Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

Embed Size (px)

Citation preview

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    1/310

    SupporttotheSustainableEnergyProgramme

    (TT

    L1023)

    FinalReport

    Onbehalfof

    Inter AmericanDevelopmentBank

    Barcelona,9.7.2014

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    2/310

    ii

    ACKNOWLEDGEMENTS

    TheGovernmentoftheRepublicofTrinidadandTobago(GoRTT) is intheprocessof

    developing a Sustainable Energy Program (SEP), which aims to manage its naturalresourcesinamoresustainableway,enhancingtheuseofRenewableEnergy(RE)andEnergyEfficiency(EE). Aspart of this process,the InterAmerican DevelopmentBank(IDB), who is supporting the SEP through a policy loan, has commissioned theconsortiumoftheCentreofPartnershipsforDevelopment(CAD),ProjektConsultandLKSIngenieriatodevelopconsultancyservicesinordertosupporttheimplementationoftheSEP.Thefollowingreportisasummaryofthemajorresultsofthisproject.

    Thisreportwouldnothavebeenpossiblewithoutthevaluablecontributionofawiderange of stakeholders in Trinidad and Tobago. Especially, the RE and EE team of theMinistryofEnergyandEnergyAffairs,undertheleadershipofRandyMauriceandAnitaHankey,whoprovidedcontinuoussupportandinputinthepreparationofthisreport.In addition, the local consultancy firms, Energy Dynamics Limited, Smart Energy andTISSL,haveprovidedvaluableinputwithregardstotheimplementationofenergyauditsthroughouttheprocess.

    We also would like to extend our special thanks to the following experts that have

    authored different chapters of the report, Jochen Anrehm, Lauren Mia Britton,FernandoCasado,AndrewFerdinando,IndraHaraksingh,MichaelHoffmann,ChristophMenke,HerbertSamuelandWernerSiemers,aswellasitstwomaineditorsandprojectmanagers,JohannaKleinandDetlefLoy.

    Lastly,wewouldliketothankIDBsEnergyDivisionfortheleadershiptheyareadoptingpromotingamoresustainableenergyenvironmentinLatinAmericaandtheCaribbean,especially Natacha Marzolf, Christiaan Gischler, Gerard Alleng, Edwin Malagn andAnaiteeMills.

    CAD

    Signature

    LKS

    Signature

    ProjektConsult

    Signature

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    3/310

    iii

    AboutCAD

    CAD (Centre of Partnerships for Development) is a network of international expertsspecialized in international development, local economic development and public

    privatepartnerships,withafocusonGreenEconomyandSustainableEnergy,SMEsindeveloping countries, entrepreneurship, Base of the Pyramid and Monitoring andEvaluationtoolsandmethods.

    AboutProjektConsult

    Projekt Consult is engaged in the management and execution of projects ininternational cooperation programs. Prime emphasis is given to the promotingenvironmentallysoundworkproceduresandparticipatoryapproaches,aswellastheapplication and transfer of needsoriented technology acceptable to the community.

    ProjektConsultGmbH,working inclosecooperationwithdonoragenciesandprojectpartners, has developed comprehensive solutions whichcorrespondtotheparticularsocioeconomic,culturalandecologicalsituation.

    AboutLKSIngenieria

    LKS is an international engineering and consultancy cooperative which providesstrategicadvice,projectassessmentandprojectdevelopmentexpertiseinvariousareasincludingsustainabledevelopmentinwhichithasexpertsinrenewableenergies,energyefficiencyandclimatechange.

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    4/310

    iv

    CONTENT

    1 ExecutiveSummary........................................................................................................1

    2 Introduction...................................................................................................................8

    2.1 LimitationsoftheReport.............................................................................................9

    3 BaselineforElectricityGenerationandConsumption.................................................10

    3.1 ObjectiveandScopeoftheBaseline.........................................................................10

    3.2 TheTrinidadandTobagoEnergyMatrix....................................................................10

    3.3 NaturalGasandDieselOil(FinalUse)appliedforElectricityGeneration.................12

    3.3.1 AnnualDomesticConsumptionofNaturalGasandLNGExport.........................12

    3.3.2 AnnualConsumptionofOil..................................................................................14

    3.3.3 ProjectionsofNaturalGasforElectricityGeneration..........................................16

    3.4 TypeandGenerationEfficienciesofExistingandFuturePowerPlants....................20

    3.4.1 ProjectedTypeandGenerationEfficienciesofPowerPlants..............................21

    3.5 LongertermDevelopmentofPowerGenerationCapacity.......................................22

    3.6 PeakLoadsandPeakDemand...................................................................................23

    3.7 PastandfutureDevelopmentofCO2EmissionsinthePowerSector.......................24

    3.7.1 DevelopmentofpastCO2EmissionsinthePowerSector...................................24

    3.7.2 EstimatedneartermDevelopmentofCO2Emissions(BaselineScenario)..........26

    3.8 TypicalDailyLoadCurves...........................................................................................28

    3.9 TransmissionandDistributionGridandPlansforReinforcementorExtension.......30

    3.10 ElectricityGenerationCosts.......................................................................................33

    3.11 Conclusionsofbaselinestudy....................................................................................34

    4 EnergyPolicy................................................................................................................36

    4.1 Mainactors................................................................................................................36

    4.1.1 MinistryofEnergyandEnergyAffairs(MEEA).....................................................37

    4.1.2 T&TECandIndependentPowerProducers..........................................................39

    4.2 LegalandRegulatoryFrameworkandSupportingPolicies.......................................424.2.1 Statusquooftheregulatoryframework.............................................................42

    4.2.2 AmendingoftheTrinidadandTobagoElectricityCommissionActandtheRICact..............................................................................................................................43

    4.2.3 TargetsforRE.......................................................................................................44

    4.3 InputtotheGreenPaper...........................................................................................46

    4.3.1 ProposedadaptationstotheDraftoftheGreenPaperforEnergyPolicy..........47

    4.3.2 Proposedchangesandclarificationstothepolicymeasures..............................48

    4.3.3 Summarytableofallrevisions.............................................................................54

    4.4 ElectricityTariffsandSubsidySchemes.....................................................................55

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    5/310

    v

    4.4.1 TariffSchedule.....................................................................................................55

    4.4.2 Subsidies...............................................................................................................59

    4.5 AdaptationofcriteriaforusingtheGreenFund.......................................................62

    4.6 FinancingofSEPprojects...........................................................................................62

    4.7 Needsforcapacitybuildingandinstitutionalstrengthening....................................63

    5 EnergyEfficiency..........................................................................................................65

    5.1 EnergyEfficiencyPotential........................................................................................65

    5.1.1 WhichTechnologieshavePotential?...................................................................65

    5.1.2 TheViabilityofEnergysavingTechnologies........................................................67

    5.1.3 HowisUptaketobeencouraged?.......................................................................69

    5.1.4 AnoteonBehavior..............................................................................................69

    5.2 ProposedEEProgrammes..........................................................................................70

    5.2.1 ResidentialSector................................................................................................70

    5.2.2 HotelSector..........................................................................................................75

    5.2.3 Commercial&SmallIndustrialSector.................................................................79

    5.2.4 Government.........................................................................................................81

    5.3 EnergyEfficiencyActionPlan&Budget.....................................................................87

    5.3.1 ExistingActivities..................................................................................................87

    5.3.2 EnergyEfficiencyTargets,ActionPlanandBudgetPlan......................................88

    5.4 EnergyPolicymeasureswithregardstoEE...............................................................92

    5.4.1 GeneralrecommendationsforEEPolicies...........................................................92

    5.4.2 ProposedTrinidadandTobagoEnergyAgency...................................................94

    5.5 ESCOCertificationCommittee...................................................................................96

    5.5.1 Background..........................................................................................................96

    5.5.2 RecommendationsonESCODefinition,ProceduresandProtocol......................97

    5.6 EnergyAudits...........................................................................................................102

    5.6.1 Buildingselectionmethodology.........................................................................102

    5.6.2 Auditorselection................................................................................................104

    5.6.3 Auditsupport.....................................................................................................105

    5.6.4 GuidelinesforEnergyAudits..............................................................................106

    5.6.5 ResultsoftheAuditingProcess..........................................................................106

    5.6.6 ShortcomingsandConclusionsoftheAuditingProcess....................................113

    5.6.7 NextSteps..........................................................................................................115

    6 RenewableEnergy.....................................................................................................118

    6.1 Establishmentofmechanismsforfeedingenergyintothegrid..............................118

    6.1.1 FeedinTariffs....................................................................................................118

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    6/310

    vi

    6.1.2 NetMetering.....................................................................................................120

    6.1.3 NetBilling...........................................................................................................121

    6.1.4 CompetitiveBidding...........................................................................................122

    6.1.5 RenewablePortfolioStandards.........................................................................124

    6.1.6 TheDevelopmentofPowerPurchaseAgreements...........................................124

    6.2 GenerationCostsforOnshoreWindFarmsandSmallscalePVSystems...............125

    6.2.1 LevelizedCostofEnergy(LCOE) Background..................................................125

    6.2.2 WindPower........................................................................................................126

    6.2.3 Photovoltaics......................................................................................................134

    6.3 OffshoreWindEnergy..............................................................................................145

    6.3.1 Statusofoffshorewindenergy..........................................................................145

    6.3.2 Costsofoffshorewindpower............................................................................146

    6.3.3 Offshorewindpowerandrisksofhurricanes....................................................147

    6.3.4 Environmentalimpact........................................................................................147

    6.3.5 Offshorelocationavailability.............................................................................147

    6.3.6 Conclusionsandrecommendations...................................................................148

    6.4 PotentialforSolarWaterHeating...........................................................................148

    6.4.1 Introduction.......................................................................................................148

    6.4.2 SolarResources..................................................................................................151

    6.4.3 TechnologyofSolarWaterHeaters...................................................................155

    6.4.4 ConsumptionofHotWater................................................................................157

    6.4.5 Costs...................................................................................................................159

    6.4.6 CostComparison................................................................................................159

    6.4.7 EnvironmentalBenefits......................................................................................160

    6.4.8 CurrentFiscalIncentivesforSWH......................................................................162

    6.4.9 BarriersandRecommendations.........................................................................162

    6.4.10 PotentialandOpportunitiesforLocalSWHManufacturing..............................165

    6.4.11 CapacityBuilding................................................................................................165

    6.4.12 StandardsforSWHSystemsinT&T...................................................................165

    6.4.13 Conclusions........................................................................................................167

