra of peaks obtained from LC/MS-MS analysis of yeast extracts from expression of CYP88L7 and co-expression of CYP88L7 and CYP81AQ19. Each circled number corresponds to peaks shown in Fig. S2.

    6

    5

    10 or 11

    7

    10 or 11

  • Cucurbita-5,24-diene-3β,23α-diol (2)Figure S5 Structure and 1H- and 13C-NMR assignments of cucurbita-5,24-diene-3β,23α-diol (2) in CDCl3. Arrows indicate a correlation observed by HMBC.

    S9

    HO

    OHH H

    H

    1

    2

    3

    4

    56

    7

    89

    10

    19

    11

    12

    14 15

    161317

    1820

    30

    21 22 23

    24

    2526

    27

    2829

    Position 1H-NMR 13C-NMR

    1 21.12 28.83 3.473, 1H, brs 76.64 41.45 141.26 5.582, 1H, d (J = 6.0 Hz) 121.57 24.38 43.69 34.410 37.811 32.312 34.713 46.314 49.215 30.416 28.117 50.918 0.874, 3H, s 15.419 0.909, 3H, s 28.020 32.621 0.962, 3H, d (J = 6.4 Hz) 18.722 44.423 4.460, 1H, td (J = 7.6, 2.8 Hz) 66.024 5.187, 1H, d (J = 8.7 Hz) 128.925 133.926 1.676, 3H, s 18.127 1.698, 3H, s 25.728 1.016, 3H, s 27.229 1.130, 3H, s 25.430 0.790, 3H, s 17.7

  • Figure S6 1H-NMR spectrum of cucurbita-5,24-diene-3β,23α-diol (2) measured in CDCl3.

    Figure S7 13C-NMR spectrum of cucurbita-5,24-diene-3β,23α-diol (2) measured in CDCl3.

    S10

    HO

    OH

    (2)

    HO

    OH

    (2)

    PPM

    5.0 4.0 3.0 2.0 1.0

    5.5880

    5.5761

    5.1959

    5.1785

    4.4740

    4.4602

    4.4438

    3.4726

    1.6980

    1.6779

    1.6761

    1.2473

    1.1300

    1.0155

    1.0027

    0.9679

    0.9551

    0.9092

    0.8735

    0.7901

    PPM

    140 130 120 110 100 90 80 70 60 50 40 30 20 10

    141.

    4180

    134.

    1460

    129.

    2014

    121.

    7538

    77.

    5113

    77.

    2518

    77.

    0000

    76.

    8779

    66.

    2026

    51.

    1931

    49.

    4381

    46.

    5842

    44.

    6994

    43.

    8066

    41.

    6624

    38.

    0302

    34.

    9322

    34.

    6651

    32.

    8871

    32.

    5209

    30.

    6895

    29.

    9493

    29.

    5678

    29.

    0947

    28.

    3622

    28.

    2859

    27.

    4617

    25.

    9890

    25.

    6991

    24.

    5774

    21.

    3725

    18.

    9307

    18.

    3736

    17.

    9845

    15.

    6418

    14.

    3828

  • Figure S8 HMBC spectrum of cucurbita-5,24-diene-3β,23α-diol (2) measured in CDCl3.

    Figure S9 HMQC spectrum of cucurbita-5,24-diene-3β,23α-diol (2) measured in CDCl3.

    S11

    4 2

    PPM

    10050

    PPM

    4 2

    PPM

    140130

    120110

    10090

    8070

    6050

    4030

    20

    PPM

  • Figure S10 Determination of absolute configuration of C23-hydroxyl group in cucurbita-5,24-diene-3β,23α-diol (2) using modified Mosher’s method. 1H-NMR of (S)- or (R)-MTPA esterified 2 were recorded in CDCl3.

    OMTPA

    +0.08+0.04

    -0.13 -0.04

    -0.01+0.003+0.070 -0.144

    -0.028-0.005

    18

    2124

    26

    27

    S12

    Position !S-ester (ppm) ! -ester (ppm) "!SR (=!S-!R)18 0.8524 0.8497 0.002721 0.9656 0.8960 0.069624 5.0347 5.1785 -0.143826 1.6971 1.7246 -0.027527 1.7814 1.7860 -0.0046

  • Figure S11 1H-NMR spectrum of (R)-MTPA-conjugated cucurbita-5,24-diene-3β,23α-diol (2) measured in CDCl3.

    Figure S12 1H-NMR spectrum of (S)-MTPA-conjugated cucurbita-5,24-diene-3β,23α-diol (2) measured in CDCl3.

