52
1 © 2016 American Medical Association. All rights reserved. Supplementary Online Content Hauberg ME, Roussos P, Grove J, Børglum AD, Mattheisen M; Schizophrenia Working Group of the Psychiatric Genomics Consortium. Analyzing the role of microRNAs in schizophrenia in the context of common genetic risk variants. JAMA Psychiatry. Published online March 9, 2016. doi:10.1001/jamapsychiatry.2015.3018. eAppendix 1. Members of the Schizophrenia Working Group of the Psychiatric Genomics Consortium eAppendix 2. Supplemental Text eReferences eFigure 1. Circos plot for the MHC-region. eFigure 2. Clustering of the top-10 scoring miRNA families. eFigure 3. Region plots of GWAS associations for the miR-9-5p host genes. eFigure 4. Spatiotemporal brain expression of MIR137, MIR2682, and MIR9-2. eFigure 5. PPI-network of the miR-9-5p targetome. eFigure 6. Venn diagrams of the miR-9-5p/miR-137 and miR-137/-miR-2682-5p targetomes. eTable 1. Full results of the TargetScan conserved miRNA gene set analysis. eTable 2. Alternative TargetScan gene set analysis: longer clumping range. eTable 3. Alternative TargetScan gene set analysis: lower LD-threshold. eTable 4. Alternative TargetScan gene set analysis: lower LD-threshold and longer clumping range. eTable 5. Validation of top-10 gene sets using MiRanda target predictions. eTable 6. Validation of top-10 gene sets using TargetMiner target predictions. eTable 7. Results for the top-10 gene sets filtered with CLIP-data from 58 experiments. eTable 8. Signal for the top-10 gene sets in three unrelated traits. eTable 9. Functional annotation of genes regulated by the top-10 miRNA – biological processes. eTable 10. Functional annotation of genes regulated by the top-10 miRNA – annotation clusters. eTable 11. The top 50 most schizophrenia-associated genes targeted by miR-9-5p. eTable 12. Functional annotation of genes regulated by miR-9-5p – biological processes. eTable 13. Functional annotation of genes regulated by miR-9-5p – annotation clusters. eTable 14. Functional annotation of genes regulated by miR-9-5p – transcription factors. eTable 15. Genes in the schizophrenia enriched miR-9-5p subset. eTable 16. Gene set results for miRNA in schizophrenia GWAS loci. eTable 17. Gene set results for miRNA in schizophrenia CNVs. This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

  • Upload
    others

  • View
    23

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

1

© 2016 American Medical Association. All rights reserved.

Supplementary Online Content

Hauberg ME, Roussos P, Grove J, Børglum AD, Mattheisen M; Schizophrenia Working Group of the Psychiatric Genomics Consortium. Analyzing the role of microRNAs in schizophrenia in the context of common genetic risk variants. JAMA Psychiatry. Published online March 9, 2016. doi:10.1001/jamapsychiatry.2015.3018.

eAppendix 1. Members of the Schizophrenia Working Group of the Psychiatric Genomics Consortium eAppendix 2. Supplemental Text eReferences eFigure 1. Circos plot for the MHC-region. eFigure 2. Clustering of the top-10 scoring miRNA families. eFigure 3. Region plots of GWAS associations for the miR-9-5p host genes. eFigure 4. Spatiotemporal brain expression of MIR137, MIR2682, and MIR9-2. eFigure 5. PPI-network of the miR-9-5p targetome. eFigure 6. Venn diagrams of the miR-9-5p/miR-137 and miR-137/-miR-2682-5p targetomes. eTable 1. Full results of the TargetScan conserved miRNA gene set analysis. eTable 2. Alternative TargetScan gene set analysis: longer clumping range. eTable 3. Alternative TargetScan gene set analysis: lower LD-threshold. eTable 4. Alternative TargetScan gene set analysis: lower LD-threshold and longer clumping range. eTable 5. Validation of top-10 gene sets using MiRanda target predictions. eTable 6. Validation of top-10 gene sets using TargetMiner target predictions. eTable 7. Results for the top-10 gene sets filtered with CLIP-data from 58 experiments. eTable 8. Signal for the top-10 gene sets in three unrelated traits. eTable 9. Functional annotation of genes regulated by the top-10 miRNA – biological processes. eTable 10. Functional annotation of genes regulated by the top-10 miRNA – annotation clusters. eTable 11. The top 50 most schizophrenia-associated genes targeted by miR-9-5p. eTable 12. Functional annotation of genes regulated by miR-9-5p – biological processes. eTable 13. Functional annotation of genes regulated by miR-9-5p – annotation clusters. eTable 14. Functional annotation of genes regulated by miR-9-5p – transcription factors. eTable 15. Genes in the schizophrenia enriched miR-9-5p subset. eTable 16. Gene set results for miRNA in schizophrenia GWAS loci. eTable 17. Gene set results for miRNA in schizophrenia CNVs.

This supplementary material has been provided by the authors to give readers additional information about their work.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 2: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

2

© 2016 American Medical Association. All rights reserved.

eAppendix 1. Members of the Schizophrenia Working Group of the Psychiatric Genomics Consortium Stephan Ripke1,2, Benjamin M. Neale1,2,3,4, Aiden Corvin5, James T. R. Walters6, Kai-How Farh1, Peter A. Holmans6,7, Phil Lee1,2,4, Brendan Bulik-Sullivan1,2, David A. Collier8,9, Hailiang Huang1,3, Tune H. Pers3,10,11, Ingrid Agartz12,13,14, Esben Agerbo15,16,17, Margot Albus18, Madeline Alexander19, Farooq Amin20,21, Silviu A. Bacanu22, Martin Begemann23, Richard A Belliveau Jr2, Judit Bene24,25, Sarah E. Bergen 2,26, Elizabeth Bevilacqua2, Tim B Bigdeli 22, Donald W. Black27, Richard Bruggeman28, Nancy G. Buccola29, Randy L. Buckner30,31,32, William Byerley33, Wiepke Cahn34, Guiqing Cai35,36, Murray J. Cairns39,120,170, Dominique Campion37, Rita M. Cantor38, Vaughan J. Carr39,40, Noa Carrera6, Stanley V. Catts39,41, Kimberly D. Chambert2, Raymond C. K. Chan42, Ronald Y. L. Chen43, Eric Y. H. Chen43,44, Wei Cheng45, Eric F. C. Cheung46, Siow Ann Chong47, C. Robert Cloninger48, David Cohen49, Nadine Cohen50, Paul Cormican5, Nick Craddock6,7, James J. Crowley51, David Curtis52,53, Michael Davidson54, Kenneth L. Davis36, Franziska Degenhardt55,56, Jurgen Del Favero57, Lynn E. DeLisi128,129 , Ditte Demontis17,58,59, Dimitris Dikeos60, Timothy Dinan61, Srdjan Djurovic14,62, Gary Donohoe5,63, Elodie Drapeau36, Jubao Duan64,65, Frank Dudbridge66, Naser Durmishi67, Peter Eichhammer68, Johan Eriksson69,70,71, Valentina Escott-Price6, Laurent Essioux72, Ayman H. Fanous73,74,75,76, Martilias S. Farrell51, Josef Frank77, Lude Franke78, Robert Freedman79, Nelson B. Freimer80, Marion Friedl81, Joseph I. Friedman36, Menachem Fromer1,2,4,82, Giulio Genovese2, Lyudmila Georgieva6, Elliot S. Gershon209, Ina Giegling81,83, Paola Giusti-Rodríguez51, Stephanie Godard84, Jacqueline I. Goldstein1,3, Vera Golimbet85, Srihari Gopal86, Jacob Gratten87, Lieuwe de Haan88, Christian Hammer23, Marian L. Hamshere6, Mark Hansen89, Thomas Hansen17,90, Vahram Haroutunian36,91,92, Annette M. Hartmann81, Frans A. Henskens39,93,94, Stefan Herms55,56,95, Joel N. Hirschhorn3,11,96, Per Hoffmann55,56,95, Andrea Hofman55,56, Mads V. Hollegaard97, David M. Hougaard97, Masashi Ikeda98, Inge Joa99, Antonio Julià100, René S. Kahn34, Luba Kalaydjieva101,102, Sena Karachanak-Yankova103, Juha Karjalainen78, David Kavanagh6, Matthew C. Keller104, Brian J. Kelly120, James L. Kennedy105,106,107, Andrey Khrunin108, Yunjung Kim51, Janis Klovins109, James A. Knowles110, Bettina Konte81, Vaidutis Kucinskas111, Zita Ausrele Kucinskiene111, Hana Kuzelova-Ptackova112, Anna K. Kähler26, Claudine Laurent19,113, Jimmy Lee Chee Keong47,114, S. Hong Lee87, Sophie E. Legge6, Bernard Lerer115, Miaoxin Li43,44,116 Tao Li117, Kung-Yee Liang118, Jeffrey Lieberman119, Svetlana Limborska108, Carmel M. Loughland39,120, Jan Lubinski121, Jouko Lönnqvist122, Milan Macek Jr112, Patrik K. E. Magnusson26, Brion S. Maher123, Wolfgang Maier124, Jacques Mallet125, Sara Marsal100, Manuel Mattheisen17,58,59,126, Morten Mattingsdal14,127, Robert W. McCarley128,129, Colm McDonald130, Andrew M. McIntosh131,132, Sandra Meier77, Carin J. Meijer88, Bela Melegh24,25, Ingrid Melle14,133, Raquelle I. Mesholam-Gately128,134, Andres Metspalu135, Patricia T. Michie39,136, Lili Milani135, Vihra Milanova137, Younes Mokrab8, Derek W. Morris5,63, Ole Mors17,58,138, Kieran C. Murphy139, Robin M. Murray140, Inez Myin-Germeys141, Bertram Müller-Myhsok142,143,144, Mari Nelis135, Igor Nenadic145, Deborah A. Nertney146, Gerald Nestadt147, Kristin K. Nicodemus148, Liene Nikitina-Zake109, Laura Nisenbaum149, Annelie Nordin150, Eadbhard O’Callaghan151, Colm O’Dushlaine2, F. Anthony O’Neill152, Sang-Yun Oh153, Ann Olincy79, Line Olsen17,90, Jim Van Os141,154, Psychosis Endophenotypes International Consortium155, Christos Pantelis39,156, George N. Papadimitriou60, Sergi Papiol23, Elena Parkhomenko36, Michele T. Pato110, Tiina Paunio157,158, Milica Pejovic-Milovancevic159, Diana O. Perkins160, Olli Pietiläinen158,161, Jonathan Pimm53, Andrew J. Pocklington6, John Powell140, Alkes Price3,162, Ann E. Pulver147, Shaun M. Purcell82, Digby Quested163, Henrik B. Rasmussen17,90, Abraham Reichenberg36, Mark A. Reimers164, Alexander L. Richards6, Joshua L. Roffman30,32, Panos Roussos82,165, Douglas M. Ruderfer6,82, Veikko Salomaa71, Alan R. Sanders64,65, Ulrich Schall39,120, Christian R. Schubert166, Thomas G. Schulze77,167, Sibylle G. Schwab168, Edward M. Scolnick2, Rodney J. Scott39,169,170, Larry J. Seidman128,134, Jianxin Shi171, Engilbert Sigurdsson172, Teimuraz Silagadze173, Jeremy M. Silverman36,174, Kang Sim47, Petr Slominsky108, Jordan W. Smoller2,4, Hon-Cheong So43, Chris C. A. Spencer175, Eli A. Stahl3,82, Hreinn Stefansson176, Stacy Steinberg176, Elisabeth Stogmann177, Richard E. Straub178, Eric Strengman179,34, Jana Strohmaier77, T. Scott Stroup119, Mythily Subramaniam47, Jaana Suvisaari122, Dragan M. Svrakic48, Jin P. Szatkiewicz51, Erik Söderman12, Srinivas Thirumalai180, Draga Toncheva103, Paul A. Tooney39,120,170 , Sarah Tosato181, Juha Veijola182,183, John Waddington184, Dermot Walsh185, Dai Wang86, Qiang Wang117, Bradley T. Webb22, Mark Weiser54, Dieter B. Wildenauer186, Nigel M. Williams6, Stephanie Williams51, Stephanie H. Witt77, Aaron R. Wolen164, Emily H. M. Wong43, Brandon K. Wormley22, Jing Qin Wu39,170, Hualin Simon Xi187, Clement C. Zai105,106, Xuebin Zheng188, Fritz Zimprich177, Naomi R. Wray87, Kari Stefansson176, Peter M. Visscher87, Wellcome Trust Case-Control Consortium 2189, Rolf Adolfsson150, Ole A. Andreassen14,133, Douglas H. R. Blackwood132, Elvira Bramon190, Joseph D. Buxbaum35,36,91,191, Anders D. Børglum17,58,59,138, Sven Cichon55,56,95,192, Ariel Darvasi193, Enrico Domenici194, Hannelore Ehrenreich23, Tõnu Esko3,11,96,135, Pablo V. Gejman64,65, Michael Gill5, Hugh Gurling53, Christina M. Hultman26, Nakao Iwata98, Assen V. Jablensky39,102,186,195, Erik G. Jönsson12,14, Kenneth S. Kendler196, George Kirov6, Jo Knight105,106,107, Todd Lencz197,198,199, Douglas F. Levinson19, Qingqin S. Li86, Jianjun Liu188,200, Anil K. Malhotra197,198,199, Steven A. McCarroll2,96, Andrew McQuillin53, Jennifer L. Moran2, Preben B. Mortensen15,16,17, Bryan J. Mowry87,201, Markus M. Nöthen55,56, Roel A. Ophoff38,80,34, Michael J. Owen6,7, Aarno Palotie2,4,161, Carlos N. Pato110, Tracey L. Petryshen2,128,202, Danielle Posthuma203,204,205, Marcella Rietschel77, Brien P. Riley196, Dan Rujescu81,83, Pak C. Sham43,44,116 Pamela Sklar82,91,165, David St Clair206, Daniel R. Weinberger178,207, Jens R. Wendland166, Thomas Werge17,90,208, Mark J. Daly1,2,3, Patrick F. Sullivan26,51,160 & Michael C. O’Donovan6,7