    6.5 WastetoEnergy(WtE)............................................................................................169

    6.5.1 LimitationsofthisChapter.................................................................................169

    6.5.2 CurrentSituationofWasteManagementinTrinidad.......................................170

    6.5.3 InvestigatedTechnologies..................................................................................175

    6.5.4 SuggestedTechnology.......................................................................................178

    6.5.5 EconomicFeasibilityofWtE...............................................................................181

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    7/310

    vii

    6.5.6 CurrentObstaclesfortheImplementationofWtEprojects..............................185

    6.5.7 SuggestedImplementationStrategy..................................................................186

    6.5.8 WtEinotherIslandCountries............................................................................188

    6.5.9 SuggestedFollowUps........................................................................................190

    6.5.10 Conclusions........................................................................................................191

    6.6 BioenergyUseforElectricityGeneration................................................................192

    6.6.1 EnergyPotentialofdifferentResources............................................................192

    6.6.2 ManufacturingCapacity.....................................................................................202

    6.6.3 ProposalsforPilotProjects................................................................................203

    6.6.4 GridAvailabilityandGridCapacity.....................................................................203

    6.6.5 TrainingandEducation......................................................................................204

    6.6.6 BaselineCO2Emissions......................................................................................204

    6.7 OceanEnergyforElectricityGenerationanditsApplicabilityforT&T....................205

    6.7.1 Introduction.......................................................................................................205

    6.7.2 PowerGenerationfromTideandCurrent.........................................................208

    6.7.3 OceanThermalEnergyConversion(OTEC)........................................................211

    6.7.4 ConclusionsandRecommendations..................................................................213

    6.8 ApplicabilityofConcentratedSolarPower..............................................................215

    6.8.1 Introduction.......................................................................................................215

    6.8.2 CurrentandfutureCostDevelopmentofCSPTechnology................................216

    6.8.3 SummaryandRecommendations......................................................................217

    6.9 RenewableEnergyActionPlan................................................................................218

    7 LongtermScenarios................................................Fehler!Textmarkenichtdefiniert.

    7.1.1 ProjectionsforPopulationandGDPGrowth...Fehler!Textmarkenichtdefiniert.

    7.2 BusinessasUsualProjectiontill2032...................Fehler!Textmarkenichtdefiniert.

    7.2.1 ProjectedOilProduction&Consumption........Fehler!Textmarkenichtdefiniert.

    7.2.2 ProjectedNaturalGasProduction&ConsumptionFehler! Textmarke nicht

    definiert.

    7.2.3 AdjustedGDPProjectionforrecordedNaturalGasReservesanddeclineinCrude

    OilProduction.................................................................Fehler!Textmarkenichtdefiniert.

    7.2.4 ProjectedElectricityDemand(Businessasusual)Fehler! Textmarke nichtdefiniert.

    7.2.5 ProjectedCO2EmissionsfromPowerGenerationFehler! Textmarke nichtdefiniert.

    7.3 Scenario1:IntroductionofEnergyEfficiencyMeasures........Fehler!Textmarkenichtdefiniert.

    7.4 Scenario2:IntroductionofREcovering2.5%ofGeneratedPowerby2020....Fehler!Textmarkenichtdefiniert.

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    8/310

    viii

    7.5 Scenario3:IntroductionofREcovering4.0%ofpowergenerationby2020....Fehler!Textmarkenichtdefiniert.

    7.6 Scenario4:CombinationofScenarios1&2...........Fehler!Textmarkenichtdefiniert.

    7.7 Scenario5:CombinationofScenarios1&3...........Fehler!Textmarke

    nicht

    definiert.

    8 Conclusions................................................................................................................219

    REFERENCES..............................................................................................................................245

    APPENDICES..............................................................................................................................259

    AppendixA: LoadCurvesofT&TEC......................................................................................259

    AppendixB: MapsofTransmissionandDistributionGrids.................................................262

    AppendixC: MethodologyforResidentialBaselineandSavingsEstimates........................264

    AppendixD: HighlightsoftheMyEnergy,MyResponsibilityCampaign.........................269

    AppendixE: EstimateofCosts&Benefitsof150%TaxAllowanceProgram.......................271

    AppendixF: StreetLightingPilotProject.............................................................................276

    AppendixG: SupporttotheESCOcommittee MeetingNotes..........................................277

    AppendixH: GuidelinesforEnergyAudits...........................................................................282

    AppendixI: InternationalExamplesofMarketbasedFinancialMechanismsforEEandRE

    MeasuresintheResidentialSector.........................................................................287

    AppendixJ: CurrentElectricityGenerationCostsforOnshoreWindFarms......................291

    AppendixK: SolarWaterHeating.........................................................................................292

    AppendixK: WastetoEnergy Contacts.............................................................................294AppendixL: PowerOutputofthePelamisSystem..............................................................295

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    9/310

    ix

    LISTOFTABLES

    TABLE1:CUSTOMERFORECASTBYRATECATEGORY.............................................................................................. 17

    TABLE2:ELECTRICITYSALESTOEACHRATECATEGORY.......................................................................................... 17TABLE3:POWERGENERATIONPLANTSINT&T(2012).......................................................................................... 21

    TABLE4:FUTUREPLANSOFPOWERGENERATIONCAPACITYINT&T(INCLUDINGRETIREMENTOFPOSPLANTIN2015)....23TABLE5:MINIMUMANDMAXIMUM'ACTUALSYSTEMLOAD'VALUESINTHEWEEK28DEC2012.................................30TABLE6:CONVERSIONCOSTSANDSPECIFICFUELCOSTSOFT&TPOWERPLANTSIN2013............................................33TABLE7:ELECTRICITYGENERATIONCOSTS............................................................................................................ 34TABLE8:RESPONSIBILITYFORTHEENERGYSECTORINT&T..................................................................................... 36TABLE9:ELECTRICITYRATESINT&T................................................................................................................... 56TABLE10:PROPOSEDELECTRICITYTARIFFSUNTIL2016......................................................................................... 58TABLE11:EETECHNOLOGIESANDTHEIRUPTAKE.................................................................................................. 66TABLE12:AVERAGEHOUSEHOLDELECTRICITYCONSUMPTION,2010...................................................................... 71TABLE13:HOUSEHOLDELECTRICITYCONSUMPTIONWITHAIRCONDITIONING,2010.................................................71TABLE14:PROPOSEDEEPROGRAMMESINTHERESIDENTIALSECTOR........................................................................ 73

    TABLE15:ESTIMATEDRESIDENTIALSECTORSAVINGSFROMREPLACEMENTOFBASELINETECHNOLOGIESWITHENERGYEFFICIENTTECHNOLOGIES......................................................................................................................... 74

    TABLE16:RECOMMENDEDPROGRAMMESFOREEINHOTELS................................................................................. 77TABLE17:ELECTRICITYSALESTOCOMMERCIALANDINDUSTRIALCATEGORIES,2011..................................................80TABLE18:PERFORMANCERISKANDPAYBACKPERIODSASSOCIATEDWITHEETECHNOLOGIES.........................................80TABLE19:RECOMMENDEDPROGRAMMESFOREEINCOMMERCIAL&SMALLINDUSTRYSECTOR..................................81TABLE20:EXISTINGEEMEASURESIMPLEMENTEDANDFUNDEDBYGORTT............................................................... 87

    TABLE21:SUMMARYOF5YEARBUDGETS,ESTIMATEDSAVINGSANDCO2AVOIDED...................................................88TABLE22:PROPOSEDRESIDENTIALSECTOREEMEASURESTOBEIMPLEMENTEDBYGORTT..........................................89

    TABLE23:PROPOSEDHOTELSECTOREEMEASURESTOBEIMPLEMENTEDBYGORTT..................................................91TABLE24:PROPOSEDCOMMERCIALSECTOREEMEASURESTOBEIMPLEMENTEDBYGORTT........................................92

    TABLE25:TYPICALRESPONSIBILITIESOFANENERGYMINISTRY................................................................................ 94

    TABLE26:SUMMARYOFENERGYAUDITPROCEDURESANDREPORTINGPROTOCOLS...................................................100TABLE27LISTOFPRESELECTEDBUILDINGS......................................................................................................... 104TABLE28:SUMMARYOFAUDITFINDINGS.......................................................................................................... 109TABLE29:PREDICTIONOFLEVELIZEDCOSTOFWINDENERGYINUS$/MWH............................................................ 133TABLE30:ASSUMPTIONSFORLCOECALCULATION............................................................................................. 133TABLE31:LCOEFORPVSYSTEMSINTRINIDADANDTOBAGO............................................................................... 143TABLE32:CARBONABATEMENTFROMSOLARWATERHEATINGINSELECTEDCOUNTRIES.............................................161TABLE33:WASTECOMPOSITIONATTHETHREELANDFILLSITES(1995)COMPOSITION1995.....................................172TABLE34:WASTECOMPOSITION2010............................................................................................................ 173TABLE35:COMPARISONOFTHERMALCONVERSIONTECHNOLOGIES....................................................................... 178TABLE36:PRODUCTIONOFKEYCOMMODITIES .................................................................................................. 193TABLE37:PRODUCTIONOFCOMMERCIALAGRICULTURALGOODS........................................................................... 194

    TABLE38:TRINIDADLANDCOVER.................................................................................................................... 195TABLE39:SUMMARYOFSOLIDBIOMASSPOTENTIALS.......................................................................................... 195TABLE40:ANIMALPOPULATIONINT&T........................................................................................................... 196TABLE41:PIGPOPULATIONINT&T................................................................................................................. 196TABLE42:NUMBERANDTYPEOFBUSINESSINT&T............................................................................................. 198TABLE43:DIFFERENTCOMMODITIESANDPRODUCTIONFIGURES........................................................................... 199TABLE44:POTENTIALSFORBIOGAS.................................................................................................................. 200TABLE45:SUMMARYMATRIXFORBIOMASSUSE................................................................................................. 202TABLE46:REINVESTMENTPLAN20142020................................................................................................... 219TABLE47:ENERGYSAVINGCOSTOFEETECHNOLOGIES....................................................................................... 268TABLE48:ESTIMATEDLIGHTINGCONSUMPTION,COST&SAVINGSFORHDCHOUSES..............................................268TABLE49:COMMERCIALANDINDUSTRIALTARIFFCATEGORIESANDSALES(2011)...................................................272