    S13

    HO

    O-(S)-MTPA

    HO

    O-(R)-MTPA

    PPM

    5.0 4.0 3.0 2.0 1.0

    5.5871

    5.5834

    5.5807

    5.5715

    5.1785

    4.8478

    3.5450

    3.4900

    3.4726

    3.3700

    3.3673

    1.7878

    1.7860

    1.7246

    1.5744

    1.3050

    1.1337

    1.1236

    1.0201

    1.0045

    0.9908

    0.9120

    0.9065

    0.8973

    0.8799

    0.8680

    0.8561

    0.8497

    0.7901

    0.7471

    0.6683

    PPM

    5.0 4.0 3.0 2.0 1.0

    5.5899

    5.5862

    5.5834

    5.5743

    5.0347

    4.8505

    3.5194

    3.4928

    3.4754

    1.7814

    1.7787

    1.6999

    1.6971

    1.5771

    1.3096

    1.3078

    1.2134

    1.1914

    1.1364

    1.0228

    1.0155

    0.9715

    0.9596

    0.9147

    0.8708

    0.8589

    0.8524

    0.7929

    0.7874

    0.7801

  • Cucurbita-5,23,25-trien-3β-ol (3)

    Figure S13 Structure and 1H- and 13C-NMR assignments of cucurbita-5,23,25-trien-3β-ol (3) in CDCl3. Arrows indicate a correlation observed by HMBC.

    S14

    HO

    H H

    HPosition 1H-NMR 13C-NMR

    1 21.12 28.93 3.474, 1H, brs 76.64 41.45 141.26 5.587, 1H, d (J = 5.1 Hz) 121.47 24.48 43.69 34.510 37.811 32.312 34.813 46.314 49.215 30.316 27.917 50.418 0.876, 3H, s 15.419 0.912, 3H, s 28.020 36.721 0.887, 3H, d (J = 6.0 Hz) 18.822 39.823 5.622, 1H, m 129.524 6.109, 1H, d (J = 16.1 Hz) 134.025 142.226 4.848, 2H, brs 114.027 1.835, 3H, s 18.828 1.022, 3H, s 27.329 1.135, 3H, s 25.430 0.798, 3H, s 17.8

  • Figure S14 1H-NMR spectrum of cucurbita-5,23,25-trien-3β-ol (3) measured in CDCl3.

    HO(3)

    PPM

    6.0 5.0 4.0 3.0 2.0 1.0

    6.1249

    6.0928

    5.6522

    5.6393

    5.6219

    5.6045

    5.5917

    5.5816

    4.8478

    4.3054

    4.2917

    4.2788

    3.4735

    1.8346

    1.5725

    1.2482

    1.1346

    1.0219

    0.9120

    0.8928

    0.8808

    0.8763

    0.7975

    Figure S15 13C-NMR spectrum of cucurbita-5,23,25-trien-3β-ol (3) measured in CDCl3.

    S15

  • Cucurbita-5,23-dien-3β,25-diol (4)

    Figure S16 Structure and 1H- and 13C-NMR assignments of cucurbita-5,23-dien-3β,25-diol (4) in CDCl3.

    S16

    HO

    OH

    H H

    HPosition 1H-NMR 13C-NMR

    1 21.12 28.83 3.474, 1H, brs 76.54 41.45 141.26 5.581, 1H, brs 121.47 24.38 43.69 34.410 37.811 30.312 34.713 46.214 49.115 29.916 28.017 50.118 0.850, 3H, s 15.419 0.913, 3H, s 27.820 32.321 0.874, 3H, d (J = 6.0 Hz) 18.722 39.123 5.581, 1H, brs 125.524 5.581, 1H, brs 139.325 70.826 1.306, 6H, s 29.727 1.306, 6H, s 29.828 1.020, 3H, s 27.229 1.134, 3H, s 25.430 0.790, 3H, s 17.8

  • Figure S17 1H-NMR spectrum of cucurbita-5,23-dien-3β,25-diol (4) measured in CDCl3.

    Figure S18 13C-NMR spectrum of cucurbita-5,23-dien-3β,25-diol (4) measured in CDCl3.

    S17

    (Tho

    usan

    ds)

    00.

    10.

    20.

    30.

    40.

    50.

    60.

    70.

    80.

    91.

    01.

    11.

    21.

    31.

    41.

    51.

    61.

    71.

    81.

    92.

    02.

    12.

    22.

    32.

    42.

    5

    X : parts per Million : 1H

    7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

    7.

    260

    7.

    233

    5.

    581

    3.

    474

    1.

    306

    1.

    250

    1.

    134

    1.

    020

    0.

    913

    0.

    890

    0.

    880

    0.

    877

    0.

    868

    0.

    850

    0.

    790

    (Tho

    usan

    ds)

    010

    .020

    .0

    X : parts per Million : 13C

    160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

    141

    .178

    139

    .338

    125

    .464

    121

    .448

    77.

    495

    77.

    251

    77.

    000

    76.