Affiliations: 1Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. 2Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. 3Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. 4Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. 5Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin 8, Ireland. 6MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK. 7National Centre for Mental Health, Cardiff University, Cardiff,

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 3: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

3

© 2016 American Medical Association. All rights reserved.

CF24 4HQ, UK. 8Eli Lilly and Company Limited, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH, UK. 9Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, SE5 8AF, UK. 10Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800, Denmark. 11Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, Massachusetts, 02115USA. 12Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, SE-17176 Stockholm, Sweden. 13Department of Psychiatry, Diakonhjemmet Hospital, 0319 Oslo, Norway. 14NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway. 15Centre for Integrative Register-based Research, CIRRAU, Aarhus University, DK-8210 Aarhus, Denmark. 16National Centre for Register-based Research, Aarhus University, DK-8210 Aarhus, Denmark. 17The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark. 18State Mental Hospital, 85540 Haar, Germany. 19Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA. 20Department of Psychiatry and Behavioral Sciences, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia 30033, USA. 21Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta Georgia 30322, USA. 22Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia 23298, USA. 23Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany. 24Department of Medical Genetics, University of Pécs, Pécs H-7624, Hungary. 25Szentagothai Research Center, University of Pécs, Pécs H-7624, Hungary. 26Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden. 27Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA. 28University Medical Center Groningen, Department of Psychiatry, University of Groningen NL-9700 RB, The Netherlands. 29School of Nursing, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA. 30Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, Massachusetts 02129, USA. 31Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138 USA. 32Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, 02114 USA. 33Department of Psychiatry, University of California at San Francisco, San Francisco, California, 94143 USA. 34University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, 3584 Utrecht, The Netherlands. 35Department of Human Genetics, Icahn School of Medicine at Mount Sinai, New York, New York 10029 USA. 36Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029 USA. 37Centre Hospitalier du Rouvray and INSERM U1079 Faculty of Medicine, 76301 Rouen, France. 38Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA. 39Schizophrenia Research Institute, Sydney NSW 2010, Australia. 40School of Psychiatry, University of New South Wales, Sydney NSW 2031, Australia. 41Royal Brisbane and Women’s Hospital, University of Queensland, Brisbane, St Lucia QLD 4072, Australia. 42Institute of Psychology, Chinese Academy of Science, Beijing 100101, China. 43Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 44State Key Laboratory for Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 45Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27514, USA. 46Castle Peak Hospital, Hong Kong, China. 47Institute of Mental Health, Singapore 539747, Singapore. 48Department of Psychiatry, Washington University, St. Louis, Missouri 63110, USA. 49Department of Child and Adolescent Psychiatry, Assistance Publique Hopitaux de Paris, Pierre and Marie Curie Faculty of Medicine and Institute for Intelligent Systems and Robotics, Paris, 75013, France. 50 Blue Note Biosciences, Princeton, New Jersey 08540, USA 51Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA. 52Department of Psychological Medicine, Queen Mary University of London, London E1 1BB, UK. 53Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London WC1E 6JJ, UK. 54Sheba Medical Center, Tel Hashomer 52621, Israel. 55Department of Genomics, Life and Brain Center, D-53127 Bonn, Germany. 56Institute of Human Genetics, University of Bonn, D-53127 Bonn, Germany. 57Applied Molecular Genomics Unit, VIB Department of Molecular Genetics, University of Antwerp, B-2610 Antwerp, Belgium. 58Centre for Integrative Sequencing, iSEQ, Aarhus University, DK-8000 Aarhus C, Denmark. 59Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark. 60First Department of Psychiatry, University of Athens Medical School, Athens 11528, Greece. 61Department of Psychiatry, University College Cork, Co. Cork, Ireland. 62Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway. 63Cognitive Genetics and Therapy Group, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Co. Galway, Ireland. 64Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois 60637, USA. 65Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, Illinois 60201, USA. 66Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK. 67Department of Child and Adolescent Psychiatry, University Clinic of Psychiatry, Skopje 1000, Republic of Macedonia. 68Department of Psychiatry, University of Regensburg, 93053 Regensburg, Germany. 69Department of General Practice, Helsinki University Central Hospital, University of Helsinki P.O. Box 20, Tukholmankatu 8 B, FI-00014, Helsinki, Finland 70Folkhälsan Research Center, Helsinki, Finland, Biomedicum Helsinki 1, Haartmaninkatu 8, FI-00290, Helsinki, Finland.71National Institute for Health and Welfare, P.O. BOX 30, FI-00271 Helsinki, Finland.72Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffman-La Roche, CH-4070 Basel, Switzerland. 73Department of Psychiatry, Georgetown University School of Medicine, Washington DC 20057, USA. 74Department of Psychiatry, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA. 75Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA. 76Mental Health Service Line, Washington VA Medical Center, Washington DC 20422, USA. 77Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg , D-68159 Mannheim, Germany. 78Department of Genetics, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands. 79Department of Psychiatry, University of Colorado Denver, Aurora, Colorado 80045, USA. 80Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA. 81Department of Psychiatry, University of Halle, 06112 Halle, Germany. 82Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. 83Department of Psychiatry, University of Munich, 80336, Munich, Germany.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 4: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

4

© 2016 American Medical Association. All rights reserved.

84Departments of Psychiatry and Human and Molecular Genetics, INSERM, Institut de Myologie, Hôpital de la Pitiè-Salpêtrière, Paris, 75013, France. 85Mental Health Research Centre, Russian Academy of Medical Sciences, 115522 Moscow, Russia. 86Neuroscience Therapeutic Area, Janssen Research and Development, Raritan, New Jersey 08869, USA. 87Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia. 88Academic Medical Centre University of Amsterdam, Department of Psychiatry, 1105 AZ Amsterdam, The Netherlands. 89Illumina, La Jolla, California, California 92122, USA. 90Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, DK-4000, Denmark. 91Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. 92J. J. Peters VA Medical Center, Bronx, New York, New York 10468, USA. 93Priority Research Centre for Health Behaviour, University of Newcastle, Newcastle NSW 2308, Australia. 94School of Electrical Engineering and Computer Science, University of Newcastle, Newcastle NSW 2308, Australia. 95Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, CH-4058, Switzerland. 96Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. 97Section of Neonatal Screening and Hormones, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, DK-2300, Denmark. 98Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan. 99Regional Centre for Clinical Research in Psychosis, Department of Psychiatry, Stavanger University Hospital, 4011 Stavanger, Norway. 100Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, 08035, Spain. 101Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia. 102The Perkins Institute for Medical Research, The University of Western Australia, Perth, WA 6009, Australia.103Department of Medical Genetics, Medical University, Sofia1431, Bulgaria. 104Department of Psychology, University of Colorado Boulder, Boulder, Colorado 80309, USA. 105Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada. 106Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada. 107Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. 108Institute of Molecular Genetics, Russian Academy of Sciences, Moscow123182, Russia. 109Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia. 110Department of Psychiatry and Zilkha Neurogenetics Institute, Keck School of Medicine at University of Southern California, Los Angeles, California 90089, USA. 111Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania. 112 Department of Biology and Medical Genetics, 2nd Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic. 113 Department of Child and Adolescent Psychiatry, Pierre and Marie Curie Faculty of Medicine, Paris 75013, France. 114Duke-NUS Graduate Medical School, Singapore 169857, Singapore. 115Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel. 116Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, China.117Mental Health Centre and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. 118Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA. 119Department of Psychiatry, Columbia University, New York, New York 10032, USA. 120Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle NSW 2300, Australia.121Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 70-453 Szczecin, Poland. 122Department of Mental Health and Substance Abuse Services; National Institute for Health and Welfare, P.O. BOX 30, FI-00271 Helsinki, Finland 123Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA. 124Department of Psychiatry, University of Bonn, D-53127 Bonn, Germany. 125Centre National de la Recherche Scientifique, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Hôpital de la Pitié Salpêtrière, 75013, Paris, France. 126Department of Genomics Mathematics, University of Bonn, D-53127 Bonn, Germany. 127Research Unit, Sørlandet Hospital, 4604 Kristiansand, Norway. 128Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115, USA. 129VA Boston Health Care System, Brockton, Massachusetts 02301, USA. 130Department of Psychiatry, National University of Ireland Galway, Co. Galway, Ireland. 131Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH16 4SB, UK. 132Division of Psychiatry, University of Edinburgh, Edinburgh EH16 4SB, UK. 133Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway. 134Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, Massachusetts 02114, USA. 135Estonian Genome Center, University of Tartu, Tartu 50090, Estonia. 136School of Psychology, University of Newcastle, Newcastle NSW 2308, Australia. 137First Psychiatric Clinic, Medical University, Sofia 1431, Bulgaria. 138Department P, Aarhus University Hospital, DK-8240 Risskov, Denmark. 139Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland. 140King’s College London, London SE5 8AF, UK. 141Maastricht University Medical Centre, South Limburg Mental Health Research and Teaching Network, EURON, 6229 HX Maastricht, The Netherlands. 142Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK. 143Max Planck Institute of Psychiatry, 80336 Munich, Germany. 144Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany. 145Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany. 146Department of Psychiatry, Queensland Brain Institute and Queensland Centre for Mental Health Research, University of Queensland, Brisbane, Queensland, St Lucia QLD 4072, Australia. 147Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. 148Department of Psychiatry, Trinity College Dublin, Dublin 2, Ireland. 149Eli Lilly and Company, Lilly Corporate Center, Indianapolis, 46285 Indiana, USA. 150Department of Clinical Sciences, Psychiatry, Umeå University, SE-901 87 Umeå, Sweden. 151DETECT Early Intervention Service for Psychosis, Blackrock, Co. Dublin, Ireland. 152Centre for Public Health, Institute of Clinical Sciences, Queen’s University Belfast, Belfast BT12 6AB, UK. 153Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, California 94720, USA. 154Institute of Psychiatry, King’s College London, London SE5 8AF, UK. 155A list of authors and affiliations appear in the Supplementary Information of the original article. 156Melbourne Neuropsychiatry Centre, University of Melbourne & Melbourne Health, Melbourne, Vic 3053, Australia. 157Department of Psychiatry, University of Helsinki, P.O. Box 590, FI-00029 HUS, Helsinki, Finland. 158Public Health Genomics Unit, National Institute for Health and Welfare, P.O. BOX 30, FI-00271 Helsinki, Finland 159Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia. 160Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599-7160, USA. 161Institute for Molecular Medicine Finland, FIMM, University of Helsinki, P.O. Box 20FI-00014, Helsinki, Finland 162Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 5: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

5

© 2016 American Medical Association. All rights reserved.