    TABLE50:ESTIMATESOFCUSTOMERUPTAKEANDEXPENDITUREONTHE150%TAXALLOWANCEPROGRAM.................273TABLE51:COST(TAXESFOREGONE)OFACTIVITYUNDER150%TAXALLOWANCEPROGRAM.....................................274TABLE52ESTIMATEDBENEFITOFACTIVITYUNDERTHE150%TAXALLOWANCEPROGRAM........................................275

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    10/310

    x

    TABLE53:SWHINCENTIVESINBARBADOS........................................................................................................ 292TABLE54:POWEROFTHEPELAMISSYSTEM(INKW)ANDITSINFLUENCEBYHEIGHTANDPERIODOFWAVES..................295

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    11/310

    xi

    LISTOFFIGURES

    FIGURE1:ENERGYFLOWTRINIDADANDTOBAGO................................................................................................. 11FIGURE2:DISTRIBUTIONOFFINALCONSUMPTIONBYSECTOR.................................................................................. 11

    FIGURE3:NATURALGASUTILISATIONINT&T19902013.................................................................................. 12FIGURE4:OVERVIEWOFNATURALGASCONSUMERSINT&T,INCLUDINGLNGEXPORT,2012.....................................13FIGURE5:TOTALOILPRODUCTIONANDCONSUMPTIONINT&T,20002011.........................................................14FIGURE6:CRUDEOILPRODUCTIONINT&T,19902011.................................................................................... 15FIGURE7:NATURALGASRESERVESINT&T,19992010..................................................................................... 19FIGURE8:NATURALGASDEMANDINT&T,20052015..................................................................................... 20FIGURE9:PEAKDEMANDINT&T19902012.................................................................................................... 24FIGURE10:GROSSELECTRICITYGENERATIONT&T................................................................................................ 25FIGURE11:DEVELOPMENTOFPASTCO2EMISSIONS(INMT)FROMELECTRICITYGENERATIONINT&T............................26FIGURE12:POSSIBLEDEVELOPMENTOFFUTURECO2EMISSIONSFROMELECTRICITYGENERATIONINT&T(INMT),BASELINE

    SCENARIO............................................................................................................................................. 28FIGURE13:EXEMPLARYDAILYLOADCURVEINT&T:WEEKDAY................................................................................ 29FIGURE14:EXEMPLARYDAILYLOADCURVEINT&T:WEEKEND................................................................................ 29FIGURE15RENEWABLEENERGYANDENERGYEFFICIENCYATTHEMEEA................................................................... 38FIGURE16ORGANIZATIONALCHARTPROPOSEDFORTHEMEEA.............................................................................. 39FIGURE17:OPERATIONALSTRUCTUREOFT&TEC................................................................................................. 41FIGURE18:EUROPEANUNIONMEMBERSRESHAREIN2012VS.2020COMMITMENTS............................................46FIGURE19:ELECTRICITYTARIFFSINSELECTEDCARIBBEANCOUNTRIES...................................................................... 57FIGURE20:HENRYHUBNATURALGASPRICE(US$/MMBTU)MAY2011MAY2014............................................59FIGURE21:GLOBALLNGPRICES,JULY2013....................................................................................................... 60FIGURE22:NATURALGASPRICEPROJECTIONS..................................................................................................... 61FIGURE23:USEESUPPLYCURVE2020(FROMMCKINSEY)................................................................................ 68

    FIGURE24:AVERAGEHOUSEHOLDELECTRICITYCONSUMPTION,2010..................................................................... 72

    FIGURE25: HOUSEHOLDELECTRICITYCONSUMPTIONWITHAIRCONDITIONING,2010................................................72FIGURE26: ELECTRICITYCONSUMPTIONBYENDUSEINHOTELSOFBARBADOS...........................................................76FIGURE27:PROPOSEDORGANISATIONCHART,T&TENERGYAGENCY...................................................................... 96FIGURE28:SUMMARYOFTHE150%TAXALLOWANCEPROCESS(DRAFT)................................................................. 98FIGURE29SELECTIONPROCESS........................................................................................................................ 102FIGURE30:GLOBALCUMULATIVEINSTALLEDWINDCAPACITYFROM19962013...................................................126FIGURE31:WINDPENETRATIONRATESINDIFFERENTCOUNTRIES........................................................................... 127FIGURE32:HISTORICALWINDENERGYCAPITALCOSTSINTHEUNITEDSTATES........................................................... 128FIGURE33:DISTRIBUTIONOFCAPITALCOSTOFAWINDTURBINEBYSECTORS............................................................ 129FIGURE34:ANNUALAVERAGEWINDSPEEDDISTRIBUTION.................................................................................... 131FIGURE35:SCENARIOSOFLCOEDEVELOPMENT................................................................................................ 132FIGURE36:AVERAGEINSTALLEDPRICEBYMARKETSEGMENTINTHEUS,Q22011Q22013....................................136

    FIGURE37:EVOLUTIONOFPHOTOVOLTAICCELLEFFICIENCIESUNDERLABORATORYCONDITIONS..................................137FIGURE38:CONTRIBUTIONSTOINSTALLEDCOSTOFRESIDENTIALANDCOMMERCIALPVSYSTEMSINTHEU.S. (FIRSTHALFOF

    2012)................................................................................................................................................ 139FIGURE39:HISTORICALGROWTHOFTHEGLOBALOFFSHOREWINDMARKET.......................................................... 145FIGURE40:REPORTEDCAPITALCOSTSFORGLOBALOFFSHOREWINDPROJECTOVERTIME........................................146FIGURE41:ANNUALINSTALLEDCAPACITYOFGLAZEDSOLARCOLLECTORSWORLDWIDE..............................................149FIGURE42:TOTALCAPACITYOFGLAZEDFLATPLATEANDEVACUATEDTUBECOLLECTORSINOPERATION,ENDOF2011.....150

    FIGURE43:SOLARWATERHEATINGPENETRATIONINCARICOMSTATES............................................................... 151FIGURE44:WORLDMAPOFPOTENTIALSOLARPOWER(SOLARINSOLATIONINKWH/M2/DAY......................................151

    FIGURE45:SOLARINSOLATIONMAPOFTHECARIBBEANDIRECTNORMALIRRADIANCE............................................152FIGURE46:SOLARINSOLATIONMAPOFTHECARIBBEANGLOBALSOLARRADIATIONTILTEDATLATITUDE....................153

    FIGURE47:AVERAGEDAILYSOLARRADIATIONATUWI,TRINIDAD........................................................................ 154

    FIGURE48:AVERAGESOLARRADIATIONONAHORIZONTALSURFACEINEACHMONTH...............................................154FIGURE49:AVERAGESOLARRADIATIONONANINCLINEDSURFACEINEACHMONTH.................................................155

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    12/310

    xii

    FIGURE50:DIMENSIONSOFSWHSYSTEMS....................................................................................................... 157FIGURE51:COSTCOMPARISONOFVARIOUSWATERHEATINGSYSTEMS................................................................... 160FIGURE52:LOCATIONSOFSWMCOLLANDFILLS................................................................................................ 171FIGURE53:PLANVIEWOFBEETHAMLANDFILL.................................................................................................. 171

    FIGURE54:TYPICALDISPOSEDMSWINPORTOFSPAIN...................................................................................... 173FIGURE55:DISPOSEDMSWATBEETHAMLANDFILL........................................................................................... 174FIGURE56:ORGANICLOADSFROMPLANTATIONS,MARKETSANDGARDENSCANEASILYBESEPARATEDFROMREMAINING

    WASTE................................................................................................................................................ 174FIGURE57:SCHEMATICCROSSSECTIONOFAMOVINGGRATEINCINERATOR........................................................... 180FIGURE58:SUGGESTIONFORAMANUALPRESORTINGAREA............................................................................... 180FIGURE59:SUGGESTEDLOCATIONOFFIRSTINCINERATIONPLANT......................................................................... 187FIGURE60:DEVICEWORKINGONTHEOVERTOPPINGPRINCIPLE............................................................................. 206

    FIGURE61:VOITHTURBO500KWPLANTINISLAY,SCOTLAND............................................................................. 206FIGURE62:PELAMISPROTOTYPEINCONSTRUCTIONANDOFFTHECOASTOFTHEORKNEYISLESINEARLY2012...............207

    FIGURE63:SEASURFACEVARIATIONDUETOLUNARTIDESINMETERS..................................................................... 209FIGURE64:SEAGENTIDALSTREAMPLANTINSTRANGFORDLOUGH,SCOTLAND........................................................210

    FIGURE65:TEMPERATUREPROFILEGENERATEDWITHDATAFROMTHEATLANTICOCEANATLAS..................................212FIGURE66:YEARLYSUMOFDNIINTHEWORLD................................................................................................. 215

    FIGURE67:CONCENTRATINGSOLARTHERMALPOWERINSTALLEDCAPACITY,19842012........................................216FIGURE68:LCOEOFCSPDEPENDINGONTECHNOLOGYANDRADIATION................................................................ 216FIGURE69:POPULATIONFIGURESFORTRINIDADANDTOBAGOFROM1990TO2030...............................................229FIGURE70:GROSSDOMESTICPRODUCT(GDP)INREALVALUESFORTRINIDAD&TOBAGO,19902032....................230FIGURE71:PROJECTEDCRUDEOILPRODUCTION&CONSUMPTIONUPTO2032.......................................................231FIGURE72:PROJECTEDNATURALGASPRODUCTIONANDCONSUMPTION................................................................. 232FIGURE73:GDPPROJECTIONANDADJUSTMENTFORDECLINEINCRUDEOILANDNATURALGASPRODUCTION.................233FIGURE74:PROJECTEDELECTRICITYDEMANDBUSINESSASUSUAL................................................................... 234FIGURE75:PROJECTEDCO2EMISSIONSFROMPOWERGENERATIONBUSINESSASUSUAL.....................................234FIGURE76:FOSSILFUELBASEDELECTRICITYGENERATIONSCENARIO1.................................................................. 236

    FIGURE77:CO2EMISSIONSFROMPOWERGENERATIONSCENARIO1................................................................... 236FIGURE78:FOSSILFUELBASEDELECTRICITYGENERATIONSCENARIO2................................................................... 237FIGURE79:CO2EMISSIONSFROMPOWERGENERATIONSCENARIO2................................................................... 238FIGURE80:FOSSILFUELBASEDELECTRICITYGENERATIONSCENARIO3.................................................................. 238FIGURE81:CO2EMISSIONSFROMPOWERGENERATIONSCENARIO3.................................................................... 239FIGURE82:FOSSILFUELBASEDELECTRICITYGENERATIONSCENARIO4................................................................... 239FIGURE83:CO2EMISSIONSFROMPOWERGENERATIONSCENARIO4.................................................................... 240FIGURE84:FOSSILFUELBASEDELECTRICITYGENERATIONSCENARIO5................................................................... 240