    743

    76.

    468

    70.

    753

    50.

    118

    49.

    141

    46.

    225

    43.

    603

    41.

    415

    39.

    123

    37.

    784

    36.

    219

    34.

    740

    34.

    435

    32.

    259

    30.

    315

    29.

    936

    29.

    844

    29.

    691

    28.

    848

    28.

    035

    27.

    809

    27.

    234

    25.

    443

    24.

    343

    21.

    116

    18.

    677

    17.

    754

    15.

    413

    HO

    OH

    (4)

    HO

    OH

    (4)

  • Cucurbita-5,24-diene-3β,19-diol (5) Figure S19 Structure and 1H- and 13C-NMR assignments of cucurbita-5,24-diene-3β,19-diol (5) in CDCl3. Arrows indicate a correlation observed by HMBC.

    S18

    HO

    HOH2C H

    H

    Position 1H-NMR 13C-NMR

    1 17.92 29.33 3.475, 1H, brs 76.54 37.25 141.36 5.641, 1H, d (J = 6.0 Hz) 122.57 24.78 38.89 41.310 36.011 30.912 31.913 45.814 48.915 34.816 29.717 50.418 0.861, 3H, s 14.8

    193.363, 1H, d (J = 10.5 Hz)3.534, 1H, d (J = 10.5 Hz) 68.9

    20 35.721 0.886, 3H, d (J = 6.5 Hz) 18.622 36.323 24.824 5.073, 1H, t (J = 7.1 Hz) 125.125 130.926 1.580, 3H, s 17.627 1.662, 3H, s 25.728 1.002, 3H, s 27.029 1.122, 3H, s 26.430 0.810, 3H, s 20.2

  • Figure S20 1H-NMR spectrum of cucurbita-5,24-diene-3β,19-diol (5) measured in CDCl3.

    Figure S21 13C-NMR spectrum of cucurbita-5,24-diene-3β,19-diol (5) measured in CDCl3.

    S19

    abun

    danc

    e0

    100.

    020

    0.0

    300.

    040

    0.0

    500.

    060

    0.0

    700.

    080

    0.0

    900.

    0

    X : parts per Million : 1H

    6.0 5.0 4.0 3.0 2.0 1.0

    5.

    647

    5.

    635

    5.

    073

    4.

    276

    4.

    259

    3.

    544

    3.

    523

    3.

    475

    3.

    373

    3.

    352

    2.

    162

    1.

    662

    1.

    580

    1.

    232

    1.

    122

    1.

    002

    0.

    892

    0.

    879

    0.

    861

    0.

    810

    (Tho

    usan

    ds)

    010

    .020

    .030

    .040

    .050

    .060

    .070

    .0

    X : parts per Million : 13C

    140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

    141

    .301

    130

    .977

    130

    .922

    125

    .128

    122

    .536

    77.

    251

    77.

    000

    76.

    743

    76.

    456

    68.

    883

    50.

    400

    48.

    920

    45.

    785

    41.

    305

    37.

    179

    36.

    348

    35.

    724

    31.

    880

    30.

    938

    29.

    667

    29.

    331

    26.

    978

    25.

    706

    24.

    771

    24.

    710

    22.

    656

    18.

    598

    17.

    883

    17.

    589

    14.

    759

    HO

    HOH2C

    (5)

    HO

    HOH2C

    (5)

  • Figure S22 HMBC spectrum of cucurbita-5,24-diene-3β,19-diol (5) measured in CDCl3.

    Figure S23 HMQC spectrum of cucurbita-5,24-diene-3β,19-diol (5) measured in CDCl3.

    S20

    X : parts per Million : 1H5.0 4.0 3.0 2.0 1.0

    Y :

    parts

    per

    Mill

    ion

    : 13C

    150.

    014

    0.0

    130.

    012

    0.0

    110.

    010

    0.0

    90.0

    80.0

    70.0

    60.0

    50.0

    40.0

    30.0

    20.0

    10.0

    (Thousands)0 20.0 40.0 60.0

    (Tho

    usan

    ds)

    01.

    0

    X : parts per Million : 1H5.0 4.0 3.0 2.0 1.0

    Y :

    parts

    per

    Mill

    ion

    : 13C

    160.

    015

    0.0

    140.

    013

    0.0

    120.

    011

    0.0

    100.

    090

    .080

    .070

    .060

    .050

    .040

    .030

    .020

    .010

    .0

    (Thousands)0 20.0 40.0 60.0

    (Tho

    usan

    ds)

    01.

    0

  • 5β,19-Epoxy-cucurbita-6,24-dien-3β-ol (6)

    Figure S24 Structure and 1H- and 13C-NMR assignments of 5β,19-epoxy-cucurbita-6,24-dien-3β-ol (6) in CDCl3. Arrows indicate a correlation observed by HMBC.