02115, USA. 163Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK. 164Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA. 165Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. 166PharmaTherapeutics Clinical Research, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA. 167Department of Psychiatry and Psychotherapy, University of Gottingen, 37073 Göttingen, Germany. 168Psychiatry and Psychotherapy Clinic, University of Erlangen, 91054 Erlangen, Germany. 169Hunter New England Health Service, Newcastle NSW 2308, Australia. 170School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan NSW 2308, Australia. 171Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA. 172University of Iceland, Landspitali, National University Hospital, 101 Reykjavik, Iceland. 173Department of Psychiatry and Drug Addiction, Tbilisi State Medical University (TSMU), N33, 0177 Tbilisi, Georgia. 174Research and Development, Bronx Veterans Affairs Medical Center, New York, New York 10468, USA. 175Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, UK. 176deCODE Genetics, 101 Reykjavik, Iceland. 177Department of Clinical Neurology, Medical University of Vienna, 1090 Wien, Austria. 178Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA. 179Department of Medical Genetics, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands. 180Berkshire Healthcare NHS Foundation Trust, Bracknell RG12 1BQ, UK. 181Section of Psychiatry, University of Verona, 37134 Verona, Italy. 182Department of Psychiatry, University of Oulu, P.O. BOX 5000, 90014, Finland183University Hospital of Oulu, P.O.BOX 20, 90029 OYS, Finland.184Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland. 185Health Research Board, Dublin 2, Ireland. 186School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth WA6009, Australia. 187Computational Sciences CoE, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA.188Human Genetics, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore. 189A list of authors and affiliations appear in the Supplementary Information in the original article.190University College London, London WC1E 6BT, UK. 191Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. 192Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, 52428 Juelich, Germany. 193Department of Genetics, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel. 194Neuroscience Discovery and Translational Area, Pharma Research and Early Development, F. Hoffman-La Roche, CH-4070 Basel, Switzerland. 195Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Medical Research Foundation Building, Perth WA 6000, Australia. 196Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA. 197The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA. 198The Hofstra NS-LIJ School of Medicine, Hempstead, New York, 11549 USA. 199The Zucker Hillside Hospital, Glen Oaks, New York,11004 USA. 200Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore. 201Queensland Centre for Mental Health Research, University of Queensland, Brisbane 4076, Queensland, Australia. 202Center for Human Genetic Research and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. 203Department of Child and Adolescent Psychiatry, Erasmus University Medical Centre, Rotterdam 3000, The Netherlands. 204Department of Complex Trait Genetics, Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, Amsterdam 1081, The Netherlands. 205Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam 1081, The Netherlands. 206University of Aberdeen, Institute of Medical Sciences, Aberdeen, AB25 2ZD, UK. 207Departments of Psychiatry, Neurology, Neuroscience and Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA. 208Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark.209Departments of Psychiatry and Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.

  

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 6: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

6

© 2016 American Medical Association. All rights reserved.

eAppendix 2. Supplemental Text OverviewofmethodsforestablishingthetargetomeofamiRNA 7

FilteringofpredictedmiRNAtargetswithCLIPdata 8

ThecorrelationbetweenthenumberofmiRNAbindingsitesinageneandschizophrenia 9

CircosplotfortheMHCregion(targetsoftop‐10miRNA) 10

Clusteringoftop10miRNAgenesetsconsideringonlyschizophreniaassociatedgenes 11

Regionalassociationplotsofthethreemir‐9hostgenes 12

TemporalbrainexpressionofmiR‐9‐5p,miR‐137,andmiR‐2682‐5p 13

ClusteringofmiR‐9‐5ptargets 14

PPInetworkformiR‐9‐5ptargets 15

AnalysisofthemiR‐9‐5ptargetomeinpostmortembrains 16

DeterminingifthetargetomeoverlapbetweentwomiRNAisbiggerthanexpectedbychance 18

AnoteonthelimitedsupportforanassociationofthemiR‐130bandmiR‐193a‐3ptargetomes 19

eReferences 20

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 7: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

7

© 2016 American Medical Association. All rights reserved.

Overview of methods for establishing the targetome of a miRNA It is widely accepted that miRNA bind to the 3’-UTR, but there is also evidence for binding in coding regions1,2. This pairing involves in most cases a so-called seed sequence with certain patterns of complementarity. However, it has also been shown that miRNA interact without such seed sequences albeit with lower average effects3. In order to establish a list of all genes, that are targeted by a given miRNA (the so-called targetome of a miRNA), computational prediction have been used extensively. In these computational prediction methods, an array of different characteristics are taken into account such as conservation across species, local AU content, predicted accessibility due to RNA folding, Gibbs energy of the interaction, and expression data. However, the prediction algorithms still suffer from limited specificity and/or sensitivity despite over a decade of research. As an alternative to these computational prediction methods various experimental methods exist. These include reporter assays, which suffer from their low throughput, and overexpression/silencing experiments measuring the change in protein abundance resulting from altered miRNA expression. Another experimental approach is cross-linked immunoprecipitation (CLIP) experiments where the miRNA, its associated proteins, and the fragment of mRNA that it binds are precipitated and subsequently RNA sequencing is carried out. This gives the abundance of each miRNA expressed in the tissue/cell as well as the target sites on the genes. However, subsequently computer algorithms have to be employed to predict which miRNA binds to which target sites. A relatively new approach which circumvents this limitation is “CLASH” which is similar to CLIP experiments, but with the difference that the miRNA and the fragment of the mRNA to which it binds are ligated3. Unfortunately, this has only been used in yeast and in HEK cells and the authors demonstrated a depletion of brain-expressed miRNA in the experiments. In our paper, we opted to primarily use the predicted conserved predicted targets of the widely used TargetScan. Because of its reliance on conservation and that the miRNA have a seed site, the predicted targets of this algorithm have a relatively high chance of being both true predictions and functionally important. For validation purposes, two alternative prediction methods, were used: The recent methods TargetMiner4, which is based on mirBase 18, and the broadly used but slightly older MiRanda5, which is based on mirBase 15, were used.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 8: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

8

© 2016 American Medical Association. All rights reserved.

Filtering of predicted miRNA targets with CLIP data We used data from AGO cross-linked immunoprecipitation (CLIP) experiments in an attempt to remove false predictions from our TargetScan gene sets. Results from 41 CLIP experiments in human and mouse were down-loaded from StarBase6. Additionally, one experiment from human brain7 and a group of experiments including mainly hematopoietic cells8 were included. LiftOver was used to lift results from hg18 and from mm9 to hg19. Peaks longer than 300 bp were excluded from the analysis due to lack of specificity (this represented 0.6% of all peaks). A miRNA target site was defined to be supported by CLIP data if the seed-region of the target site was completely within the peak. In a subsequent analysis we determined whether filtering of our top ranking conserved miRNA gene sets with the aforementioned CLIP data led to an increased enrichment for schizophrenia associated genes. In other words, we tested whether filtering with CLIP data was better than removing genes at random. For each of our top miR-NA gene sets, 1000 replicate gene sets were generated by drawing genes from the original non-filtered gene set until the replicate set contained the same number of genes as the CLIP filtered gene set. Subsequently, the IN-RICH p-values of these replicate sets under the top-1% clumping threshold were compared to the p-values of the original CLIP filtered gene sets by counting how many replicate sets that had as strong or a stronger association to schizophrenia. This resulted in empirical p-values for the following four top ranked miRNA: miR-9-5p ~ p=0.16; miR-485-5p ~ p=0.064; miR-137 ~ p=0.16; and miR-101-3p ~ p=0.24. While filtering with CLIP data showed an overall trend to improve our enrichment p-values there was no significant evidence that filtering with CLIP data was better than removing genes at random. We note that our analysis was limited by the availability of relevant CLIP data and that only two brain related datasets could be incorporated. Thus, many of the CLIP supported targets in our top gene sets therefore come from samples other than the two CLIP experiments from brain. For miR-9-5p, the human brain experiment has 6 targets (0.49% of targets from that experiment) and the p13 mouse brain contains 143 (3.3% of targets from that experiment).

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 9: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

9

© 2016 American Medical Association. All rights reserved.

The correlation between the number of miRNA binding sites in a gene and schizophrenia To determine whether miRNA regulated genes were more likely to be schizophrenia risk genes, we tested if genes under extensive miRNA regulation showed a stronger association with schizophrenia compared to genes with reduced or missing miRNA regulation. More precisely, we tested if there was a correlation between the number of predicted miRNA target sites per gene and the corresponding strength of association with schizophre-nia. The p-value assigned to a gene (strength of association) was the p-value of the most significantly associated SNP physically located within the gene (min p). Genes in the broader MHC-region were excluded. A linear model for the gene p-value was run including the following independent variables: the number of miRNA target sites in the gene, the log-transformed gene length, and the 3’-UTR length. This model looked like this:

log10(p‐value) ~ miRNA target sites + 3’UTR length + gene length 

  Estimate Std. Error t value Pr(>|t|) 

(Intercept)  ‐1.939e+00 1.366e‐02 ‐141.905 <2e‐16 

miRNA target sites  ‐1.586e‐02 1.575e‐03 ‐10.072 <2e‐16 

3’UTR length  ‐3.471e‐05 7.678e‐06 ‐4.521 6.2e‐06 

gene length  ‐3.165e‐06 8.009e‐08 ‐39.522 <2e‐16  This shows that our covariates are also associated with the gene p-value. We further note that miRNA target sites are also significantly correlated with the 3’UTR length and the gene length and that the identified association was in the same order of magnitude when omitting the correction for 3’-UTR length (data not shown). We subsequently calculated the fraction of the variance in the GWAS results solely explained by the number of miRNA target sites, regressing out effects of gene 3’-UTR length. In addition to the calculations for schizophre-nia both of the two abovementioned approaches were also repeated for the three unrelated traits9-12 . The results for the correlation between miRNA gene target sites and gene p-value were (sample size is number of cases and controls in the respective study):

Trait  beta  p‐value variance explained Sample size 

Schizophrenia9  ‐1.59E‐02 <2e‐16 0.49% 150,064 

Age at Menarche10  ‐8.20E‐03 3.00E‐09 0.20% 182,416 

Crohn's11  ‐3.69E‐03 0.06169 0.02% 66,968 

Height12  ‐5.41E‐02 <2e‐16 0.52% 253,288 

For schizophrenia the analysis shows a trait unspecific correlation of gene p-values with the number of miRNA target sites per gene. In other words, genes with more miRNA target sites on average had a lower p-value. Simi-lar associations were found for age at menarche and height but not for Crohn’s disease.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 10: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

10

© 2016 American Medical Association. All rights reserved.

Circos plot for the MHC region (targets of top-10 miRNA) To provide an overview of the targets of the top-10 miRNA in the MHC-region, we provide eFigure 1. eFigure 1: Circos plot for the MHC-region.

A zoomed in version of the MHC-region of the Circos plot in the main article. Note that the genes in this region were excluded from the gene set analyses. GW: genome-wide.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 11: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

11

© 2016 American Medical Association. All rights reserved.

Clustering of top 10 miRNA gene sets considering only schizophrenia associ-ated genes To see how the top-10 scoring miRNA gene sets related when considering only schizophrenia associated genes, they were clustered considering only genes at various cut-offs for the gene’s association with schizophrenia (eFigure 2). Genes in the broader MHC-region and on sex-chromosomes were excluded in the analysis. eFigure 2: Clustering of the top-10 scoring miRNA families.

The clustering was based on the Jaccard distance between their target genes on autosomes outside the MHC-region considering a) all genes, b) genes within top 5% of SNPs c) genes within top 1% of SNPs d) genes with p < 1 x 10-5, and e) genes with p < 5 x 10-8 (Genome-wide significant).

miR−

7−5p

miR−

34a

c−5

p/44

9b−

5p/4

49a

miR−

1/20

6/61

3

miR−

374

ab−

5p

miR−

200

bc−

3p/4

29

miR−

101−

3p miR−

9−

5p

miR−

137

miR−

28−

5p/7

08−

5p/3

139

miR−

485−

5p

0.8

80.

900.