    FIGURE85:CO2EMISSIONSFROMPOWERGENERATIONSCENARIO5................................................................... 241FIGURE86:T&TECRESIDENTIALCUSTOMERDISTRIBUTIONCURVE,2010..............................................................266

    FIGURE87:GRAPHICALCHRONOLOGYOFANNUALSWHINSTALLATIONSINBARBADOS..............................................293FIGURE88:CUMULATIVEINSTALLEDSWHSTORAGEINBARBADOS(19742002)..................................................293

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    13/310

    xiii

    ABBREVIATIONSandACRONYMS

    ADO AutomotiveDieselOil

    AE AlternativeEnergyAEP AnnualEnergyProduction

    AOE AnnualOperatingExpenses

    BOE TrinidadandTobagoBoardofEngineers

    BOOT BuildOwnOperateTransfer

    BOT BuildOperateTransfer

    CAD CentrodeAlianzasparaelDesarrollo(CentreofPartnershipsfor

    Development)

    CaO CalciumOxide

    CCGT CombinedCycleGasTurbine

    CEN EuropeanCommitteeforStandardizationCFL Compactfluorescentlamp

    CHENACT CaribbeanHotelsEnergyEfficiencyActionProgramme

    CHP CombinedHeatandPower

    CO2 CarbonDioxide

    CREC CaribbeanRenewableEnergyCentre

    CRF CapitalRecoveryFactor

    CSP ConcentratedSolarPowerDNI DirectNormalIrradiance

    ECC ESCOCertificationCommittee

    ECPA EnergyandClimatePartnershipoftheAmericasEE EnergyEfficiency

    EEC EnergyEfficiencyCommittee

    EPC EnergyPerformanceContracting

    ESCO EnergyServiceCompany

    EU EuropeanUnion

    EVO EfficiencyValuationOrganization

    FCR FixedChargeRate

    GDP GrossDomesticProduct

    GEF GlobalEnvironmentFacility

    GHG GreenhouseGasesGoRTT TheGovernmentoftheRepublicofTrinidadandTobago

    HDC TrinidadandTobagoHousingDevelopmentCorporation

    ICC InstalledCapitalCost

    IDB InterAmericanDevelopmentBank

    IEA InternationalEnergyAgency

    IMF InternationalMonetaryFund

    IPP IndependentPowerProducerIRENA InternationalRenewableEnergyAgency

    ISO InternationalStandardsOrganisation

    LCOE LevelizedCostofEnergy

    LED Lightemittingdiode

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    14/310

    xiv

    LNG LiquefiedNaturalGas

    LPG LiquidPetroleumGas

    MEEA MinistryofEnergyandEnergyAffairs

    MPE MinistryofPlanningandtheEconomyMSW MunicipalSolidWaste

    NEC NationalEnergyCorporation

    NG NaturalGas

    NIMBY Notinmybackyard

    NPMC NationalPetroleumMarketingCompany

    NREL NationalRenewableEnergyLaboratory

    O&M OperationandMaintenance

    OTEC OceanThermalEnergyConversion

    OWC OscillatingWaterColumn

    PBL PolicyBasedLoanPowerGen PowerGenerationCompanyofTrinidadandTobagoLimited

    PSC ProductionSharingContract

    PPA PowerPurchasingAgreement

    PV Photovoltaic

    RDF RefuseDerivedFuel

    RE RenewableEnergy

    REC RenewableEnergyCommittee

    REEEP RenewableEnergyandEnergyEfficiencyPartnership

    RIC RegulatedIndustriesCommission

    RO ReversalOsmosis

    ROI ReturnonInvestment

    SCGT SimpleCycleGasTurbine

    SEP SustainableEnergyProgram

    SME SmallandMediumSizedEnterpriseSWH SolarWaterHeater

    SMCOL TheTrinidadandTobagoSolidWasteManagementCompany

    T&T TrinidadandTobago

    T&TEC TheTrinidadandTobagoElectricityCommission

    TDC TourismDevelopmentCompanyofTrinidadandTobago

    TGU TrinidadGenerationUnlimited

    ToR TermsofReference

    TTBS TrinidadandTobagoBureauofStandards

    TTEA TrinidadandTobagoEnergyAgency

    THA TobagoHousingAssembly

    U.S.EPA UnitedStatesEnvironmentalProtectionAgency

    ULSD UltraLowSulphurDieselPlant

    UNDP UnitedNationsDevelopmentProgramme

    UNEP UnitedNationsEnvironmentProgramme

    UNIPET UnitedIndependentPetroleumMarketingCompanyLimited

    USct currency,centsinUSDollar

    USDA UnitedStatesDepartmentofAgriculture

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    15/310

    xv

    USDOE UnitedStatesDepartmentofEnergyUWI UniversityoftheWestIndies

    VAT ValueAddedTax

    WACC WeightedAverageCostofCapitalWtE WastetoEnergy

    UNITS

    bcf billioncubicfeet

    GJ Gigajoule,109Joule(energy)

    GWh Gigawatthours

    ha Hectare

    kW,kWh kilowatt,kilowatthours(electricalpowerandwork)MMBTU MillionBritishThermalUnits

    MMSCF/D MillionsofStandardCubicFeetperday

    MW,MWh Megawatt,Megawatthours(electricalpowerandwork)

    Nm3,m3 Normcubicmeter,cubicmeter

    t,kt ton,103tons

    t/a tonsperyear

    t/d tonsperday

    tcf trillioncubicfeet

    TWh Terawatthours

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    16/310

    1

    1 ExecutiveSummary

    TheGovernmentoftheRepublicofTrinidadandTobago(GORTT)hasreceivedaPolicyBasedLoan

    (PBL)(TTL1023)fromtheInterAmericanDevelopmentBank(IDB).ThisPBLfortheSustainableEnergyProgramconsistsofthreedifferentoperations,eachwithspecificinstitutionalandpolicygoals.TheIDBhiredtheconsortiumofCentreofPartnershipsforDevelopment(CAD),ProjektConsultandLKSin2012 to support the Ministry of Energy and Energy Affairs (MEEA) with technical assistance in the

    developmentofpoliciesandactivitiesthatwillpromotethedeploymentofRenewableEnergy(RE)andtheimplementationofEnergyEfficiency(EE)measures.

    Thefollowing istheFinalReportoftheconsultancyservicesundertaken.Itdefinesthebaselineforelectricity generation and carbon dioxide emissions, provides recommendations on policies for aSustainableEnergyfuture,assessesthepotentialforEEinT&TandanalysestheoptionsfordifferentREtechnologiesandtheirpossibleuptakeinT&T.

    BaselineforElectricityGenerationandCarbonDioxideEmissions

    In2010,TrinidadandTobagogenerated8.5TWhofelectricitywithCO2emissionsof700gforeverykWhgenerated.Whencomparedtointernationalbenchmarksfor2010,thesefiguresdemonstrateahighelectricityconsumptionandCO2emissionspercapitafromenergyrelatedactivitiesatnearly2.5

    times the world average.1 Plans are identified to improve the efficiency of the existing electricity

    generatingplantsaswellasan intentionto incorporateasmallpercentageofREbased generationoverthecomingyears.

    Theelectricitygenerationistoalmost100%basedonnaturalgas.ThecontributionofREgenerationisnegligiblewithonlyafewresidentialandcommercialmicroscalesystemsconnectedtothegridoroperatingasstandalonesystems.

    T&Thaslargenaturalgasreservesandgasextractionhasincreasedsignificantlyoverthepast22yearsfrom177bcfin1990to811bcfin2011.Therehasbeennoshortageofgasforlocalconsumptionand

    duetoasubstantialincreaseintheindustrialnaturalgasuse,powergenerationonlyaccountsfor8%oftheannualgasproduction,with56%beingexportedasLNG(liquefiednaturalgas).Thisabundanceaccompaniedbylowpriceshasmadegastheobviouschoiceofenergyforelectricitygenerationupto

    nowandforthemediumtermfuture.

    However,arapidlyincreasingdemandforelectricityinallsectorsinlinewithGDPgrowthandreduced

    exportationofCrudeOilwillresultinalargerproportionofgasbeingdesignatedtopowergeneration,

    withtheconsequentincreaseinlocalCO2emissions.ItisthereforeessentialthatconcertedeffortsaremadetointroduceahigherpercentageofREintothepowergenerationequationalongwithparallel

    EEimplementationatboththegenerationandenduselevel.

    Basedonthegrowthratesseenoverthepast20years(average4.4%perannum)itisexpectedthatby2020,T&T'sgrosspowergenerationoutputwillbe13.0TWh,equivalenttoaround10,000kWh

    percapita,farhigherthaninmanyindustrializedcountries,unlessdemandcurbingmeasuresarebeingintroduced.2 The projected increase in consumption needs to be tackled accordingly. Whenextrapolating this further to 2032, T&T's gross power generation output could reach almost 16.8

    1 InternationalEnergyAgency:CO2Emissionsfromfuelcombustion,2012

    2 E.g.7,081kWh/cap.InGermanyand5,516kWh/cap.intheUnitedKingdomin2011.See: ttp://wdi.worldbank.org/table/5.11

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    17/310

    2

    TWh, equivalent to around 12,000 kWh per capita, under a businessasusual scenario. However,

    industrializednationsexperienceasaturationofelectricityconsumptionatsomepoint.

    An elevated electricity demand will need to be more efficiently generated in order to avoidaugmentingcarbonemissionsfromincreasedfuelconsumption.Thethermalefficiencyoftheexistingeightpowerplantsislow.Theproposedmeasures,whichconsistmainlyinsubstitutingsimplecycle

    gas turbines with combinedcycle plants could achieve a 45% efficiency improvement by 2020, asignificantstepforwardagainstcurrentefficiencyratesofanaverageofabout27%.Moreover,lookingasfaras2032,suchenergysavingmeasureswillenablethenaturalgasproductionsectortoincreaseits share of exports, generating increased revenue compared to the costinefficient and subsidized

    domesticmarket.

    EEmeasuresimplementedinbuildingsandindustrialprocessescouldsignificantlylowerthedemandforelectricityandrelatedgasconsumption,whichinturnwouldleadtoreducedCO2emissions.