    S21

    HOO

    H

    H

    Position 1H-NMR 13C-NMR

    1 17.62 23.53 3.404, 1H, brs 76.24 37.15 87.56 6.039, 1H, d (J = 10.0 Hz) 132.17 5.637, 1H, dd (J = 9.5, 3.5 Hz) 131.68 52.09 45.410 38.711 27.312 31.013 45.214 48.515 33.116 28.017 50.318 0.863, 3H, s 14.8

    193.513, 1H, d (J = 8.5 Hz)3.670, 1H, d (J = 8.5 Hz) 79.8

    20 35.721 0.884, 3H, d (J = 7.0 Hz) 18.522 36.323 24.824 5.092, 1H, t (J = 7.1 Hz) 125.025 131.126 1.602, 3H, s 17.527 1.682, 3H, s 25.728 0.896, 3H, s 24.529 1.200, 3H, s 20.530 0.855, 3H, s 20.0

  • Figure S25 1H-NMR spectrum of 5β,19-epoxy-cucurbita-6,24-dien-3β-ol (6) measured in CDCl3.

    Figure S26 13C-NMR spectrum of 5β,19-epoxy-cucurbita-6,24-dien-3β-ol (6) measured in CDCl3.

    S22

    (Tho

    usan

    ds)

    00.

    10.

    20.

    30.

    40.

    50.

    60.

    70.

    80.

    91.

    0

    X : parts per Million : 1H

    6.0 5.0 4.0 3.0 2.0 1.0

    6.

    049

    6.

    029

    5.

    650

    5.

    643

    5.

    631

    5.

    624

    5.

    092

    3.

    678

    3.

    661

    3.

    521

    3.

    504

    3.

    404

    1.

    682

    1.

    602

    1.

    249

    1.

    200

    0.

    896

    0.

    891

    0.

    877

    0.

    863

    0.

    855

    (Tho

    usan

    ds)

    -5.0

    -3.0

    -1.0

    1.0

    3.0

    5.0

    7.0

    9.0

    11.0

    13.0

    15.0

    17.0

    19.0

    X : parts per Million : 13C

    140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0

    132

    .102

    131

    .594

    131

    .063

    125

    .024

    87.

    507

    79.

    824

    77.

    257

    77.

    000

    76.

    743

    76.

    163

    51.

    970

    50.

    320

    48.

    535

    45.

    418

    45.

    186

    35.

    669

    33.

    108

    31.

    910

    30.

    944

    29.

    698

    29.

    478

    29.

    423

    29.

    355

    27.

    283

    24.

    826

    24.

    502

    23.

    549

    22.

    681

    20.

    462

    17.

    540

    14.

    124

    HOO (6)

    HOO (6)

  • Figure S27 HMBC spectrum of 5β,19-epoxy-cucurbita-6,24-dien-3β-ol (6) measured in CDCl3.

    Figure S28 HMQC spectrum of 5β,19-epoxy-cucurbita-6,24-dien-3β-ol (6) measured in CDCl3.

    S23

    X : parts per Million : 1H5.0 4.0 3.0 2.0 1.0

    Y :

    parts

    per

    Mill

    ion

    : 13C

    150.

    014

    0.0

    130.

    012

    0.0

    110.

    010

    0.0

    90.0

    80.0

    70.0

    60.0

    50.0

    40.0

    30.0

    20.0

    10.0

    (Thousands)0 20.0 40.0 60.0

    (Tho

    usan

    ds)

    01.

    0

    X : parts per Million : 1H5.0 4.0 3.0 2.0 1.0

    Y :

    parts

    per

    Mill

    ion

    : 13C

    160.

    015

    0.0

    140.

    013

    0.0

    120.

    011

    0.0

    100.

    090

    .080

    .070

    .060

    .050

    .040

    .030

    .020

    .010

    .0

    (Thousands)0 20.0 40.0 60.0

    (Tho

    usan

    ds)

    01.

    0

  • Figure S29 1H-NMR spectrum of semi-purified sample containing mixture of (7), (8), and (9) in CDCl3.

    Figure S30 13C-NMR spectrum of semi-purified sample containing mixture of (7), (8), and (9) in CDCl3.

    S24

    PPM

    9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

    9.7318

    5.8949

    5.8830

    5.6567

    5.6457

    5.5779

    5.3379

    5.1932

    5.1758

    4.4712

    4.4538

    4.4346

    4.2743

    4.1808

    4.0901

    3.9738

    3.9628

    3.7090

    3.5688

    3.5542

    3.5322

    3.4836

    3.3829

    3.3609

    1.7035

    1.6990

    1.6962

    1.6742

    1.6083

    1.5899

    1.2995

    1.2427

    1.1878

    1.1438

    1.1310

    1.0457

    1.0109

    0.9697

    0.9569

    0.9019

    0.8845

    0.8708

    0.8570

    0.8149

    0.7370

    PPM

    140 130 120 110 100 90 80 70 60 50 40 30 20 10

    141.