920

.94

0.9

6

miR−

7−5

p

miR−

34a

c−5p

/449

b−

5p/4

49a

miR−

1/20

6/6

13

miR−

374a

b−5

p

miR−

9−5p

miR−

137

miR−

200

bc−

3p/4

29

miR−

101−

3p

miR−

28−

5p/7

08−

5p/3

139

miR−

485−

5p

0.8

60.

880

.90

0.9

20.

940.

96

miR−

28−

5p/7

08−

5p/3

139

miR−

485−

5p

miR−

7−5p

miR−

34ac−

5p/4

49b−

5p/4

49a

miR−

1/20

6/61

3

miR−

374

ab−

5p

miR−

137

miR−

9−5

p

miR−

200

bc−

3p/4

29

miR−

101−

3p0.8

20

.84

0.86

0.88

0.90

0.9

20

.94

0.96

miR−

7−5

p

miR−

374a

b−5p

miR−

101−

3p

miR−

200b

c−3p

/42

9

miR−

9−5p

miR−

137

miR−

1/20

6/6

13

miR−

34a

c−5p

/449

b−

5p/4

49a m

iR−

28−

5p/7

08−

5p/3

139

miR−

485−

5p

0.8

00.

850.

900.

95

miR−

485−

5p

miR−

28−

5p/7

08−

5p/3

139

miR−

9−5p

miR−

7−5p

miR−

200b

c−3p

/42

9

miR−

374a

b−5p

miR−

101−

3p

miR−

1/20

6/6

13

miR−

137

miR−

34a

c−5p

/44

9b−

5p/4

49a

0.6

50.

700.

750.

800.

850

.90

0.95

1.00

a) b) c)

d) e)

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 12: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

12

© 2016 American Medical Association. All rights reserved.

Regional association plots of the three mir-9 host genes Ricopili (http://www.broadinstitute.org/mpg/ricopili/) was used to visualize association results from PGC2 in genomic regions harboring variants related to mir-9 (eFigure 3). eFigure 3: Region plots of GWAS associations for the miR-9-5p host genes.

The “PGC2” associations at a) MIR9-1 b) MIR9-2 c) MIR9-3. LINC00461 is the putative host gene of MIR9-2. The lead SNP (rs181900) is 25kb upstream of the longest isoform of this host gene and 43kb upstream of MIR9-2 itself.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 13: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

13

© 2016 American Medical Association. All rights reserved.

Temporal brain expression of miR-9-5p, miR-137, and miR-2682-5p To establish the temporal expression pattern of selected miRNA, BrainSpan RNA sequencing data was used13. BrainSpan data includes a variable number of samples at various regions at various time points. In our analyses, only regions present in 30 or more samples were used. When more than one sample at a given region and devel-opmental stage was present, the average expression was used. The results of this analysis is presented in eFigure 4. eFigure 4: Spatiotemporal brain expression of MIR137, MIR2682, and MIR9-2.

MIR9-2 is the mir-9 expressing gene showing the highest expression in BrainSpan, and the second peak at 26 weeks in STC seen in its figure is from a single sample at a single time point, and can thus be an outlier. A1C: primary auditory cortex (core), AMY: amygdaloid complex, DFC: dorsolateral pre-frontal cortex, HIP: hippocampus (hippocampal formation), IPC: posteroventral (inferior) parietal cor-tex, ITC: inferolateral temporal cortex (area TEv), MFC: anterior (rostral) cingulate (medial prefrontal) cortex, OFC: orbital frontal cortex, STC: posterior (caudal) superior temporal cortex (area 22c), URL: upper (rostral) rhombic lip, V1C: primary visual cortex (striate cortex), VFC: ventrolateral prefrontal cortex.

01

23

4

100 1000 10000Age in days since conception

Ave

rag

e R

PK

M

a) MIR137

05

101

5

100 1000 10000Age in days since conception

Ave

rag

e R

PK

M

b) MIR2682

03

060

90

120

100 1000 10000Age in days since conception

Ave

rag

e R

PK

M

c) MIR9

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 14: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

14

© 2016 American Medical Association. All rights reserved.

Clustering of miR-9-5p targets In an attempt to identify homogeneous subsets (functional groups) in the genes targeted by miR-9-5p, we em-ployed a hierarchically clustering approach using data from BrainSpan13. Brain RNA sequencing reads per kilobase per million mapped tags (RPKM) were averaged across different developmental time points and brain regions (see below) and log transformed with log2(1+RPKM) following guiding principles from BrainSpan. All miRNA targets in a gene set were hierarchically clustered using a Pearson correlation as similarity measure. We used data from all available brain regions at developmental stages prior to and including two years of age. The age cut-off was selected in accordance with the expression pattern of miR-9-5p (eFigure 4). Genes with no ex-pression data were excluded from the analyses. A cut-off height of 0.25 resulted in four groups of targets which had a gene set size larger than or equal to 50. To test a potential association of the resulting gene sets with schiz-ophrenia we used INRICH at the top-1% threshold:

Size  Raw p‐value Gene set name

62  0.7726 Cluster 1111  0.1335 Cluster 2201  0.1158 Cluster 3497  1.34 x 10

‐4Cluster 4

1237  4.87 x 10‐5

Original set

One of the gene sets, cluster 4 (eTable 15), was significantly associated with schizophrenia. While the enrich-ment for cluster 4 was less significant when compared to the enrichment for the full set, the difference was only marginal. Since this cluster included less then half of the original targets we tested in a resampling procedure whether this group of genes was enriched for genes associated with schizophrenia. The INRICH p-value of this cluster was compared to that of 1000 size-matched gene sets drawn at random from all miR-9-5p targets in the original test. Only four of these randomly drawn subsets showed as strong or a stronger p-value for association in INRICH compared to the true subset. This resulted in an empirical p-value for the change in enrichment of p = (4+1)/(1000+1) = 5.0 x 10-3. Hence, taken the overall number of genes in this subgroup into account the cluster of 497 genes in the subgroup are relatively more enriched for schizophrenia associated genes than the original set even though the subset itself had a slightly less significant p-value than the original set..

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 15: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

15

© 2016 American Medical Association. All rights reserved.

PPI network for miR-9-5p targets eFigure 5: PPI-network of the miR-9-5p targetome. Hierarchical clustering using data from BrainSpan (see above) is one way to identify homogeneous subsets (functional groups) in genes targeted by miR-9-5p. Another way is to use data for protein-protein interactions (PPIs). We therefore used data from the TissueNet Brain PPIs14 to see if the subset of 497 genes (cluster 4), that was identified using BrainSpan data, had more PPIs than a random subset. For this we compared the number of PPIs in the original set to size-matched gene sets drawn randomly from all miR-9-5p targets. Of 100,000 gene sets two had as many or more PPIs as that of the original gene set yielding an empirical p-value of 3.0 x 10-5. We would like to note that co-expressed genes are in general expected to be enriched for PPIs and our finding does not itself provide further evidence for the involvement of the subset in schizophrenia. Instead, it adds credibility to our clustering approach as with a different data-set we are able to show that the genes have likely more shared functionality than a random subset. The PPI-network derived from the aforementioned TissueNet data for the original set of miR-9-5p targets and the subset of genes in cluster 4 is illustrated in eFigure 5.

Members of the identified subset and interactions between its members are colored in red. Genes with no PPIs are not shown.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 16: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

16

© 2016 American Medical Association. All rights reserved.

Analysis of the miR-9-5p targetome in post mortem brains The information from BrainSpan and TissueNet (see above) are disease unspecific and based on information from healthy individuals. In order to further characterize the miR-9-5p targetome in relation to schizophrenia, we therefore looked at the enrichment of the miR-9-5p targetome in co-expression modules from post mortem brains of patients with schizophrenia and controls. Details on how these co-expression modules have been de-rived, the characterization of the modules and a full list of their genes can be found elsewhere15. The subsequent table shows p-values for the enrichment of genes in the aforementioned co-expression modules in both the full set of targets and the subset of 497 targets. Only nominally significant modules are listed. None of the modules survives correction for multiple testing (data not shown). Additionally, it is indicated whether these modules were differentially expressed in patients compared to controls. DEiS – Module differentially expressed in schiz-ophrenia (yes/no); # Genes – Number of targets in module.

Module  p‐value for enrichment in module  DEiS  # Genes 

All miR‐9‐5p targets (1237 genes)       

MG3  2.2E‐04  yes  16 

PV(+)1  7.6E‐04  no  125 

OLIG3  4.1E‐03  no  13 

UNK5  1.7E‐02  no  9 

OLIG1  3.7E‐02  Yes  107 

       

miR‐9‐5p subset (497 genes)       

UNK1  3.0E‐04  no  44 

UNK5  2.8E‐02  no  5 

OLIG3  3.5E‐02  no  6 

MG3  4.1E‐02  yes  6 

Genes in modules  Genes located in GWAS regions = clumps with p‐values < 1 x 10‐5 in PGC2 are underlined and printed in bold if the p‐value was < 5 x 10‐8 in PGC2.  All miR‐9‐5p targets:  MG3: ADAMTS9, ANXA2, CCDC50, CHSY1, CMTM6, COL4A2, EHD4, IL6R, ITGA6, KCTD12, MYH9, NRP1, TFRC, TGFBR1, TGFBR2, TMEM109 

PV(+)1: AAK1, ABCA1, AKAP11, ALPL, ANK2, ANKH, ATP11C, ATP7A, ATXN3, B4GALNT1, BAIAP2, BNC2, BRPF3, BTBD10, C16orf70, C18orf25, C1QL1, C9orf89, CAPZA1, CBX7, CDC14B, CELSR2, CNTN4, COL18A1, COLEC12, CPEB3, DCP2, DCTN1, DR1, EFEMP1, EIF4E, ELAVL1, ELOVL4, ENTPD1, FAM81A, FBXO28, FKBP7, FLRT3, FNDC3B, FOXP2, FRMPD4, FRY, FYCO1, GABBR2, GLS, GLUD1, GOPC, GPR124, IGF2BP2, IPO4, ITM2C, JMY, JUP, KCTD2, KIAA1045, KIAA2013, KIF21A, LARP1, LASP1, LSM14A, MAP3K1, MEF2C, MICAL2, MKRN2, MYCBP, NAGPA, NAPB, NEDD1, NEDD4, NFATC3, NLGN4X, NMT1, NTNG1, OPCML, OPTN, OTUD3, PCSK2, PEG3, PHF15, PHF19, PJA2, PLEKHA1, PLEKHA2, PRKCA, PRKD3, PRRT3, PRUNE, PTGFRN, PTPRT, RAP2C, RHOJ, RIMS3, RMND5A, RNF111, RP2, RTF1, SACM1L, SACS, SCN2B, SGCD, SLC12A5, SLC36A1, SLC7A8, SMARCA5, SMC1A, SMOC2, SNX25, SOCS5, SRGAP3, SSX2IP, STXBP1, SYT1, SYT4, TAF4B, TLK1, TNFAIP8, TRAF3, TRAM1, TSC22D2, TSHZ2, TXNDC5, UBE2Q1, VAT1, ZNF248, ZNF395 

OLIG3: AK2, ALAD, CREB3L2, CTNNA1, EFNA1, ERBB2IP, LMNA, OTUD7B, RALGDS, SH3PXD2B, SNAP23, STK3, VAMP3 

UNK5: DYRK2, ELAVL2, GPR26, GSK3B, LRRTM4, NMT2, SMARCE1, UHMK1, WIPI2 

OLIG1: AATK, ABI1, ADAM10, ADAMTS18, ADARB2, AGPS, ALCAM, AMOTL2, ANKRD13A, ARHGEF2, ATP11A, BACE1, C21orf91, CACNA1E, CAMKK2, CCNE2, CD46, CHD3, CLIC4, CLMN, CNP, CPEB2, CREB5, DDX17, DLGAP2, DOCK9, DPF3, ECHDC1, FAM107B, FAM19A4, FBN1, FBXL16, FBXL19, FBXL3, FLNB, FNBP1, GLDN, GPBP1L1, GPRC5B, HAPLN1, HIAT1, IPO13, JAKMIP2, KIF13B, KIF5C, KLF13, L3MBTL4, LAMP1, LDLRAP1, LZTS2, MAP1A, MAP7, MICAL3, MYO1D, NDE1, NDRG1, NFASC, NHLH2, NTAN1, PAK6, PCSK6, PDCD6IP, PDK3, PHIP, PHLDB1, PIGM, PIGZ, PKD2, PLEKHA6, PLXNA2, PRDM10, PSEN1, PTPRK, RAB5B, RAI14, REEP3, RNF44, S100PBP, SAR1B, SEMA6D, SERINC5, SH3BP4, SHANK2, SHANK3, SHB, SHC3, SLC20A2, SLC22A15, SLC31A2, SNX30, SNX7, SORT1, SPTLC2, TESK2, THBS2, TMEM63A, TNC, TNKS, TSPAN15, TTYH2, UBE3C, WSB1, XRN1, ZBED3, ZFYVE16, ZKSCAN1, ZNF407 

  

miR‐9‐5p subset (497 genes):  UNK1: ARCN1, ASXL1, BCLAF1, BRD4, BTBD7, CAP1, CBL, CBX5, CD47, CEP350, COG6, DHX40, DNAJC8, ENAH, EP400, FRMD4A, FXR1, FYTTD1, KCNK10, KIAA1549, KLF12, MAP3K3, MGA, MMP16, MTF2, NCOA3, NEK1, NUTF2, PCGF6, PGAP1, PHF20L1, PTMA, RCOR1, SAP30L, SEC23IP, SON, SPAG9, UBE2H, UBE3A, VGLL4, ZFP90, ZNF131, ZNF236, ZNF512 

UNK5: DYRK2, ELAVL2, NMT2, SMARCE1, WIPI2 

OLIG3: AK2, ALAD, CTNNA1, ERBB2IP, RALGDS, SH3PXD2B 

MG3: CCDC50, CHSY1, CMTM6, KCTD12, TFRC, TGFBR1

 

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 17: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

17

© 2016 American Medical Association. All rights reserved.