    However, there are currently various barriers, which do not incentivize the implementation of EEmeasuresandtechnologies;oneofthesearetheexistinglowtariffsforelectricity.Duetothereducedratesforlocalgasconsumption,electricitycustomersinT&Tenjoyverylowtariffsincomparisontoother countries in the region, with prices seven times lower than the Caribbean average. Negative

    consequences include potential discouragement of both supplyside and demandside efficiency

    improvements,thepromotionofnoneconomicconsumptionofenergy.Finallyandimportantlyinthecontextofthisassignment,fossilfuelenergysubsidieshinderthedevelopmentofREtechnologiesbymakingthemeconomicallyuncompetitive(WB,2010).

    IncreasingthepercentageofREinT&T'selectricitygenerationmixwillbevitalinreducingoverallCO2emissions. There are a number of zero carbon technologies available, which could potentially be

    appliedbothatanationalandlocalscaletogenerateemissionfreeelectricityandreducethecountryscarbonfootprint.GoRTThasexpressed itsplantoincreasetheshareofREbasedpowergeneration

    and has envisaged a respective target of 60 MW RE capacity by 2020 as part of its Green Paper.Althoughsmall(around2.5%ofoverallpowergenerationcapacity)itwillbeastepforwardinreducingoverallemissionsandisafoundation,onwhichfurtherREprojectscanbebuilton.

    LegalandRegulatoryFrameworkandSupportingPolicies

    The most important policy is the Green Paper on Sustainable Energy that is currently underdevelopment andwill befed into anational consultationprocessforfurtherdiscussion.TheGreenPaperwillprovidetheoverallguidelinesforimplementationofEEandREmeasuresinthefuture.While

    thedraftGreenPaperenvisagestoincreasetheshareofREtoabout2.5%ofoverallpowergenerationby2020,theconsultantsrecommendraisingthistargettoatleast4%tocreatesufficientmarketsizethatcouldthenleadtolowerspecificcostsandastrengthenedbusinesssector.AsunderthisscenariosufficientmarketsizetomakeREmoreattractivewouldhavebeenreached,itisexpectedthata0.5%

    increaseperyearinthefirst8yearsupto2020,followedbya1%increasethereafter,yieldinga16%shareofREelectricityby2032.

    InordertocreatethelegalandregulatoryrequirementsforREinT&Titwillbenecessarytoamend

    theTrinidadandTobagoElectricityCommissionActthatcurrentlydoesnotallowforwheelingorthefeedingofelectricityfrom independentoperators intothegridwithoutconsentofthestateownedutility.Oncethelegalframeworkisinplace,itissuggestedtoconcentrateonthedevelopmentoffeed

    intariffsforgridconnectedsmallerscaleREfacilities,namelysolarPVandsmall,assourcesofREwith

    thelargestpotential.Theintroductionofanetmeteringornetbillingschemesarenotadvisableunder

    the current conditions with highly subsidized consumer tariff rates, as PV investments would need

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    18/310

    3

    significantadditionalfinancialandfiscalincentivestobecompetitive.Forutilityscalewindandsolar

    plants, competitive bidding is recommended, which will allow site and capacity planning that fits

    generationexpansionplansandusesexistingresourcesadequately.TostimulatetheinitialuptakeofhouseholdPVsystems,itisrecommendedthata100roofsprogrambedeveloped.

    Lowelectricitytariffsareonemajorreasonfor lowenergyefficiency inT&T.Inordertoexploitthe

    potential of EE and RE in the country, electricity tariffs need to be further increased. Other policyrecommendationsthatcouldhaveavisibleimpactonenergyefficiencyincludetheenactmentofanEnergy Efficiency Law, as well as demandsidemanagement programs, a market ban of inefficientconsumer products, such as incandescent light bulbs, the development of minimum efficiency

    standards and labelling programs, as well as the introduction of energyrelated building standards,includingthemandatoryuseofsolarwaterheatersatleastinspecificcases.ItisalsorecommendedtoexpandtheinfrastructureinawaythatSMEscanbenefitfromdirectsupplyofnaturalgasandto

    installsmartmeters.

    EnergyEfficiency

    (EE)

    It iswidely acceptedthat EE is oneofthe leastcost ways of satisfying growing demand forenergyservices. No comprehensive study has previously been made of the EE potential in Trinidad and

    Tobago,butourreviewindicatesauniquecaseintheCaribbean:verylowretailenergyprices;aper

    capitaenergyconsumptionexceedingNorthAmericanandmostEuropeanlevels;andalowappetiteforEEtechnologiesandpracticesacrosstheboard.

    ThemostimportantbarrierstoEEuptakearethecountryslowretailenergyprices(whicharelargely

    a consequence of price subsidies employed by the Government) and low levels of public energyawarenessandliteracy.UnlikeelsewhereintheCaribbean,limitedaccesstofinancingisnotafactor

    ofsignificance.

    Inrelationtopolicysetting,theuptakeofEEtechnologieswillbeinfluencedbythespecificmixofand

    interactionbetween:informationprovided,incentivessetandregulationsimposedbytheauthorities.Policyinturnmusttranslateintospecificprogramsineachsectorasproposedbelow.

    The residential sector is almost fully electrified and consumes 29% of total electricity. Average

    householdconsumptionisthehighestintheCARICOMregion,anditisconsideredthatthereisalarge

    potentialforenergysavingsthroughefficiency inthesector.Fourmainresidentialenergyefficiencyinterventionsarerecommended,aimedat:

    Reducingtheuseofelectricityforwaterheating; Encouragingtheuseofenergyefficientappliancesandlighting;

    Reducingenergyconsumptioninthesocialhousingsector;

    Engagingandmotivatingconsumerstoadoptnocost,durableenergysavingsbehaviours.

    Overthefirstfiveyears,estimated savings fromtherecommended residentialEEmeasures, wouldamount to 930 GWh of electricity worth US$ 46.5 million at current electricity rates; and avoided

    emissionsofsome651ktofcarbondioxide(CO2).

    TrinidadandTobagohasover6,300hotelrooms,withatotalannualelectricityconsumptionestimated

    at76GWh.It isrecommendedthatthehotelsector invests inEE interventionsaspartofaholisticsustainability strategy,aimed at increasing overall sector performance. In this context, we proposefourgeneralprograminterventions,to:

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    19/310

    4

    Improveairconditioningefficiency;

    Usemoreefficientlightingandcontrols;

    Usemoreefficientequipmentandappliances;

    Encouragegreenhotelcertification.

    Based on an assessment, implementation of these measures can allow the hotel sector to achieveaggregatesavingsof10.3GWhofelectricityoverafiveyearperiod.

    Overall,thecommercialandindustrialsectorconsumedsome5,600GWhofelectricityin2011,which

    was twothirds of the countrys total electricity consumption. In the absence of specific industrial

    sectorenduseconsumptiondata,itcanreasonablybeassumed,thatelectricmotors,processheating,

    cooling,ventilationandlightingaresignificantendusers.TherelevantEEinvestmentsthatprocessingandmanufacturingfirmsshouldmakeinclude:

    RetrofitofmotorswithVariableFrequencyDrive(VFD)systems3;

    Processheatingretrofits;

    Installationofhighefficiency,chilledbeamairconditioningsystems; Lightingreplacements/retrofitsandimplementationoflightingcontrolsystems.

    Itisestimatedthatoverthefirstfiveyears,amodesttotalof224commercialandindustrialcustomerswilltakeadvantageoftheproposedEnergyServiceCompany(ESCO)150%TaxAllowanceProgram,resultinginacumulativesavingsovertheperiodofapproximately33GWhofelectricity.

    TheuptakeofviableEEtechnologieswillbeinfluencedbythespecificmixofinformation,incentives

    andregulations,deliveredundertheumbrellaofGovernmentpolicy.GoRTThasalreadycommencededucationandawareness programs,aswellas incentivesforpromotingEE.Continuedgovernment

    actioninfourareasisrecommended:

    Deliveryofinformation;

    Designandimplementationofincentives;

    Enactingandenforcementofregulations; Designand implementationofspecificprojects(suchasenergyauditsand interventionson

    highprofilegovernmentbuildings).

    Inrelationtoinstitutionalarrangements,theestablishmentofaTrinidadandTobagoEnergyAgency(TTEA)isrecommended;withresponsibilityforensuringthepromotionofREandEE,supportingtheMEEAbyoutsourcingactivitiesthatarenotpartofthecorefunctionsoftheMinistry.

    GivenGoRTTsmaintenanceofasystemofsignificantpricesubsidies,themarketsituationdoesnotencourageprivate investment inEEand it isrecommendedthatGoRTTmust leadbyexamplewithspecificinitiatives.

    Aspartofthisintervention,GoRTT,withsupportfromexternalenergyexperts,hasundertakenenergyaudits inpublicbuildings.Results indicatethatenergysavingpotentialsarehigh inalltheselectedbuildings. Energy savings of over 22% can be achieved through the implementation of energy

    conservationand/orrenewableenergymeasureswithapaybacktimeoflessthanfiveyears.Beside

    thesepromisingsavingpotentials,theauditsalsoresultedinanumberofinterestinglessonsforthe

    3 AVariableFrequencyDrive(VFD)orVariableSpeedDrive(VSD),isanelectroniccontroldeviceusedinelectromechanicaldrivesystemstocontrolthespeedandturningforceofalternatingcurrentmotors,byvaryingthemotorinputfrequencyandvoltage.VFDs

    areusedinapplicationsrangingfromsmallappliancestothelargestmotorsandcompressors,andallowsignificantenergysavings

    comparedtooperationinfixedspeedmode.

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    20/310

    5

    MEEAandtheESCOCertificationCommittee(ECC).Theseincludedtheneedforcapacitybuildingof

    auditors,andtheneedforanincreasedfocusonpassivesolutionswithregardtobuildingenvelope

    improvements.

    The proposed fiveyear

    budget plan for the implementation of all EE measures estimates an

    expenditureofUS$23.3million,resultingincumulativeenergysavingsof972.9GWh,costsavingsofUS$48.6millionandavoidedemissionsof681ktofCO2overtheperiod.

    To promote EE in the housing sector, a full Global Environment Facility (GEF) proposal has beendeveloped.TheProjectInformationForm(PIF)wasapprovedasofearly2014.TheGEFprojectintents

    tofocusonpromotingEEinthesocialhousingsector,assistingtheirlowincomeuserstosaveasmuch

    energyandexpendituresaspossible.Itisexpectedthattheexperiencesgainedinthisprojectwillalsohaveconsiderableeffectonthehousingmarketanddomesticsectoringeneral.