    3112

    139.

    5409

    134.

    9167

    134.

    8099

    133.

    8026

    129.

    9720

    128.

    9114

    128.

    8351

    125.

    0732

    125.

    0197

    124.

    3940

    123.

    7836

    122.

    5779

    78.

    2285

    77.

    2518

    77.

    0000

    76.

    7482

    76.

    4964

    76.

    1148

    70.

    7429

    69.

    0336

    66.

    1263

    65.

    9203

    65.

    8287

    50.

    9642

    50.

    6895

    49.

    8501

    49.

    0184

    47.

    6830

    47.

    4770

    45.

    9356

    45.

    2412

    44.

    4018

    44.

    3026

    41.

    3496

    41.

    3267

    39.

    6098

    38.

    9993

    38.

    8543

    37.

    1985

    36.

    7788

    36.

    5041

    36.

    1989

    36.

    0920

    34.

    7872

    34.

    6193

    32.

    5896

    32.

    5438

    31.

    9028

    29.

    9112

    29.

    6899

    29.

    3465

    29.

    3007

    29.

    0871

    28.

    8582

    28.

    3469

    28.

    1714

    28.

    0188

    27.

    6754

    27.

    3855

    27.

    1871

    27.

    0039

    26.

    4240

    26.

    3553

    25.

    7220

    25.

    4549

    25.

    3633

    25.

    2031

    24.

    7529

    23.

    3794

    23.

    1581

    22.

    6773

    21.

    1512

    20.

    9681

    20.

    2508

    19.

    6174

    18.

    6789

    18.

    1066

    17.

    8471

    15.

    9547

    15.

    8860

    14.

    8483

    14.

    1234

    HO

    HOH2COH

    (7)

    HO

    OHC

    OH

    OH

    (8)

    HO

    OHC

    OH

    OH

    (9)

    HO

    HOH2COH

    (7)

    HO

    OHC

    OH

    OH

    (8)

    HO

    OHC

    OH

    OH

    (9)

  • Figure S31 HMBC spectrum of semi-purified sample containing mixture of (7), (8), and (9) in CDCl3.

    Figure S32 HMQC spectrum of semi-purified sample containing mixture of (7), (8), and (9) in CDCl3.

    S25

    9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

    PPM

    140130

    120110

    10090

    8070

    6050

    4030

    2010

    0

    PPM

    7.5 5.0 2.5

    PPM

    140130

    120110

    10090

    8070

    6050

    4030

    2010

    PPM

  • Cucurbita-5,24-diene-3β,19,23α-triol (7)

    Figure S33 Structure and 1H- and 13C-NMR assignments of cucurbita-5,24-diene-3β,19,23α-triol (7) in CDCl3. Arrows indicate a correlation observed by HMBC.

    Figure S34 1H-NMR spectrum of cucurbita-5,24-diene-3β,19,23α-triol (7) measured in CDCl3.

    S26

    HO

    HOH2COH

    H

    H

    PPM

    6.0 5.0 4.0 3.0 2.0 1.0

    5.6641

    5.6531

    5.1977

    5.1813

    4.4822

    4.4767

    4.4593

    4.4456

    4.4401

    4.2898

    3.5597

    3.5386

    3.4873

    3.3957

    3.3746

    2.4007

    2.3787

    2.2514

    2.2358

    2.0105

    1.7026

    1.6816

    1.6128

    1.5945

    1.1364

    1.0173

    0.9752

    0.9624

    0.9092

    0.8213

    HO

    HOH2COH

    (7)

    Position 1H-NMR 13C-NMR

    1 18.12 28.93 3.487, 1H, brs 76.54 41.45 141.46 5.659, 1H, d (J = 5.5 Hz) 122.67 25.58 38.99 49.010 37.211 27.012 29.913 46.014 51.015 34.816 28.017 51.018 0.909, 3H, s 14.8

    193.385, 1H, d (J = 10.6 Hz)3.549, 1H, d (J = 10.6 Hz) 69.0

    20 32.621 0.969, 3H, d (J = 6.4 Hz) 20.222 44.423 4.461, 1H, td (J = 9.2, 2.8 Hz) 65.924 5.190, 1H, d (J = 8.2 Hz) 128.925 134.126 1.703, 3H, s 26.427 1.681, 3H, s 17.928 1.017, 3H, s 28.029 1.136, 3H, s 25.730 0.821, 3H, s 18.7

  • Figure S35 13C-NMR spectrum of cucurbita-5,24-diene-3β,19,23α-triol (7) measured in CDCl3.