We would like to note that due to a limited size of our sample under study we were a priori less likely to detect a true schizophrenia associated sub-module. This is unfortunately true for most currently available post-mortem data-sets in schizophrenia. New, yet to be published datasets will provide more power to unequivocally detect , schizophrenia associated sub-modules and we keep confident that these analyses will add further support to our finding. Furthermore we would like to note that post mortem expression analyses might not capture all of the differential expression relating to the neurodevelopmental role of miR-9-5p.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 18: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

18

© 2016 American Medical Association. All rights reserved.

Determining if the targetome overlap between two miRNA is bigger than ex-pected by chance In the main text, we look at the intersections of the predicted targets for two pairs of miRNA – miR-9-5p com-pared to miR-137 and miR-2682-5p to miR-137 (eFigure 6) eFigure 6: Venn diagrams of the miR-9-5p/miR-137 and miR-137/-miR-2682-5p targetomes.

While analyzing the overlap in these two miRNA pairs we observed an unequal distribution in the number of miRNA targeting individual genes. We observed a tendency of genes to be targeted by either many miRNA or only one/a few. As a consequence genes targeted by multiple miRNA are more likely to appear in an overlap of the targetomes of two random miRNA. To establish if an overlap between the targetomes of two miRNA is big-ger than expected by chance, it therefore is indicated to take this observation into account. Ignoring this observa-tion and taking Fisher’s exact test (in case of small cell counts) or a chi-square test would likely lead to errone-ous associations. As an alternative, the following procedure was employed (detailed for the example overlap of miR-9-5p and miR-137):

A pool of genes comprising all conserved targets of all conserved miRNA-families was created. We did so add-ing for every occurrence of a target in a miRNA targetome one copy of this gene to the combined pool. As a consequence each gene was n times present in the pool with n being the number of miRNA-families targeting this gene. Please note that no copies were added to the pool for the miR-137 targetome. In a subsequent step we created r = 1000 replicate sets of miR-9-5p targetomes matching the original number of miR-9-5p targets (n=1237) as follows: for each replicate set we drew genes at random from the pool and added them to the repli-cate set if that gene wasn’t already in the replicate set. When the replicate set had the same number of (unique) genes as the original set we calculated the overlap with miR-137. For this we counted all instances p where the replicate sets had as large or a larger overlap with miR-137 as the original targetome of miR-9-5p and calculated the empirical p-value as the fraction p/r. Note that our procedure can be interpreted as weighed sampling.

We used the same principles to study the overlap between miR-137 and miR-2682-5p. However, for this analy-sis we used all TargetScan predictions regardless of conservation (see main text for details).

The results for the overlaps with miR-137 were:   Equal or larger 

overlap Less overlap Empirical

p‐value Chi‐square test p‐

value 

miR‐9‐5p  277  723 0.28 < 2.2 x 10‐16

miR‐2682‐5p  310  690 0.31 < 2.2 x 10‐16

The vast incongruences between the empirical p-values and the chi-square test results are likely caused by the aforementioned unequal distribution in the number miRNA targeting a given gene. On average a random gene targeted by at least one miRNA are targeted by 6.5 miRNA, whereas the genes in the intersection of miR-137 and miR-9-5p on average are targeted by 20 miRNA. The fact that the two overlaps are non-significant does not preclude shared functions between the miRNA, but it indicates that further biological knowledge would be need-ed to establish it. It should be noted that we choose to study the overlap in targetomes of miR-9-5p and miR-137 based on our clustering results for these two miRNA targetomes (as part of the ten highest scoring miRNA gene sets, see Figure 2b and eFigure 2). It should also noted that the miR-2682-5p targetome likely has more false predictions due to the inclusion of non-conserved targets.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 19: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

19

© 2016 American Medical Association. All rights reserved.

A note on the limited support for an association of the miR-130b and miR-193a-3p targetomes As detailed in the main text, imprecision in target prediction is a limitation to our study. This might be one of the reasons why our study only found modest evidence for association with miR-130b, a miRNA previously impli-cated with schizophrenia16. Another reason might the sample size of the PGC2 study. While sufficiently powered to detect association with 108 schizophrenia loci it still lacks power to detect all disease-associated variants at reasonable significance levels17. Both reasons could potentially also underlie the complete lack of evidence for association for miR-193a-3p, the second miRNA implicated in the aforementioned study16.

 

TargetScan gene sets (Main analysis, R2=0.6, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

p‐value @top5%

 Score

 Size 

 Brain

p‐value @1E‐5 

Raw p‐value @top1% 

p‐value @top5%

miR‐130ab‐3p/301a‐3p/301b/ 454‐3p/3666/4295 

1  0.0980  0.1700  9  899  76%  0.1260  0.0010  0.0017 

miR‐193ab‐3p  1  1 1 1 222 79% 0.2569  0.4586  0.1069

The three different thresholds represent the different significance thresholds for the index-SNP used during the clumping procedures. Top-1% of SNPs have p-values less than 3.420 x 10-4, top 5% of SNPs have p-values less than 1.096 x 10-2. For a detailed description of the “Score” column please refer to the main text. “Size” indicates the number of genes in the gene set. “Brain” indicates the percentage of genes in the targetomes expressed in the brain. ”Corrected” are the p-values after correcting for multiple testing of all conserved miRNA families, where-as “Raw” are the unadjusted p-values. miRNAs are ranked by their Score.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 20: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

20

© 2016 American Medical Association. All rights reserved.

eReferences 1. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R. miR-148 targets human DNMT3b

protein coding region. Rna. 2008;14(5):872-877. 2. Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions

reveals that the let-7 microRNA targets Dicer within its coding sequence. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(39):14879-14884.

3. Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013;153(3):654-665.

4. Bandyopadhyay S, Mitra R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics. 2009;25(20):2625-2631.

5. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome biology. 2010;11(8):R90.

6. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic acids research. 2014;42(Database issue):D92-97.

7. Boudreau RL, Jiang P, Gilmore BL, et al. Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron. 2014;81(2):294-305.

8. Balakrishnan I, Yang X, Brown J, et al. Genome‐Wide Analysis of miRNA‐mRNA Interactions in Marrow Stromal Cells. Stem Cells. 2014;32(3):662-673.

9. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421-427.

10. Perry JR, Day F, Elks CE, et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014;514(7520):92-97.

11. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119-124.

12. Wood AR, Esko T, Yang J, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nature genetics. 2014;46(11):1173-1186.

13. BrainSpan: Atlas of the Developing Human Brain. 2011; Funded by ARRA Awards 1RC2MH089921-089901, 089921RC089922MH090047-089901, and 089921RC089922MH089929-089901. Available at: http://brainspan.org. Accessed 17 Jun, 2014.

14. Barshir R, Basha O, Eluk A, Smoly IY, Lan A, Yeger-Lotem E. The TissueNet database of human tissue protein–protein interactions. Nucleic acids research. 2013;41(D1):D841-D844.

15. Roussos P, Katsel P, Davis KL, Siever LJ, Haroutunian V. A system-level transcriptomic analysis of schizophrenia using postmortem brain tissue samples. Archives of general psychiatry. 2012;69(12):1205-1213.

16. Wei H, Yuan Y, Liu S, et al. Detection of Circulating miRNA Levels in Schizophrenia. American Journal of Psychiatry. 2015:appi. ajp. 2015.14030273.

17. Ripke S, O'Dushlaine C, Chambert K, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature genetics. 2013;45(10):1150-1159.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 21: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

21

© 2016 American Medical Association. All rights reserved.

eTable 1: Full results of the TargetScan conserved miRNA gene set analysis. The three different thresholds represent the different significance thresholds for the index-SNP used during the clumping procedures. Top-1% of SNPs have p-values less than 3.420 x 10-4, top 5% of SNPs have p-values less than 1.096 x 10-2. For a detailed description of the “Score” column please refer to the main text. “Size” indicates the number of genes in the gene set. “Brain” indicates the per-centage of genes in the targetomes expressed in the brain. ”Corrected” are the p-values after correct-ing for multiple testing, whereas “Raw” are the unadjusted p-values. miRNAs are ranked by their Score. miRNA with less than 50 targets were not included in our tests and therefore the p-values are marked with “NA” instead.

  TargetScan gene sets (Main analysis, R2=0.6, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐9‐5p  3.8E‐02  5.6E‐03  8.8E‐04  212  1237  75%  3.9E‐04  4.9E‐05 1.3E‐06

miR‐485‐5p  1.5E‐01  1.4E‐01  1.1E‐03  68  379  73%  1.7E‐03  1.4E‐03 3.8E‐06

miR‐137  8.4E‐02  3.3E‐02  3.2E‐02  68  1144  77%  9.2E‐04  3.0E‐04 2.9E‐04

miR‐101‐3p  2.4E‐01  1.3E‐02  2.1E‐02  63  803  78%  2.9E‐03  1.2E‐04 1.8E‐04

miR‐200bc‐3p/429  1.0E+00 5.0E‐03  1.1E‐03  50  1057  77%  2.0E‐01  4.4E‐05 3.8E‐06

miR‐7‐5p  4.3E‐01  5.6E‐02  2.4E‐02  34  444  73%  6.6E‐03  5.2E‐04 2.1E‐04

miR‐1/206/613  2.1E‐01  3.8E‐01  5.2E‐03  31  787  76%  2.6E‐03  5.1E‐03 4.3E‐05

miR‐374ab‐5p  9.0E‐01  7.5E‐03  3.0E‐02  29  678  72%  3.4E‐02  6.5E‐05 2.7E‐04

miR‐28‐5p/708‐5p/3139  7.2E‐02  3.8E‐02  4.2E‐01  29  209  80%  8.0E‐04  3.6E‐04 5.6E‐03

miR‐34ac‐5p/449b‐5p/449a  2.0E‐01  2.1E‐01  7.9E‐02  24  655  78%  2.4E‐03  2.4E‐03 7.6E‐04

miR‐125ab‐5p/4319  5.2E‐01  4.8E‐01  8.8E‐04  23  847  75%  9.0E‐03  7.2E‐03 1.3E‐06

miR‐300/381‐3p  9.9E‐01  4.3E‐02  2.4E‐02  20  881  78%  7.7E‐02  4.1E‐04 2.1E‐04

miR‐132‐3p/212‐3p  7.4E‐01  1.5E‐02  1.8E‐01  18  406  79%  1.8E‐02  1.4E‐04 1.9E‐03

miR‐27ab‐3p  1.0E+00 2.7E‐01  1.8E‐03  17  1212  74%  2.7E‐01  3.2E‐03 1.1E‐05

miR‐25‐3p/32‐5p/92ab‐3p/363‐3p/367‐3p  2.2E‐02  1.4E‐01  9.4E‐01  15  892  76%  2.2E‐04  1.4E‐03 4.1E‐02