    ThepotentialofdifferentREtechnologiesinT&T

    AllpossibletechnologiesforRE inT&Tthatcouldtheoreticallybeapplied,havebeenassessed.PV,

    SWHandonshorewindenergyarethemostpromisingtechnologies.Tosupportagenerousuptakeofthesetechnologies,detailedtechnicalstudiesarenecessary,suchasadetailedwindmeasurementtoassessthepotentialelectricityyieldatconcretesites.

    WindPower

    WhilewindpowerisnotusedinT&Tatpresent,theGoRTTplanstoinstallawindcapacityequivalentof5%ofthetotalgenerationcapacityby2020.T&Tliesinanareawithstrongwindsallyearroundand

    theGoRTTiscurrentlyundertakingawindassessmenttodefinetheexactpotentiallocationsforwind

    farms.BasedonexperiencesinotherCaribbeanislandsitseemslikelythatacapacityfactorofatleast35%canbeachieved.

    It is relevant to note that when it comes to the cost of installing wind turbines in T&T, it is more

    expensivethaninmostothercountries,duetothelackofroadinfrastructuretocopewithoversized

    trucks,etc.Anothermajorconstraintisthelikelyunavailabilityoflargecranesnearthesiteandthelackoftrainedassemblycrews.AsmorewindturbinesareinstalledintheCaribbeanaswellasinT&T

    thosecostswillreduceveryquickly;however,itisacostfactorthatneedstobetakenintoaccount.

    Tobeabletocapitalizeontheexistingpotentialforwindfarms,legislationthatallowswindfarmstobeoperatedbyindependentpowerproducersneedstobeestablishedandasubsidyschemeforthepromotionofwindfarmswouldneedtobeestablished.

    Offshorewindpowerwillbeasignificantsourceofelectricityinthefuture,butbeforeTrinidadcanstarttoexplorethisresource,theonshoremarketshouldbe developed,asexperience gainedwithwind turbines on land is essential. At the same time, as offshore wind power is still in its earlydevelopment,itrequiresstrongandlonglastingtechnologysupportschemesbygovernments,aswell

    asverystrongengineeringskillstoovercometechnicalchallenges.ItisthereforenotadvisableforT&Ttouseitsresourcesonventuringintooffshoredevelopmentatthecurrentstage.

    SolarPV

    In the case of Trinidad and Tobago, it is relevant to note that hardware costs are no longer the

    determining factor for the overall installed costs. Particularly for small residential systems, the socalledsoftcostsforsalestaxes,permissionfees,labour,transaction,etc.byfaroutnumberthosefor

    thecombinedcostsofmodules,inverterandcabling,astheanalysisoftheU.S.marketdemonstrates.

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    21/310

    6

    This means that a high percentage of the total value chain is raised, and remains within the local

    economy,despitethefactthatmosthardwareneedstobeimported.

    TheexampleofGermanywithaverymaturephotovoltaic(PV)marketshowsthatsoftcostscanbefurtherloweredwithincreasedexperienceandmarketpenetration.ThisisthemainreasonforanearlystartintoPVapplicationatabroaderscale,evenifgenerationcostsmaynotbefullycompetitivewith

    othersupplyoptionsatthemoment.

    With price levels experienced in Germany today, it would be possible to achieve levelized costs inTrinidadandTobagoofbetweenUS$ct8.8to13.5perkilowatthour(kWh),dependingonthesizeof

    thesystem.Basedonmoreconservativeparameters,takingintoaccountthepracticallynonexisting

    PVmarketinTrinidadandTobago,levelizedcostshavebeencalculatedtobebetweenUS$ct14.0and28.8perkWhat2012prices.

    Various examplesfrom the Dominican Republic, St.Kitts, Cayman Islands, Puerto Rico and Jamaica

    show that solarelectricity isnowbecoming acommon feature intheelectricitysupply sector.Thisrangesfromsmallresidentialrooftopsystemsto largegroundmountedsolarfarmswith20MWormore. This also demonstrates that integration of such large solar plants with fluctuating electricitygeneration into relatively small generation systems is technically possible. Those PV plants can

    therefore compete with traditional fossil fuel power generation, if electricity is rated at full costs,

    excludingalldirectandindirectsubsidies.

    SolarWaterHeating

    IncomparisontootherislandsintheCaribbean,thedeploymentofSWHinT&Tisverylimited.ItisestimatedthatthereareonlyafewhundredSWHsystemsintheentirecountry.AllSWHsystemsin

    T&Tareimportedmodelsastherearecurrentlynolocalmanufacturers.However,besidesitslimitedapplication,thepotentialforSWHisextremelyfavourable,assolarinsolationlevelsarehighandDNI

    values are close to the global irradiance values on an inclined surface, which guarantees optimal

    performanceofsolarenergysystems.

    ToencourageuptakeofSWH,theGoRTThasdevelopedanumberoffiscalincentives,suchasa25%

    taxcredit,0%VATonSWH,a150%wearandtearallowance,aswellasconditionaldutyexemptions

    formanufacturers.Whiletheseincentiveshavestimulatedsomegrowth,generaluptakehasbeenslow

    fromacommercial,aswellasfromadomesticuserperspective.

    ThemajorbarrierfortheuptakeofSWHremainstobefinancing.Thelowcostofelectricity,coupledwithinsufficientincentivesmakethecostofSWHprohibitive,especiallyforpoorerhouseholds.Atthe

    sametime,thereisonlyverylimitedpublicawarenessaboutSWHandtheiradvantagesandqualityofservicewithregardstodesign,installationandmaintenanceisstillpoor.

    In order to reach significant impact a penetration of about 10,000 SWH systems would need to be

    realized.Usinganadequateincentivescheme,asadoptedbyBarbados,T&TcouldseeasimilargrowthasBarbadosdid inthe1980s.Toachievethisobjective,thedevelopmentofaspecificgovernmentprogramcombiningincentives,capacitybuilding,awarenessraising,standardsandtestingwouldbenecessary.

    WastetoEnergy

    Likemostislandcountries,T&TfacesincreasingproblemswithitsdisposalofMunicipalSolidWaste(MSW).Theexistingdisposalfacilitiesaresimpledumpsiteswithoutproperenvironmentalprotection,

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    22/310

    7

    leading to increasing pollution of surrounding surface and ground water. At the same time, the

    establishmentofnewlandfillsisamajorchallengeduetolimitedlandavailability.

    AnidealsolutiontosolvetheMSWproblemwhileprovidingT&TwithanadditionalsourceofREoralternativeenergywouldbetheconversionoftheMSWintoenergy.Afirstfeasibilityanalysisshowsthatamovinggrateincineratorcombinedwithsteamturbinesforelectricitygenerationmightbethe

    optimalsolutionforT&T,asitisalongestablishedandwellunderstoodtechnology.

    TheMSWinT&Tisdrywastethatdoesnotrequirespecifictechnologiesforpretreatmentandtherearealargenumberofindustrialengineersinthecountrythatcouldeasilybetrainedtooperatethe

    incinerator. Under the current estimations, a WtE project is not economically feasible. Further

    investigation to develop an appropriate economic model would be necessary and the possibleutilizationofsteamforproductivepurposesshouldbeinvestigated.

    Majorexistingobstaclesarethelowpriceforelectricitygeneration,aswellasverylowwastedisposal

    fees.Theexistinginformalsectorwouldneedtobeintegrated,asaWtEplantwouldeliminatetheirsourceofincome.However,WtEprojectscannotonlybeassessedontheireconomicfeasibility,butneedtotaketheoverallwastemanagementsituationinacountryintoaccount.

    Itisrecommendedtoundertakeacomprehensivewastecharacterizationstudy,aswellasastudyof

    thecompositionandstatusofthewasteattheexistinglandfills.Ithasalsotobeanalysed,inhowfaranincineratorplantcouldbebuiltlocallyandhowmuchoftheequipmentwouldneedtobeimported.

    Bioenergy

    Thepotentialforbioenergysources inT&T is limited.There isalso limitedscopeformanufacturing

    capacityinthesegmentofsolidbiomassenergy.Atmaximumoneplantwouldberequired,howeverall components would need to be imported. Large biogas plants face the same problem, as thepotentialforreplicationwouldbeverylimited.Atotaloffourdemonstrationprojectcouldbepossible,

    beinglocatedatthelocaldistillery,aswellasthethreeexistinglargepigfarms.

    Othertechnologies

    Most ocean power technologies are still in their infancy and none of the existing technologies is

    perfectlysuitedforapplicationinT&T.Duetomaturityoftechnologyandlocation,onlytidalpower

    streamplantsmaypresentasensibleopportunity.OceanThermalEnergyConversion(OTEC)hasgreatpotential and an international or at least a regional approach in the Caribbean should be sought.However,withnolargerprojectsgloballyinexistence,OTECstillneedsasignificantR&Dpushbeforeitcanprovideasizablecontribution.

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    23/310

    8

    2 Introduction

    TrinidadandTobago(T&T)isatwinislandstatecoveringanareaof5,128kmwithatotalpopulation

    of1.3million,mostlylocatedinTrinidad,thelargerofthetwinisles,with4,820km,andabout95%ofthetotalnumberofinhabitants.

    T&T has a long history in the exploitation of fossilenergyresources. Itsoil industry hasone of thelongesthistoricrecordsintheworld,andthecountryhasmorerecentlybecomeasupplierofgasto

    itsnationalindustryandpowersector,andisnowalsoamajorexporterofLiquefiedNaturalGas(LNG).

    AccordingtoBPs2013StatisticalReview,totalprimaryenergyconsumption(TPEC)inT&Twasabout842trillionBtuin2012.4Naturalgasconsumptionaccountedforapproximately92%andconsumption

    ofpetroleumproductswasjustunder8%ofTPEC.Theuseofrenewablefuelswasnegligible.

    Due to a highly energyintensive industry, low energetic efficiency in almost all sectors and theexclusiveuseoffossilfuels,T&ThasveryhighCarbonDioxide(CO2)emissionsfromenergyuseinthe

    rangeof52millionmetrictonnesperyear(2011).With40tonnesCO2percapitathoseemissionsare

    amongthehighestintheworld.

    GoRTTisintheprocessofdevelopingaSustainableEnergyProgram(SEP),whichwillmaximizetheuseofitsnaturalresources,anddeveloptheuseofrenewableandsustainableenergy,includingEnergy

    Efficiency(EE).