    Figure S36 HMBC spectrum of cucurbita-5,24-diene-3β,19,23α-triol (7) measured in CDCl3.

    S27

    PPM

    140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

    141.

    1052

    128.

    6748

    122.

    3414

    99.

    6249

    77.

    0000

    76.

    7482

    76.

    4887

    76.

    2217

    68.

    7284

    65.

    6761

    50.

    7276

    48.

    7666

    45.

    6990

    44.

    1653

    41.

    1054

    38.

    6254

    36.

    9619

    35.

    8479

    34.

    5507

    32.

    3530

    29.

    6747

    28.

    5987

    27.

    7899

    26.

    7369

    26.

    1417

    25.

    4778

    25.

    2031

    19.

    9914

    18.

    4423

    17.

    8624

    17.

    6106

    14.

    5965

    HO

    HOH2COH

    (7)

    4 2

    PPM

    10050

    PPM

  • 3β,7,23α-Trihydroxy-cucurbita-5,24-dien-19-al (8)

    Figure S37 Structure and 1H- and 13C-NMR assignments of 3β,7,23α-trihydroxy-cucurbita-5,24-dien-19-al (8) in CDCl3. Arrows indicate a correlation observed by HMBC.

    Figure S38 1H-NMR spectrum of 3β,7,23α-trihydroxy-cucurbita-5,24-dien-19-al (8) measured in CDCl3.

    S28

    HO

    OHCOH

    OH

    H

    H

    PPM

    9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

    9.7015

    7.2600

    5.8885

    5.1977

    5.1813

    4.4612

    3.9729

    3.9628

    3.5679

    3.4671

    2.0123

    1.7054

    1.6834

    1.5689

    1.2409

    1.0549

    0.9926

    0.9798

    0.8387

    0.7498

    HO

    OHC

    OH

    OH

    (8)

    Position 1H-NMR 13C-NMR

    1 21.22 28.33 3.568, 1H, brs 76.54 41.35 145.76 5.889, 1H, d (J = 3.2 Hz) 124.47 3.968, 1H, d (J = 5.1 Hz) 66.18 47.79 49.910 36.511 22.712 31.913 45.914 49.015 34.816 28.217 51.018 0.912, 3H, s 14.819 9.702, 1H, s 187.820 32.621 0.986, 3H, d (J = 6.2 Hz) 18.722 44.423 4.461, 1H, td (J = 9.2, 2.8 Hz) 65.924 5.190, 1H, d (J = 8.2 Hz) 128.925 133.826 1.705, 3H, s 25.727 1.683, 3H, s 18.728 1.055, 3H, s 27.429 1.241, 3H, s 25.530 0.750, 3H, s 18.1

  • 3β,7,25-Trihydroxy-cucurbita-5,23-dien-19-al (9)

    Figure S39 Structure and 1H- and 13C-NMR assignments of 3β,7,25-trihydroxy-cucurbita-5,23-dien-19-al (9) in CDCl3. Arrows indicate a correlation observed by HMBC.

    Figure S40 1H-NMR spectrum of 3β,7,25-trihydroxy-cucurbita-5,23-dien-19-al (9) measured in CDCl3.

    S29

    HO

    OHC

    OH

    OH

    H

    H

    PPM

    9 8 7 6 5 4 3 2 1

    9.7070

    7.2600

    5.8968

    5.8904

    5.5917

    5.5880

    5.5816

    5.5725

    3.9747

    3.9646

    3.5697

    2.0957

    2.0095

    1.3069

    1.2418

    1.0558

    0.9074

    0.8955

    0.8854

    0.7471

    HO

    OHC

    OH

    OH

    (9)

    Position 1H-NMR 13C-NMR

    1 21.22 28.33 3.570, 1H, brs 76.54 41.35 145.76 5.894, 1H, d (J = 3.2 Hz) 124.47 3.970, 1H, d (J = 5.1 Hz) 66.18 47.79 49.910 36.511 22.712 31.913 45.914 49.015 34.816 28.217 51.018 0.885, 3H, s 14.119 9.707, 1H, s 187.820 36.221 0.901, 3H, d (J = 6.0 Hz) 18.722 39.023 5.582, 1H, brs 125.124 5.588, 1H, brs 139.525 70.726 1.307, 6H, s 29.927 1.307, 6H, s 29.928 1.056, 3H, s 27.429 1.242, 3H, s 25.530 0.747, 3H, s 18.1

  • 5β,19-Epoxy-cucurbita-6,24-diene-3β,23α-diol (10) Figure S41 Structure and 1H- and 13C-NMR assignments of 5β,19-epoxy-cucurbita-6,24-diene-3β,23α-diol (10) in CDCl3. Arrows indicate a correlation observed by HMBC.