miR‐425‐5p  8.3E‐02  4.1E‐02  9.5E‐01  15  211  75%  9.1E‐04  3.9E‐04 4.6E‐02

miR‐19ab‐3p  8.9E‐01  3.6E‐01  8.2E‐03  13  1167  75%  3.3E‐02  4.6E‐03 7.0E‐05

miR‐377‐3p  1.0E‐01  5.6E‐01  2.4E‐01  13  573  75%  1.1E‐03  9.4E‐03 2.6E‐03

miR‐138‐5p  2.1E‐01  3.2E‐02  9.0E‐01  13  560  77%  2.6E‐03  2.9E‐04 3.2E‐02

miR‐24‐3p  3.5E‐01  9.9E‐01  6.8E‐03  12  632  73%  5.0E‐03  7.7E‐02 5.6E‐05

miR‐128‐3p  9.9E‐01  6.5E‐01  1.1E‐03  11  1047  75%  9.2E‐02  1.2E‐02 3.8E‐06

miR‐153‐3p  9.9E‐01  6.0E‐01  3.2E‐03  10  748  72%  8.2E‐02  1.0E‐02 2.3E‐05

miR‐340‐5p  1.0E+00 8.3E‐01  8.8E‐04  10  1424  74%  3.3E‐01  2.2E‐02 1.3E‐06

miR‐130ab‐3p/301a‐3p/301b/ 454‐3p/3666/4295 

1.0E+00 9.8E‐02  1.7E‐01  9  899  76%  1.3E‐01  1.0E‐03 1.7E‐03

miR‐370‐3p  1.0E+00 7.1E‐01  3.8E‐03  9  391  76%  5.3E‐01  1.5E‐02 2.9E‐05

miR‐342‐3p  1.0E+00 9.1E‐01  8.8E‐04  9  284  76%  2.3E‐01  3.3E‐02 1.3E‐06

miR‐124‐3p/506‐3p  9.3E‐01  9.8E‐01  9.5E‐04  9  1654  77%  3.9E‐02  6.0E‐02 2.5E‐06

miR‐218‐5p  7.6E‐01  7.5E‐01  1.6E‐02  9  931  75%  1.9E‐02  1.7E‐02 1.4E‐04

miR‐448  8.7E‐01  3.4E‐01  8.5E‐02  8  699  71%  3.0E‐02  4.3E‐03 8.2E‐04

miR‐17‐5p/20ab‐5p/93‐5p/106ab‐5p/ 519d‐3p 

1.0E+00 9.3E‐01  1.4E‐03  8  1220  77%  7.2E‐01  3.8E‐02 7.5E‐06

miR‐376c‐3p  9.7E‐01  2.7E‐01  1.1E‐01  8  254  72%  5.9E‐02  3.2E‐03 1.1E‐03

miR‐181abcd‐5p/4262  4.7E‐01  7.5E‐01  1.1E‐01  7  1195  75%  7.8E‐03  1.7E‐02 1.1E‐03

miR‐149‐5p  1.0E+00 4.4E‐01  6.5E‐02  7  451  75%  1.5E‐01  6.2E‐03 6.0E‐04

miR‐326/330‐5p  8.1E‐01  2.0E‐01  3.3E‐01  7  444  75%  2.2E‐02  2.2E‐03 4.1E‐03

miR‐495‐3p  8.5E‐01  4.2E‐01  1.3E‐01  7  903  75%  2.8E‐02  5.9E‐03 1.2E‐03

miR‐31‐5p  9.7E‐01  1.8E‐01  2.5E‐01  7  368  71%  5.6E‐02  1.9E‐03 2.9E‐03

miR‐544a  1.0E+00 9.5E‐01  5.4E‐03  7  573  72%  2.6E‐01  4.3E‐02 4.4E‐05

miR‐302abcd‐3p/302e/372‐3p/ 373‐3p/520acd‐3p/520be 

1.0E+00 7.1E‐01  2.7E‐02  6  844  74%  3.5E‐01  1.4E‐02 2.4E‐04

miR‐141‐3p/200a‐3p  9.6E‐01  4.3E‐01  1.2E‐01  6  744  76%  5.3E‐02  6.0E‐03 1.1E‐03

miR‐539‐5p  9.3E‐01  1.2E‐01  4.5E‐01  6  698  73%  3.9E‐02  1.2E‐03 6.4E‐03

miR‐197‐3p  8.9E‐01  1.5E‐01  4.5E‐01  6  219  71%  3.2E‐02  1.6E‐03 6.4E‐03

let‐7abcdefgi‐5p/98‐5p/4458/4500  1.0E+00 9.9E‐01  8.8E‐03  6  1072  73%  3.8E‐01  7.2E‐02 7.5E‐05

miR‐371a‐5p  1.0E+00 5.9E‐02  6.1E‐01  6  354  73%  2.7E‐01  5.6E‐04 1.1E‐02

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 22: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

22

© 2016 American Medical Association. All rights reserved.

  TargetScan gene sets (Main analysis, R2=0.6, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐199ab‐5p  9.9E‐01  1.2E‐01  4.8E‐01  6  494  77%  7.3E‐02  1.1E‐03 7.1E‐03

miR‐410‐3p  8.7E‐01  5.1E‐01  1.6E‐01  5  636  76%  2.9E‐02  7.8E‐03 1.7E‐03

miR‐22‐3p  2.0E‐01  1.0E+00 3.8E‐01  5  507  72%  2.6E‐03  1.8E‐01 5.0E‐03

miR‐150‐5p  8.7E‐01  8.2E‐01  7.7E‐02  5  282  73%  3.0E‐02  2.1E‐02 7.2E‐04

miR‐30abcde‐5p  1.0E+00 9.2E‐01  3.0E‐02  5  1357  75%  2.9E‐01  3.4E‐02 2.7E‐04

miR‐491‐5p  1.0E+00 8.0E‐01  5.8E‐02  5  173  74%  2.0E‐01  2.0E‐02 5.3E‐04

miR‐23ab‐3p/23c  8.4E‐01  7.9E‐01  1.2E‐01  5  1125  72%  2.6E‐02  2.0E‐02 1.2E‐03

miR‐205‐5p  1.0E+00 7.4E‐01  8.5E‐02  5  417  76%  8.7E‐01  1.7E‐02 8.2E‐04

miR‐320abcd/4429  9.7E‐01  2.0E‐01  5.6E‐01  4  788  76%  5.9E‐02  2.2E‐03 9.3E‐03

miR‐224‐5p  7.6E‐01  1.0E+00 1.2E‐01  4  383  75%  1.9E‐02  1.1E‐01 1.2E‐03

miR‐29abc‐3p  1.0E+00 1.0E+00 5.6E‐02  4  1077  75%  8.1E‐01  5.7E‐01 5.2E‐04

miR‐144‐3p  9.7E‐01  9.3E‐01  9.3E‐02  4  878  76%  5.5E‐02  3.8E‐02 9.0E‐04

miR‐196ab‐5p  1.0E+00 1.0E+00 6.9E‐02  4  295  72%  3.7E‐01  2.6E‐01 6.3E‐04

miR‐496  9.8E‐01  9.2E‐02  1.0E+00 4  128  77%  6.0E‐02  8.9E‐04 3.3E‐01

miR‐133a‐3p/133b  1.0E+00 8.8E‐01  1.4E‐01  3  648  75%  1.3E‐01  2.8E‐02 1.5E‐03

miR‐204‐5p/211‐5p  5.7E‐01  7.6E‐01  5.4E‐01  3  670  76%  1.0E‐02  1.8E‐02 8.6E‐03

miR‐96‐5p/1271‐5p  1.0E+00 9.9E‐01  1.2E‐01  3  1049  75%  1.5E‐01  6.5E‐02 1.2E‐03

miR‐504‐5p/4725‐5p  1.0E+00 9.8E‐01  1.4E‐01  3  212  74%  2.3E‐01  6.0E‐02 1.4E‐03

miR‐145‐5p  1.0E+00 1.0E+00 1.4E‐01  3  730  74%  8.5E‐01  4.0E‐01 1.4E‐03

miR‐335‐5p  1.6E‐01  1.0E+00 9.9E‐01  3  256  74%  1.9E‐03  1.6E‐01 7.7E‐02

miR‐122‐5p  1.0E+00 2.3E‐01  9.3E‐01  3  172  79%  3.6E‐01  2.5E‐03 3.9E‐02

miR‐155‐5p  8.6E‐01  1.0E+00 2.7E‐01  3  439  76%  2.9E‐02  3.5E‐01 3.0E‐03

miR‐26ab‐5p/1297/4465  9.7E‐01  8.5E‐01  3.3E‐01  3  884  73%  5.8E‐02  2.5E‐02 4.0E‐03

miR‐874‐3p  1.0E+00 9.5E‐01  2.4E‐01  3  269  76%  3.8E‐01  4.4E‐02 2.8E‐03

miR‐194‐5p  1.0E+00 2.1E‐01  1.0E+00 3  367  80%  3.2E‐01  2.4E‐03 4.0E‐01

miR‐192‐5p/215‐5p  9.7E‐01  8.2E‐01  3.5E‐01  3  156  66%  5.6E‐02  2.2E‐02 4.5E‐03

miR‐382‐5p  8.4E‐01  3.2E‐01  1.0E+00 3  217  71%  2.6E‐02  3.9E‐03 4.3E‐01

miR‐543  1.0E+00 9.0E‐01  2.9E‐01  3  737  75%  9.8E‐02  3.1E‐02 3.4E‐03

miR‐494‐3p  1.0E+00 7.5E‐01  4.0E‐01  3  574  74%  9.9E‐02  1.7E‐02 5.3E‐03

miR‐135ab‐5p  8.8E‐01  6.2E‐01  6.5E‐01  2  716  75%  3.0E‐02  1.1E‐02 1.2E‐02

miR‐182‐5p  9.8E‐01  6.3E‐01  5.5E‐01  2  1122  73%  6.3E‐02  1.2E‐02 8.8E‐03

miR‐146ab‐5p  1.0E+00 5.0E‐01  7.0E‐01  2  225  74%  1.8E‐01  7.7E‐03 1.5E‐02

miR‐590‐3p  1.0E+00 9.9E‐01  3.1E‐01  2  1250  72%  7.5E‐01  6.6E‐02 3.8E‐03

miR‐191‐5p  6.8E‐01  1.0E+00 6.1E‐01  2  54  78%  1.4E‐02  8.9E‐02 1.1E‐02

miR‐142‐3p  1.0E+00 5.8E‐01  7.5E‐01  2  331  75%  1.1E‐01  9.7E‐03 1.7E‐02

miR‐186‐5p  9.9E‐01  4.3E‐01  9.4E‐01  2  859  71%  7.1E‐02  6.0E‐03 4.0E‐02

miR‐339‐5p  1.0E+00 9.7E‐01  4.2E‐01  2  185  75%  1.3E‐01  5.0E‐02 5.8E‐03

miR‐542‐3p  1.0E+00 4.1E‐01  1.0E+00 2  279  74%  9.4E‐02  5.6E‐03 3.4E‐01

miR‐338‐3p  1.0E+00 1.0E+00 4.1E‐01  2  311  73%  5.5E‐01  1.3E‐01 5.5E‐03

miR‐148ab‐3p/152‐3p  9.9E‐01  4.8E‐01  9.5E‐01  2  697  77%  7.3E‐02  6.9E‐03 4.4E‐02