    TheProgramwillfocuson:

    (i) Developingasustainableenergyframework;

    (ii) Institutional strengthening of Government entities for the formulation andimplementation of policies oriented towards Sustainable Energy, supporting the

    widespreaduseofAlternativeEnergy;

    (iii) Promotingsmallenergybusinesses,whichwillforgelinkswithothersectors,suchas

    servicesandmanufacturing.

    SpecificprovisionswillbemadetodeterminenationalRenewableEnergy(RE)potentials,encouragerenewableelectricitytechnologies,suchaswind,solar,hydro,biomassandgeothermal,andtosupport

    EEandconservationinitiatives.

    ToimplementanddeveloptheSustainableEnergyProgram(SEP),GoRTThasreceivedaPolicyBasedLoan(PBL)(TTL1023)fromtheInterAmericanDevelopmentBank(IDB).ThisPBLfortheSEPconsistsofthreedifferentoperations,eachwithspecificinstitutionalandpolicygoals.

    TheIDBhiredtheconsortiumofCentreofPartnershipsforDevelopment(CAD),ProjektConsult,andLKStosupporttheMinistryofEnergyandEnergyAffairs(MEEA)inthedevelopmentofpoliciesandactivitiesthatwillpromotethedeploymentofREandtheimplementationofEEmeasures.

    AsstatedintheTermsofReference,thegeneralobjectiveofthisassignmentisthepromotionofRE

    andEEprograms,toensuresustainabledevelopmentinT&T,andtoprovidealternativestominimizethedependencyonfossilfuels.

    4 AccordingtoU.S.EnergyInformationAdministrationstatisticsitwas930billionbtuin2013(EIA,2013).

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    24/310

    9

    Thisincludesthe:

    (i) SupporttothepreparationanddevelopmentoftheprogrammaticPBLfortheSEP;

    (ii) ProvisionoftechnicalassistancetoGoRTT,i.e.theCentralGovernmentofTrinidadandTobago,andtheTobagoHouseofAssembly,intheareaofEE;and

    (iii) Exploration of options for RE, together with the funding of specific RE pilot projects.ParticularfocuswillbegiventoTobagoinordertopromotesustainableenergyuse.5

    2.1 LimitationsoftheReport

    Oneofthemajorlimitationsofthisreportistheavailabilityofdata.WhiletheConsultants,aswellasthelocalCADrepresentationandtheMEEAhavemadeeveryefforttoreceiveallthenecessarydatato analyze the situation in T&T in as much detail as possible, a number of challenges have been

    encounteredthroughouttheprocess:

    1) Existenceofdata:Duetothelowenergycosts,inT&Tanumberofsectorssuchasthetourismsector,donotrecordtheaverageenergyconsumption,asenergyisnotarelevantcostfactor.

    2) Accesstodata:

    Ithasproventobealongandcomplicatedprocesstoreceivethenecessarydatafromtherelevantorganizations,suchastheTrinidadandTobagoElectricityCommission(T&TEC).TheConsultants,aswellastheMEEA,havetriedtosourcethenecessaryenergydata.Althoughvariousintents,such

    aswrittenandformalrequests,directvisitsandfollowupbyphonewereundertaken,itwasnot

    possibletoretrieveallexistingdata.

    InordertotreatwiththeabovelimitationstheConsultantshavemadeassumptionswhereverpossible.IneachoftheChaptersandAppendixes,themethodfordevelopingandcalculatingtheassumptions

    hasbeenexplained.

    Forsomeofthedata,ithasnotbeenpossibletodevelopassumptions,asnocomparabledatawereavailable.

    5 TermsofReference,SupporttotheSustainableEnergyProgram

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    25/310

    10

    3 BaselineforElectricityGenerationandConsumption

    3.1 ObjectiveandScopeoftheBaseline

    Thefollowingchapterestablishesabaseline(businessasusual),intermsofelectricitygenerationandconsumption,aswellasassociatedcarbondioxideemissionsinordertodocumenttheeffectivenessofanysignificantfutureREcontributionandEEmeasuresandestablishenergyforecastscenarios.Thebaselinefocusesontheelectricitysectorandincludesthefollowingfactors:

    1) Amountofnaturalgasanddieseloil(finaluse)appliedforelectricitygeneration(chapter3.3);

    2) Typeandgenerationefficienciesofexistingandfuturepowerplants(chapter3.4);

    3) Longerterm development of power generation capacity (fossil fuel baseline without RE),includingreservecapacity(chapter3.5);

    4) Pastandprojectedfinalelectricitydemand(residential,industrialetc.,includinginformationabout electricity consumption in public buildings and hotels) and peak loads; prospectivebaseline scenarios without EE measures will be based on adequate and reasonable

    assumptions(chapter3.6);

    5) PastandfuturedevelopmentofCO2emissionsinthepowersector(chapter3.7);

    6) Typicaldailyloadcurves(chapter3.8);

    7) TransmissionanddistributiongridandplansforreinforcementorextensioninT&T(chapter3.9);

    8) Electricitygenerationcosts,costcoverageandsubsidiesinthepowersector(chapter3.10).

    3.2 TheTrinidadandTobagoEnergyMatrix

    TheenergysectorisoneofthemostimportantsectorsinT&T.Itamountsto45.3%ofnationalGDP(2011), provides almost 60% of government revenue and is the most important export commoditywith83%ofmerchandiseexports,mainlyrefinedoilproducts,liquefiednaturalgas(LNG),andnatural

    gasliquids(IDB,2013).T&TisthemainexporterofoilintheCaribbean,aswellasthemainproducerofLNGinLatinAmericaandtheCaribbean.

    While the following chapter mostly focuses on the baseline for electricity, Figure 1 provides anoverviewoftheprimaryenergymatrixandenergyflowsinT&T.

    T&Texportsthemajority(58%)ofitsnaturalgasintheformofLNG.In2012,T&Twasthe6thlargestLNGexporter intheworld(IEA,2012c).Therest isuseddomestically inthepetrochemical industry(28%),theelectricitysector(8%)andother(7%),(IDB2013).

    T&Talsoproducesaround80,000barrelsofoilperday(2012).20%oftotalproductionareconsumed

    locally,mainlybythetransportsector(IDB,2013)

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    26/310

    11

    Figure1:EnergyFlowTrinidadandTobago6

    Finalconsumptionisdominatedbygasandpetroleumextractionindustryandothers(whichincludes

    nonenergyconsumptionandtheproductionofderivates,65%),followedbyindustry(25%),transport

    (7%)andtheresidentialandcommercialsectorwith3%.7

    Figure2:Distributionoffinalconsumptionbysector

    6 CR&W=Combustibles,RenewablesandWaste

    7 OwnelaborationbasedonEnergyFlowTrinidadandTobago

    25%

    7%

    2%

    1%

    65%

    Industry Transport Residential Commercial Other(derivateproduction)

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    27/310

    12

    T&Twithitshydrocarbonbasedeconomy,whileonlycontributingto0.1%ofglobalCO2emissions,has

    oneof thehighest percapita CO2 emissions in theworld. It currently ranks 2ndwithregardstopercapitaemissionsandproducesanestimatedamountof52millionmetrictonsofCO2annually(UNEP,2011;IEA2011).

    BasedondatafromtheUniversityofTrinidadandTobago(UTT),thecontributionoftheenergysectorandpetrochemicaloperationstoCO2emissionsisaround80%,andthetransportsectoraccountsfor6%(TrinidadExpress,2013).

    WhilethereportfocusesonthepotentialforCO2emissionsreductionsinthepowersector,aswellas

    throughenergyefficiencyandtheuseofrenewableenergy,italsoneedstobenotedthattheGoRTTis starting to focus on the use of CNG in the transport sector, as another strategy to reduce CO2emissionsinthecountry.

    3.3 NaturalGasandDieselOil(FinalUse)appliedforElectricityGeneration

    3.3.1 AnnualDomesticConsumptionofNaturalGasandLNGExport

    AsillustratedinFigure3,theannualdomesticconsumptionofnaturalgasinT&Thasrisenbetween

    theyears1990and2013, from167 bcf to599 bcf an increase of 359% overthe timeframeof23

    years.8

    Figure3:NaturalGasUtilisationinT&T1990 2013

    Source:MEEA

    Theunderlyingreasonsofthisgrowthinnaturalgasconsumptionincludethefollowingfactors:

    8 In2010domesticconsumptionpeakedat616bcfandthereafterdecreased.

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1990

    1991

    1992

    1993

    1994

    1995

    1996

    1997

    1998

    1999

    2000

    2001

    2002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    2011

    2012

    2013

    Billionft

    Year

    LNG

    Domestic

    consum tion

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    28/310

    13

    Availabilityofnaturalgasfor localmarket:significantincreaseof localextractionofnatural

    gasoverthelast22years:from235bcfin1990to1,514bcfin20139 anincreaseof644%.

    Thegastooilproductionratioalsoconfirmstheimportanceofnaturalgasforthelocalmarket,

    given that it increased from1:1 (energyequivalent) in1998 to5:1 in2007 (GASCO,2011).

    Furthermore,the increasedavailabilityof localnaturalgasat leastuntil2010 isalsodueto

    investmentsinlocalgasinfrastructure,whichwasinturnfacilitatedbyasignificantincreasein

    energyrevenuesdueto,forinstance,oilpriceincreasesintheearly1980s(GASCO,2011).

    Priceofnaturalgasforlocalmarket:thepriceismuchlowerthanelsewhere(seeFigure21,

    page),which,inturn,hasbeenthemaincontributingfactor(alongwithsuitableinfrastructure

    developedbytheGovernment)tothedevelopmentofindustriesthatareintensiveusersof

    gas.10T&TEC,forexample,currently(2012)paysUS$1.2538perMMBTUfornaturalgas.This,

    however,isnotthemarketpriceforgas,giventhatgasissoldatvaryingpricestodifferent

    domesticcompaniesandforeignbuyersbasedonanumberofcriteria(T&TEC,2013).

    Increase

    in

    industrial

    natural

    gas

    consumer

    base:connection

    of

    local

    manufacturing

    businesses

    (includingsmallones)tothenaturalgasgrid(GASCO,2011).Inthiscontext,FIGURE4provides

    anoverviewofthedifferenttypesofnaturalgasconsumers:

    Figure4:OverviewofNaturalGasConsumersinT&T,includingLNGexport,2012

    Owngraph;Source:MEEA,2012b

    IncreaseinGDPandindustrialactivity:T&T'sGDPpercapitahasincreasedby400%between

    1990 (4,170currentUS$)and2011 (16,699currentUS$) (WB,2013);atthesametimethe

    valueaddedofthe industryhasincreasedfrom47%ofGDP in1990to60%ofGDPin2011

    (WB,2013).