    5β,19-Epoxy-cucurbita-6,23-diene-3β,25-diol (11) Figure S42 Structure and 1H- and 13C-NMR assignments of 5β,19-epoxy-cucurbita-6,23-diene-3β,25-diol (11) in CDCl3. Arrows indicate a correlation observed by HMBC.

    S30

    HOO

    OHH

    H

    HOO

    OH

    H

    H

    Position 1H-NMR 13C-NMR

    1 17.62 23.53 3.405, 1H, brd 76.14 37.25 87.56 6.038, 1H, d (J = 10.1 Hz) 131.77 5.634, 1H, dd (J = 9.6, 3.7 Hz) 131.58 52.09 45.410 38.811 24.512 30.713 45.214 48.615 33.116 27.917 50.818 0.862, 3H, s 14.9

    193.511, 1H, d (J = 8.3 Hz)3.669, 1H, d (J = 8.3 Hz) 79.8

    20 32.521 0.972, 3H, d (J = 6.5 Hz) 18.622 44.423 4.469, 1H, td (J = 7.6, 2.8 Hz) 65.924 5.195, 1H, d (J = 8.2 Hz) 128.925 133.926 1.708, 3H, s 25.727 1.687, 3H, s 18.128 0.893, 3H, s 24.529 1.199, 3H, s 20.530 0.858, 3H, s 20.0

    Position 1H-NMR 13C-NMR

    1 17.62 23.53 3.405, 1H, brd 76.14 37.25 87.56 6.038, 1H, d (J = 10.1 Hz) 131.77 5.634, 1H, dd (J = 9.6, 3.7 Hz) 131.58 52.09 45.410 38.811 24.512 30.713 45.214 48.615 33.116 27.917 50.018 0.862, 3H, s 14.9

    193.511, 1H, d (J = 8.3 Hz)3.669, 1H, d (J = 8.3 Hz) 79.8

    20 36.121 0.883, 3H, d (J = 6.0 Hz) 18.622 39.023 5.585, 1H, brs 125.224 5.592, 1H, brs 139.525 70.726 1.311, 6H, s 29.727 1.311, 6H, s 29.728 0.893, 3H, s 24.529 1.199, 3H, s 20.530 0.858, 3H, s 20.0

  • Figure S43 1H-NMR spectrum of the mixture of (10) and (11) measured in CDCl3.

    Figure S44 13C-NMR spectrum of the mixture of (10) and (11) measured in CDCl3.

    S31

    PPM

    6.0 5.0 4.0 3.0 2.0 1.0

    6.0479

    6.0278

    5.6476

    5.6402

    5.6283

    5.6210

    5.5917

    5.5853

    5.5761

    5.2032

    5.1868

    4.4831

    4.4685

    4.4520

    4.0260

    4.0205

    4.0058

    4.0013

    3.6769

    3.6604

    3.6440

    3.5194

    3.5029

    3.4149

    3.3948

    1.7081

    1.6871

    1.3114

    1.3096

    1.2501

    1.1987

    0.9789

    0.9660

    0.8928

    0.8891

    0.8616

    0.8579

    PPM

    140 130 120 110 100 90 80 70 60 50 40 30 20 10

    139.

    5256

    131.

    7195

    131.

    6889

    131.

    5363

    128.

    8961

    125.

    2181

    87.

    4922

    79.

    8233

    77.

    2518

    77.

    0000

    76.

    7482

    76.

    1301

    65.

    8745

    51.

    9714

    51.

    9485

    50.

    8039

    49.

    9722

    48.

    5682

    45.

    4243

    45.

    3175

    45.

    2030

    44.

    3789

    39.

    0451

    38.

    7780

    37.

    1527

    36.

    1378

    33.

    1390

    33.

    0932

    32.

    5438

    31.

    9181

    30.

    8269

    30.

    7048

    29.

    9722

    29.

    8502

    29.

    6975

    28.

    2325

    27.

    9425

    27.

    3244

    25.

    7372

    24.

    5240

    23.

    5472

    20.

    4721

    20.

    0142

    19.

    9913

    18.

    5720

    18.

    1218

    17.

    5572

    14.

    9093

    14.

    8864

    HO

    OH

    O (11)

    HOO

    OH

    (10)

    HO

    OH

    O (11)

    HOO

    OH

    (10)

  • Figure S45 HMBC spectrum of the mixture of (10) and (11) measured in CDCl3.

    Figure S46 HMQC spectrum of the mixture of (10) and (11) measured in CDCl3.

    S32

    6 4 2

    PPM

    150140

    130120

    110100

    9080

    7060

    5040

    3020

    10

    PPM

    6 4 2

    PPM

    10050

    PPM

  • Cucurbita-5,24-diene-3β,7β-diol (12)

    Figure S47 Structure and 1H- and 13C-NMR assignments of cucurbita-5,24-diene-3β,7β-diol (12) in CDCl3. Arrows indicate a correlation observed by HMBC.