miR‐486‐5p  1.0E+00 1.0E+00 4.5E‐01  2  154  76%  1.2E‐01  4.7E‐01 6.3E‐03

miR‐499a‐5p  8.4E‐01  9.9E‐01  6.4E‐01  2  340  74%  2.6E‐02  8.1E‐02 1.2E‐02

miR‐129‐5p  1.0E+00 1.0E+00 5.2E‐01  2  544  75%  1.6E‐01  1.6E‐01 8.2E‐03

miR‐202‐3p  1.0E+00 1.0E+00 5.3E‐01  2  798  72%  5.0E‐01  1.1E‐01 8.4E‐03

miR‐216a‐5p  1.0E+00 9.2E‐01  6.2E‐01  2  287  73%  2.8E‐01  3.5E‐02 1.1E‐02

miR‐505‐3p  1.0E+00 9.8E‐01  5.9E‐01  2  236  73%  3.9E‐01  6.1E‐02 1.0E‐02

miR‐328‐3p  1.0E+00 1.0E+00 5.8E‐01  2  209  76%  7.3E‐01  1.3E‐01 9.7E‐03

miR‐384  9.9E‐01  9.6E‐01  6.6E‐01  2  302  78%  8.6E‐02  4.6E‐02 1.3E‐02

miR‐154‐5p  9.6E‐01  1.0E+00 6.7E‐01  2  129  77%  5.2E‐02  1.0E‐01 1.3E‐02

miR‐185‐5p/4306/4644  1.0E+00 1.0E+00 6.4E‐01  2  320  68%  1.8E‐01  1.1E‐01 1.2E‐02

miR‐143‐3p/4770  1.0E+00 7.7E‐01  8.9E‐01  1  407  73%  2.0E‐01  1.8E‐02 3.0E‐02

miR‐873‐5p  1.0E+00 1.0E+00 6.9E‐01  1  335  70%  3.8E‐01  4.2E‐01 1.4E‐02

miR‐15ab‐5p/16‐5p/195‐5p/424‐5p/497‐5p  1.0E+00 1.0E+00 7.0E‐01  1  1275  74%  2.4E‐01  1.1E‐01 1.4E‐02

miR‐876‐5p/3167  7.7E‐01  9.7E‐01  9.6E‐01  1  268  66%  2.0E‐02  5.2E‐02 4.7E‐02

miR‐203a  1.0E+00 1.0E+00 7.0E‐01  1  867  74%  2.8E‐01  2.1E‐01 1.5E‐02

miR‐223‐3p  1.0E+00 8.4E‐01  8.7E‐01  1  311  76%  1.7E‐01  2.4E‐02 2.7E‐02

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 23: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

23

© 2016 American Medical Association. All rights reserved.

  TargetScan gene sets (Main analysis, R2=0.6, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐299‐3p  1.0E+00 1.0E+00 7.2E‐01  1  91  80%  9.5E‐02  1.5E‐01 1.6E‐02

miR‐365a‐3p  8.9E‐01  8.8E‐01  1.0E+00 1  277  78%  3.2E‐02  2.8E‐02 1.4E‐01

miR‐216b‐5p  9.9E‐01  7.8E‐01  1.0E+00 1  290  73%  9.0E‐02  1.9E‐02 1.5E‐01

miR‐139‐5p  1.0E+00 7.7E‐01  1.0E+00 1  349  77%  2.0E‐01  1.8E‐02 2.2E‐01

miR‐329‐3p/362‐3p  1.0E+00 9.3E‐01  8.4E‐01  1  314  73%  1.4E‐01  3.8E‐02 2.4E‐02

miR‐208ab‐3p  1.0E+00 1.0E+00 7.8E‐01  1  182  70%  1.1E‐01  1.8E‐01 1.9E‐02

miR‐221‐3p/222‐3p  1.0E+00 9.2E‐01  9.0E‐01  1  444  76%  3.1E‐01  3.4E‐02 3.2E‐02

miR‐219a‐5p/4782‐3p  1.0E+00 1.0E+00 8.7E‐01  1  391  76%  5.3E‐01  1.4E‐01 2.8E‐02

miR‐324‐5p  1.0E+00 9.9E‐01  8.8E‐01  1  141  71%  7.3E‐01  8.1E‐02 2.9E‐02

miR‐421  1.0E+00 9.8E‐01  9.1E‐01  1  433  77%  2.2E‐01  5.9E‐02 3.3E‐02

miR‐653‐5p  1.0E+00 1.0E+00 8.9E‐01  1  224  72%  1.4E‐01  3.9E‐01 3.0E‐02

miR‐103a‐3p/107  1.0E+00 1.0E+00 9.0E‐01  1  650  76%  1.6E‐01  4.6E‐01 3.2E‐02

miR‐599  9.8E‐01  9.2E‐01  1.0E+00 1  209  71%  6.6E‐02  3.6E‐02 2.7E‐01

miR‐33ab‐5p  1.0E+00 9.2E‐01  9.9E‐01  1  415  76%  1.3E‐01  3.5E‐02 7.2E‐02

miR‐21‐5p/590‐5p  9.3E‐01  1.0E+00 1.0E+00 1  308  75%  3.9E‐02  1.4E‐01 1.0E‐01

miR‐488‐3p  1.0E+00 9.9E‐01  9.5E‐01  1  384  71%  8.4E‐01  6.9E‐02 4.5E‐02

miR‐490‐3p  1.0E+00 1.0E+00 9.6E‐01  1  192  72%  4.8E‐01  1.2E‐01 4.7E‐02

miR‐217  1.0E+00 9.6E‐01  1.0E+00 1  345  77%  1.4E‐01  4.6E‐02 1.9E‐01

miR‐214‐3p/761/3619‐5p  9.9E‐01  1.0E+00 9.7E‐01  1  678  77%  8.4E‐02  9.2E‐02 5.8E‐02

miR‐190a‐5p/190b  9.6E‐01  1.0E+00 1.0E+00 1  185  71%  5.3E‐02  1.7E‐01 5.0E‐01

miR‐183‐5p  1.0E+00 9.7E‐01  1.0E+00 1  386  78%  2.2E‐01  5.4E‐02 4.1E‐01

miR‐383‐5p  1.0E+00 1.0E+00 9.7E‐01  1  176  75%  2.7E‐01  3.0E‐01 5.7E‐02

miR‐125a‐3p  9.8E‐01  1.0E+00 1.0E+00 1  223  72%  6.0E‐02  2.4E‐01 2.1E‐01

miR‐361‐5p  1.0E+00 1.0E+00 9.9E‐01  1  240  69%  1.8E‐01  1.1E‐01 7.5E‐02

miR‐375  1.0E+00 1.0E+00 9.9E‐01  1  229  76%  9.4E‐01  3.2E‐01 7.5E‐02

miR‐503‐5p  9.9E‐01  1.0E+00 1.0E+00 1  387  75%  9.1E‐02  1.0E‐01 1.3E‐01

miR‐433‐3p  1.0E+00 1.0E+00 9.9E‐01  1  321  75%  1.6E‐01  9.6E‐02 9.1E‐02

miR‐346  1.0E+00 1.0E+00 9.9E‐01  1  143  74%  1.8E‐01  1.6E‐01 8.0E‐02

miR‐10ab‐5p  1.0E+00 1.0E+00 9.9E‐01  1  272  74%  7.0E‐01  2.5E‐01 8.0E‐02

miR‐136‐5p  1.0E+00 1.0E+00 9.9E‐01  1  272  67%  3.7E‐01  1.6E‐01 8.6E‐02

miR‐378a‐3p/378bcdefhi/422a  9.9E‐01  1.0E+00 1.0E+00 1  191  73%  9.1E‐02  1.4E‐01 5.3E‐01

miR‐296‐3p  1.0E+00 1.0E+00 1.0E+00 1  66  69%  1.8E‐01  9.9E‐02 1.2E‐01

miR‐193ab‐3p  1.0E+00 1.0E+00 1.0E+00 1  222  79%  2.6E‐01  4.6E‐01 1.1E‐01

miR‐99ab‐5p/100‐5p  1.0E+00 1.0E+00 1.0E+00 1  56  86%  7.3E‐01  1.1E‐01 5.0E‐01

miR‐379‐5p/3529‐5p  1.0E+00 1.0E+00 1.0E+00 1  93  66%  7.2E‐01  4.2E‐01 1.3E‐01

miR‐134‐5p/3118  1.0E+00 1.0E+00 1.0E+00 1  171  75%  3.2E‐01  1.5E‐01 2.4E‐01

miR‐455‐5p  1.0E+00 1.0E+00 1.0E+00 1  198  77%  7.3E‐01  7.8E‐01 1.6E‐01

miR‐18ab‐5p/4735‐3p  1.0E+00 1.0E+00 1.0E+00 1  275  73%  6.7E‐01  1.8E‐01 1.7E‐01

miR‐411‐5p  1.0E+00 1.0E+00 1.0E+00 1  106  78%  9.0E‐01  2.0E‐01 2.7E‐01

miR‐875‐5p  1.0E+00 1.0E+00 1.0E+00 1  110  81%  2.6E‐01  2.2E‐01 4.4E‐01

miR‐758‐3p  1.0E+00 1.0E+00 1.0E+00 1  235  71%  9.6E‐01  9.7E‐01 6.9E‐01

miR‐431‐5p  1.0E+00 1.0E+00 1.0E+00 1  167  75%  3.7E‐01  7.3E‐01 3.0E‐01

miR‐376ab‐3p  1.0E+00 1.0E+00 1.0E+00 1  214  75%  4.5E‐01  7.3E‐01 3.4E‐01

miR‐140‐5p  1.0E+00 1.0E+00 1.0E+00 1  345  77%  3.4E‐01  6.6E‐01 3.7E‐01

miR‐615‐3p  NA  NA  NA  1  11  70%  NA  NA  NA 

miR‐551b‐3p/551a  NA  NA  NA  1  8  75%  NA  NA  NA 

miR‐487b‐3p  NA  NA  NA  1  14  86%  NA  NA  NA 

miR‐451a  NA  NA  NA  1  20  68%  NA  NA  NA 

miR‐450a‐5p  NA  NA  NA  1  10  80%  NA  NA  NA 

miR‐210‐3p  NA  NA  NA  1  32  77%  NA  NA  NA 

miR‐187‐3p  NA  NA  NA  1  9  67%  NA  NA  NA 

miR‐184  NA  NA  NA  1  28  85%  NA  NA  NA 

miR‐127‐3p  NA  NA  NA  1  13  54%  NA  NA  NA 

miR‐126‐3p  NA  NA  NA  1  25  84%  NA  NA  NA 

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 24: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

24

© 2016 American Medical Association. All rights reserved.

eTable 2: Alternative TargetScan gene set analysis: longer clumping range. These are the results of the main gene set analysis (eTable 1) with the change that the clumping range was increased to 3000 kb.

  TargetScan gene sets (Alternative analysis, R2=0.6, 3000kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐9‐5p  3.8E‐02  6.3E‐03  8.1E‐04  211  1237  75%  3.9E‐04  5.6E‐05 1.3E‐06

miR‐137  8.3E‐02  3.1E‐02  1.5E‐02  81  1144  77%  8.9E‐04  2.9E‐04 1.3E‐04

miR‐101‐3p  2.2E‐01  8.9E‐03  2.2E‐02  69  803  78%  2.8E‐03  8.4E‐05 1.9E‐04

miR‐485‐5p  1.4E‐01  1.8E‐01  1.0E‐03  64  379  73%  1.6E‐03  1.9E‐03 3.8E‐06

miR‐200bc‐3p/429  1.0E+00 7.6E‐03  1.0E‐03  46  1057  77%  1.9E‐01  6.9E‐05 3.8E‐06

miR‐7‐5p  4.2E‐01  5.7E‐02  8.3E‐03  42  444  73%  6.3E‐03  5.4E‐04 6.7E‐05

miR‐1/206/613  2.0E‐01  3.6E‐01  3.8E‐03  35  787  76%  2.5E‐03  4.6E‐03 2.9E‐05

miR‐300/381‐3p  9.9E‐01  1.0E‐02  8.7E‐03  33  881  78%  7.8E‐02  9.1E‐05 7.1E‐05

miR‐374ab‐5p  8.9E‐01  8.8E‐03  3.2E‐02  29  678  71%  3.2E‐02  8.2E‐05 2.8E‐04

miR‐28‐5p/708‐5p/3139  7.4E‐02  4.1E‐02  4.2E‐01  28  209  80%  7.9E‐04  3.9E‐04 5.8E‐03

miR‐125ab‐5p/4319  5.3E‐01  4.2E‐01  8.1E‐04  25  847  75%  9.2E‐03  5.9E‐03 1.3E‐06

miR‐132‐3p/212‐3p  7.5E‐01  1.5E‐02  1.0E‐01  22  406  79%  1.9E‐02  1.4E‐04 9.5E‐04