    Increase inelectricityproductionfromnaturalgas:Thegrosselectricitygeneration (in turn

    almost exclusively from natural gas, with electricity from oil or REbased electricity being

    9 Productionhaspeakedin2010at1580bcf.

    10 With11ammoniaplantsandsevenmethanolplants,T&Tistheworldslargestexporterofammoniaandthesecondlargestexporter

    ofmethanol,accordingtoIHSGlobalInsight.

    8,0%

    15,0%

    13,6%

    2,0%2,9%

    0,2%

    0,6%

    0,8%

    0,3%

    56,6%

    PowerGeneration

    AmmoniaProduction

    MethanolProduction

    Refinery

    Iron&Steel

    CementProduction

    AmmoniaDerivates

    GasProcessing

    SmallConsumers

    LNG

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    29/310

    14

    negligible,i.e.accountingforlessthan1%)hasgoneupfrom3.6TWhin1990,to8.5TWhin

    2010 anincreaseof137%over20years(IEA,2012a).

    Asfortheshareofnaturalgasusedtogenerateelectricity,thisfigurehasdecreasedfrom13.6%in2000(MEEA,2011a)to8.0%in2012and7.9%in2013.ThemainreasonforthisdevelopmentistheincreasedimportanceofLNGexports(whichhavegoneupfrom31.7%ofthetotaluseofnaturalgas

    in2000,toalmost57%in201211).T&ThasbeentheworldssixthlargestLNGexporterin2012.

    3.3.2 AnnualConsumptionofOil

    Betweentheyear1990and2011,andasillustratedinFigure5below,theannualconsumptionofoilinT&Thasincreasedfrom20,400barrelsperday(bpd)to50,000bpd12 anincreaseof145%overaperiodof22years.AsfortheproductiondatainFigure5,thiscoverstotaloilproduction,which aspertherelevantIEAdefinition includes"productionofcrudeoil includingleasecondensate,natural

    gasplant

    liquids

    and

    other

    liquids

    and

    refinery

    processing

    gain

    (loss)". Oil production peaked at179,000 bpd in 2006, however it has declined yearoveryear since 2008. The declines have been

    attributed to maturing oilfields and operational challenges. According to (EIA, 2013), total oilproductionhasfallento119,315bpdin2012,whileconsumptionstoodat43,686bpd.

    Figure5:TotalOilProductionandConsumptioninT&T,2000 2011

    Owngraph;Source:MEEA,2014

    Inthiscontext,FIGURE9alsoshowscrudeoilproduction,whichhasbeenbelow100,000barrelsper

    day since 2010. In 2012, the production had fallen to 81,735 barrels per day (EIA, 2013; MEEA,

    11 57.4%in2013

    12 AccordingtoEIA,2013,itwasonlyabout40,000bpdin2011.

    0

    20

    40

    60

    80

    100

    120

    140

    160

    1990

    1991

    1992

    1993

    1994

    1995

    1996

    1997

    1998

    1999

    2000

    2001

    2002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    2011

    Thousandbarrels/day

    Year

    TotalOilProduction&Consumption

    inTrinidad&Tobago,19902011

    Production

    Consumption

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    30/310

    15

    ConsolidatedMonthlyBulletin2012);in2013,thedailyaveragewas81,157bpd(MEEA,Consolidated

    MonthlyBulletin2013).T&Thad728millionbarrelsofprovencrudeoilreservesasofJanuary2013

    (EIA,2013).

    Theunderlying

    reasons

    of

    the

    growth

    in

    oil

    consumption

    include

    the

    following

    factors:

    Increase inGDPand industrialactivity:asalreadymentioned intheprevioussection,T&T's

    GDPpercapitahasincreasedby400%between1990(4,170currentUS$)and2011(16,699

    currentUS$);atthesametimethevalueaddedoftheindustryhasincreasedfrom47%ofGDP

    in1990to60%ofGDPin2011(WB,2013).

    IncreaseinenergyintensityperunitofGDP:asalreadymentionedintheprevioussection,the

    totalprimaryenergyintensityinT&Thasrisenby38.2%between1990(16,663Btuper2005

    US$)and2012(25,496Btuper2005US$)(EIA,2013).

    Growth

    of

    high

    oil

    consumption

    industry

    sectors:two

    relevant

    factors

    in

    this

    context

    are:

    i)

    growthofindustrialsectorsasapercentageofGDP,whichhasincreasedfrom47%in1990to

    60%in2011(WB,2013)withmanufacturingbeingtheonlyeconomicsector,thatdespitethe

    global financialcrisis,hasatnopointsince2007experiencednegativegrowthrates (CBTT,

    2012); and ii) increase in consumption and conversion (refinery) of the locally extracted

    petroleum: increase inoilandnaturalgasrefiningbyalmost500%between1995and2009

    (CSO,2013).

    Figure6:CrudeOilProductioninT&T,1990 2013

    Owngraph,Source:MEEA,2014

    Increaseinresidentialoilconsumption:asaresultofthe10.7%populationgrowthinT&Tover

    thelast22years,thetransportationsectorisconsideredtohavegrownaccordingly,aswell.

    0

    20.000

    40.000

    60.000

    80.000

    100.000

    120.000

    140.000

    160.000

    1985 1990 1995 2000 2005 2010 2015

    OIL PRODUCTION (BOPD)

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    31/310

    16

    Thepercentageofthetotalconsumptionofdieseloilusedtogenerateelectricityisnegligible,given

    that in the past diesel has only been utilized for electricity generation for the two power plants in

    Tobago, with a combined installed capacity of 86 MW, accounting for 3.5% of the total powergeneration capacity, and for the startup phase of gas powered plants. Diesel oil use thereforeaccounted for less than 1% of the primary fuel used for electricity generation in T&T (as of 2012).Furthermore, the Cove diesel/gas power plant in Tobago switched to operate on natural gas inNovember2013.Duetothoserecentchanges,thisreportapproximatesdieselgenerationtozero.

    3.3.3 ProjectionsofNaturalGasforElectricityGeneration

    Intermsofprojectingtheelectricitygenerationintothefuture,andtherefore,theamountofnaturalgastobeusedforit,thefollowingfactorsneedtobetakenintoaccount:

    a) Factors determining the demand for electricity, i.e. projected development of electricity

    demand in the commercial and industrial sector, development of Gross Domestic Product

    (GDP)andtheresidentialsector(developmentofpopulationsizeandhouseholds);

    b) Projectedpowergenerationmix,i.e.typesofplants,fueltypesandthermalefficiencies;

    c) Availabilityoftheunderlyingprimaryfuel,i.e.naturalgasreserves.

    3.3.3.1 ElectricityDemand

    Factorsdeterminingthedemandforelectricityarethefollowing:

    Projected

    GDP

    growth:theInternationalMonetaryFunds(IMF's)mostrecentprojectionsforthedevelopmentoftheGDPinT&Tarepositive withrealGDPgrowthratesprojectedtobearound+2.2%in2013,and+3.0%in2017(IMF,2012b).

    Increaseofresidentialenergyconsumerbase:T&Tspopulationhasgrown10.8%overthelast

    22years,i.e.from1.21millionin1990to1.35millionin2011(WB,2013);ThecrudebirthrateforT&Thasbeenrelativelyconstantforalmosttwodecades(since1995:between1416per

    1,000 asper WB, 2013),and there are nonegative indicators in terms of apotential lower

    immigrationorhigheremigrationrate.However,UNDESA,aswellasUNDPPopulationFigures

    expect a stabilization in population by around 2025, at approximately 1.4 Million people.

    Anotherfactortobetakenintoaccountinthiscontextisthatthenumberofhouseholdsmayincreaseatahigherrateduetothetendencyforlessoccupancyperhousehold.

    Increaseofnonresidentialenergyconsumerbase:accordingtotheforecastbyT&TEC(2011),

    thenumberofnonresidentialelectricitycustomersuntil2016isexpectedtoincreaseinevery

    UltraLowSulphurDieselUnit(ULSD)AspartoftheSEP,theGoRTTisimplementingaULSD.InJuly2013,theconstructionprogressoftheULSDprojectwasnegativelyaffectedbyfinancialconstraintsandpoorplanningand outofsequencework,whichledtosignificantamountofrework.Nevertheless,asatJuly2013,totalEPCprojectprogresswas96.6%, whileengineeringwas 98.9%,andconstructionwas 96.7% complete. Thenew ULSDPlantwill

    enablePetrotrintomeetstringentnewdieselqualityspecifications(sulphurandaromatics)inthelocal,regionalandinternationalmarketandispartofPetrotrinscleanenergyprogram.TheULSDisdesigned

    toprocess40,000BPSD(barrelsperstreamday)ofdieselboilingrangefeedstockstoproduceadieselproductthatwillreduce: sulphurcontentfrom>1000ppmto8ppm;aromaticsfrom>45%to

  • 8/10/2019 Support to the Sustainable Energy Program for Trinidad and Tobago (2014)

    32/310

    17

    rateclasswiththeexceptionofmostofthelargeandverylargeindustrycustomers(whose

    numberisexpectedtoremainstable) asillustratedinTABLE1.

    Table1:CustomerForecastbyRateCategory13

    Owntable;Source:T&TEC,2010

    Increaseinelectricityconsumptionacrossmostratecategories:accordingtoforecastinT&TEC(2011),theelectricityconsumptionisexpectedtoincreaseinmostratecategoriesuntil2016

    asillustratedinTABLE2.

    Table2:ElectricitySalestoEachRateCategory14

    Owntable;Source:T&TEC,2010

    InlinewithT&T'saverageelectricityoutputgrowthbetween1990and2010(IEA,2012a),itisassumedthatT&T'sannualpowergenerationoutputwillkeepincreasingatasimilarrateuntil2020,i.e.around4.4% per annum. As a result, gross output is expected to increase to nearly 13.0 TWh in 2020

    equivalenttoaround10,000kWhpercapita.Thispercapitavalue,inturn,isfarhigherthaninmanyindustrializedcountries15.Anincreaseinenduseefficiencyof10%,forinstance,wouldalreadyhaveasignificantimpact.

    3.3.3.2

    ProjectedPowerGenerationMix

    Intermsofprojectedpowergenerationmix,i.e.typesofplants,fueltypesandthermalefficiencies,

    thefollowingfactorsneedtobeconsidered:

    13 ForratecategorydescriptionseeTable5.At30thApril2013,T&TECha