    Figure S48 Stereochemistry of C7 hydroxy group of cucurbita-5,24-diene-3β,7β-diol (12) determined by NOE measurements. Arrows indicate the observed NOE effects.

    S33

    H

    HO

    H3C

    CH3

    H

    H

    H

    HOH3C

    H

    H3C

    CH3

    7

    HO OH

    H H

    H

    Position 1H-NMR 13C-NMR

    1 21.02 28.73 3.537, 1H, brs 76.74 41.55 146.66 5.811, 1H, d (J = 5.5 Hz) 122.57 3.936, 1H, d (J = 5.5 Hz) 68.18 53.09 33.810 38.511 32.612 30.013 45.814 48.115 34.616 27.817 50.118 0.881, 3H, s 15.319 1.054, 3H, s 29.720 35.821 0.889, 3H, d (J = 7.0 Hz) 18.622 36.423 24.824 5.078, 1H, t (J = 7.1 Hz) 125.125 131.026 1.586, 3H, s 17.627 1.668, 3H, s 25.428 1.019, 3H, s 27.629 1.192, 3H, s 25.730 0.683, 3H, s 17.8

  • Figure S49 1H-NMR spectrum of cucurbita-5,24-diene-3β,7β-diol (12) measured in CDCl3.

    Figure S50 13C-NMR spectrum of cucurbita-5,24-diene-3β,7β-diol (12) measured in CDCl3.

    S34

    PPM

    10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

    10.0

    341

    7.2

    600

    5.8

    161

    5.8

    052

    5.0

    924

    5.0

    777

    5.0

    640

    3.9

    417

    3.9

    307

    3.5

    368

    1.9

    876

    1.6

    678

    1.6

    458

    1.6

    046

    1.5

    854

    1.2

    620

    1.2

    418

    1.1

    914

    1.0

    531

    1.0

    183

    0.8

    964

    0.8

    808

    0.8

    689

    0.6

    820

    PPM

    180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

    185.

    2638

    146.

    6221

    130.

    9564

    125.

    0808

    122.

    4940

    77.

    2518

    77.

    0000

    76.

    7482

    68.

    1255

    53.

    0321

    50.

    1324

    48.

    0951

    45.

    8135

    41.

    4564

    38.

    5415

    36.

    3515

    35.

    7563

    34.

    5506

    33.

    8334

    32.

    6125

    30.

    0409

    29.

    6670

    29.

    5755

    28.

    6521

    27.

    7594

    27.

    6296

    25.

    6991

    25.

    3710

    24.

    7834

    20.

    9757

    18.

    6026

    17.

    7937

    17.

    5953

    15.

    2756

    HO OH(12)

    HO OH(12)

  • Figure S51 HMBC spectrum of cucurbita-5,24-diene-3β,7β-diol (12) measured in CDCl3.

    Figure S52 HMQC spectrum of cucurbita-5,24-diene-3β,7β-diol (12) measured in CDCl3.

    S35

    10.0 7.5 5.0 2.5

    PPM

    190180

    170160

    150140

    130120

    110100

    9080

    7060

    5040

    3020

    PPM

    10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

    PPM

    180170

    160150

    140130

    120110

    10090

    8070

    6050

    4030

    20

    PPM

  • Figure S53 NOE difference spectrum (radiation at 3.94 ppm) of cucurbita-5,24-diene-3β,7β-diol (12) measured in CDCl3.

    Figure S54 NOE difference spectrum (radiation at 0.68 ppm) of cucurbita-5,24-diene-3β,7β-diol (12) measured in CDCl3.

    S36

    HO OH(12)

    HO OH(12)

  • Figure S55 Phylogenetic tree of three P450s identified in this study (denoted in red) with other related P450s involved in triterpene oxidations. Accession numbers are; CYP716A47 (JN604537), CYP716A53v2 (JX036031), CYP716E26 (XM_004241773), CYP716A12 (DQ335781), CYP716A94 (ALO23117), CYP716Y1 (KC963423), CYP51H10 (DQ680852), CYP714E19 (KF004520), CYP72A61 (DQ335793), CYP72A154 (AB558153), CYP72A397 (ALO23113), CYP93E1 (NC016095), CYP88D6 (AB433179), CYP87D16 (KF318735), CYP87D18 (HQ128571). The followings are from CuGenDB (http://cucurbitgenomics.org/). CYP81Q58 (Csa6G088160), Cl180 (Cla007079), Cm180 (Melo3C022375), CYP88L2 (Csa3G903540), Cl890 (Cla008355), Cm890 (Melo3C002192), CYP87D20 (Csa1G044890).

    S37