miR‐34ac‐5p/449b‐5p/449a  2.1E‐01  3.4E‐01  7.6E‐02  19  655  78%  2.6E‐03  4.2E‐03 7.1E‐04

miR‐27ab‐3p  1.0E+00 2.3E‐01  1.3E‐03  19  1212  74%  2.7E‐01  2.6E‐03 6.2E‐06

miR‐377‐3p  9.6E‐02  6.5E‐01  1.2E‐01  15  573  75%  1.0E‐03  1.2E‐02 1.2E‐03

miR‐25‐3p/32‐5p/92ab‐3p/363‐3p/367‐3p  2.1E‐02  1.8E‐01  8.8E‐01  15  892  76%  2.2E‐04  1.9E‐03 2.9E‐02

miR‐425‐5p  8.9E‐02  5.3E‐02  9.5E‐01  14  211  75%  9.6E‐04  5.0E‐04 4.3E‐02

miR‐128‐3p  9.9E‐01  4.6E‐01  1.3E‐03  14  1047  75%  9.4E‐02  6.6E‐03 6.2E‐06

miR‐24‐3p  3.5E‐01  9.9E‐01  4.9E‐03  13  632  73%  4.9E‐03  7.7E‐02 3.9E‐05

miR‐19ab‐3p  9.1E‐01  4.6E‐01  5.5E‐03  12  1167  75%  3.5E‐02  6.6E‐03 4.2E‐05

miR‐138‐5p  2.0E‐01  5.6E‐02  8.9E‐01  11  560  77%  2.4E‐03  5.3E‐04 3.0E‐02

miR‐218‐5p  7.6E‐01  6.5E‐01  7.1E‐03  11  931  75%  1.9E‐02  1.2E‐02 5.6E‐05

miR‐340‐5p  1.0E+00 7.5E‐01  9.3E‐04  10  1424  74%  3.2E‐01  1.7E‐02 2.5E‐06

miR‐153‐3p  9.9E‐01  6.9E‐01  2.1E‐03  10  748  72%  7.9E‐02  1.4E‐02 1.4E‐05

miR‐495‐3p  8.5E‐01  2.7E‐01  7.3E‐02  10  903  75%  2.8E‐02  3.1E‐03 6.8E‐04

miR‐130ab‐3p/301a‐3p/301b/ 454‐3p/3666/4295 

1.0E+00 1.2E‐01  1.3E‐01  9  899  76%  1.3E‐01  1.2E‐03 1.4E‐03

miR‐370‐3p  1.0E+00 7.2E‐01  2.6E‐03  9  391  76%  5.3E‐01  1.6E‐02 1.9E‐05

miR‐376c‐3p  9.7E‐01  1.8E‐01  1.1E‐01  9  254  72%  5.7E‐02  1.9E‐03 1.1E‐03

miR‐124‐3p/506‐3p  9.3E‐01  9.8E‐01  8.1E‐04  9  1654  77%  3.8E‐02  6.3E‐02 1.3E‐06

miR‐371a‐5p  1.0E+00 2.0E‐02  4.5E‐01  9  354  73%  2.7E‐01  1.9E‐04 6.3E‐03

miR‐448  8.6E‐01  3.6E‐01  6.4E‐02  9  699  71%  2.8E‐02  4.6E‐03 5.9E‐04

miR‐342‐3p  1.0E+00 9.7E‐01  8.1E‐04  8  284  76%  2.3E‐01  5.5E‐02 1.3E‐06

miR‐17‐5p/20ab‐5p/93‐5p/106ab‐5p/ 519d‐3p 

1.0E+00 9.4E‐01  1.3E‐03  8  1220  77%  7.2E‐01  4.0E‐02 6.2E‐06

miR‐326/330‐5p  7.9E‐01  2.1E‐01  2.5E‐01  7  444  75%  2.1E‐02  2.3E‐03 2.9E‐03

miR‐544a  1.0E+00 9.2E‐01  3.0E‐03  7  573  72%  2.5E‐01  3.4E‐02 2.1E‐05

miR‐410‐3p  8.7E‐01  3.7E‐01  1.2E‐01  7  636  76%  3.0E‐02  4.8E‐03 1.2E‐03

miR‐181abcd‐5p/4262  4.7E‐01  9.1E‐01  7.3E‐02  7  1195  75%  7.8E‐03  3.3E‐02 6.8E‐04

miR‐150‐5p  8.7E‐01  5.4E‐01  8.5E‐02  6  282  73%  2.9E‐02  8.7E‐03 8.1E‐04

miR‐31‐5p  9.7E‐01  2.2E‐01  2.5E‐01  6  368  71%  5.6E‐02  2.4E‐03 2.8E‐03

miR‐141‐3p/200a‐3p  9.6E‐01  4.7E‐01  9.4E‐02  6  744  76%  5.3E‐02  6.9E‐03 9.0E‐04

miR‐302abcd‐3p/302e/372‐3p/ 373‐3p/520acd‐3p/520be 

1.0E+00 8.0E‐01  1.9E‐02  6  844  74%  3.5E‐01  2.0E‐02 1.6E‐04

let‐7abcdefgi‐5p/98‐5p/4458/4500  1.0E+00 1.0E+00 8.3E‐03  6  1072  73%  3.8E‐01  8.8E‐02 6.7E‐05

miR‐199ab‐5p  9.9E‐01  1.6E‐01  3.9E‐01  6  494  77%  7.1E‐02  1.8E‐03 5.1E‐03

miR‐149‐5p  1.0E+00 5.6E‐01  8.0E‐02  6  451  75%  1.5E‐01  9.2E‐03 7.6E‐04

miR‐197‐3p  8.9E‐01  1.7E‐01  4.7E‐01  5  219  71%  3.3E‐02  1.8E‐03 7.0E‐03

miR‐539‐5p  9.3E‐01  1.3E‐01  5.5E‐01  5  698  73%  3.9E‐02  1.4E‐03 8.9E‐03

miR‐23ab‐3p/23c  8.4E‐01  8.8E‐01  6.5E‐02  5  1125  72%  2.6E‐02  2.9E‐02 6.0E‐04

miR‐22‐3p  2.0E‐01  1.0E+00 4.1E‐01  5  507  71%  2.5E‐03  1.7E‐01 5.5E‐03

miR‐30abcde‐5p  1.0E+00 9.4E‐01  3.4E‐02  5  1357  75%  2.8E‐01  4.2E‐02 3.0E‐04

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 25: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

25

© 2016 American Medical Association. All rights reserved.

  TargetScan gene sets (Alternative analysis, R2=0.6, 3000kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐224‐5p  7.5E‐01  1.0E+00 8.6E‐02  4  383  75%  1.8E‐02  1.2E‐01 8.2E‐04

miR‐320abcd/4429  9.8E‐01  2.0E‐01  5.2E‐01  4  788  76%  6.1E‐02  2.2E‐03 8.2E‐03

miR‐144‐3p  9.6E‐01  8.7E‐01  7.2E‐02  4  878  76%  5.4E‐02  2.7E‐02 6.7E‐04

miR‐491‐5p  1.0E+00 8.7E‐01  6.2E‐02  4  173  74%  2.0E‐01  2.8E‐02 5.7E‐04

miR‐204‐5p/211‐5p  5.6E‐01  6.7E‐01  4.1E‐01  4  670  76%  9.9E‐03  1.3E‐02 5.5E‐03

miR‐196ab‐5p  1.0E+00 1.0E+00 4.4E‐02  4  295  72%  3.8E‐01  2.9E‐01 3.9E‐04

miR‐494‐3p  1.0E+00 6.0E‐01  1.8E‐01  4  574  74%  9.7E‐02  1.1E‐02 1.9E‐03

miR‐205‐5p  1.0E+00 8.7E‐01  9.2E‐02  4  417  76%  8.7E‐01  2.7E‐02 8.9E‐04

miR‐29abc‐3p  1.0E+00 1.0E+00 6.9E‐02  4  1077  75%  8.1E‐01  5.1E‐01 6.4E‐04

miR‐135ab‐5p  8.7E‐01  5.7E‐01  3.6E‐01  4  716  75%  2.9E‐02  9.4E‐03 4.6E‐03

miR‐496  9.7E‐01  1.0E‐01  1.0E+00 3  128  77%  5.8E‐02  1.0E‐03 3.4E‐01

miR‐133a‐3p/133b  1.0E+00 9.0E‐01  1.3E‐01  3  648  75%  1.4E‐01  3.1E‐02 1.3E‐03

miR‐145‐5p  1.0E+00 1.0E+00 9.9E‐02  3  730  74%  8.4E‐01  4.1E‐01 9.4E‐04

miR‐96‐5p/1271‐5p  1.0E+00 9.9E‐01  1.2E‐01  3  1049  75%  1.5E‐01  7.0E‐02 1.2E‐03

miR‐382‐5p  8.4E‐01  2.0E‐01  1.0E+00 3  217  71%  2.6E‐02  2.2E‐03 4.4E‐01

miR‐504‐5p/4725‐5p  1.0E+00 9.9E‐01  1.5E‐01  3  212  74%  2.4E‐01  6.9E‐02 1.5E‐03

miR‐155‐5p  8.4E‐01  1.0E+00 2.2E‐01  3  439  76%  2.7E‐02  3.2E‐01 2.4E‐03

miR‐335‐5p  1.7E‐01  1.0E+00 9.5E‐01  3  256  74%  2.0E‐03  1.9E‐01 4.5E‐02

miR‐874‐3p  1.0E+00 9.6E‐01  2.0E‐01  3  269  76%  3.8E‐01  4.8E‐02 2.1E‐03

miR‐122‐5p  1.0E+00 2.2E‐01  9.3E‐01  3  172  79%  3.6E‐01  2.4E‐03 3.9E‐02

miR‐182‐5p  9.8E‐01  6.0E‐01  4.8E‐01  3  1122  73%  6.6E‐02  1.1E‐02 7.1E‐03

miR‐543  1.0E+00 9.0E‐01  2.7E‐01  3  737  75%  9.7E‐02  3.1E‐02 3.1E‐03

miR‐194‐5p  1.0E+00 2.5E‐01  1.0E+00 2  367  80%  3.2E‐01  2.8E‐03 4.4E‐01

miR‐590‐3p  1.0E+00 9.6E‐01  2.7E‐01  2  1250  72%  7.4E‐01  4.8E‐02 3.2E‐03

miR‐192‐5p/215‐5p  9.7E‐01  8.8E‐01  3.7E‐01  2  156  66%  5.8E‐02  2.8E‐02 4.7E‐03

miR‐216a‐5p  1.0E+00 8.9E‐01  3.4E‐01  2  287  73%  2.8E‐01  3.0E‐02 4.4E‐03

miR‐542‐3p  9.9E‐01  2.9E‐01  1.0E+00 2  279  74%  9.3E‐02  3.6E‐03 3.5E‐01

miR‐148ab‐3p/152‐3p  9.9E‐01  4.0E‐01  9.1E‐01  2  697  77%  7.3E‐02  5.5E‐03 3.4E‐02

miR‐26ab‐5p/1297/4465  9.8E‐01  8.9E‐01  4.2E‐01  2  884  73%  6.1E‐02  3.1E‐02 5.8E‐03

miR‐186‐5p  9.9E‐01  4.8E‐01  8.3E‐01  2  859  71%  7.1E‐02  7.0E‐03 2.3E‐02

miR‐191‐5p  6.7E‐01  9.9E‐01  6.3E‐01  2  54  78%  1.4E‐02  8.6E‐02 1.1E‐02

miR‐203a  1.0E+00 1.0E+00 3.7E‐01  2  867  74%  2.8E‐01  2.0E‐01 4.9E‐03

miR‐338‐3p  1.0E+00 1.0E+00 4.0E‐01  2  311  72%  5.5E‐01  1.2E‐01 5.4E‐03

miR‐339‐5p  1.0E+00 9.7E‐01  4.4E‐01  2  185  75%  1.3E‐01  5.3E‐02 6.2E‐03

miR‐146ab‐5p  1.0E+00 6.0E‐01  8.1E‐01  2  225  74%  1.8E‐01  1.1E‐02 2.1E‐02

miR‐486‐5p  1.0E+00 1.0E+00 4.5E‐01  2  154  76%  1.1E‐01  4.6E‐01 6.4E‐03

miR‐129‐5p  1.0E+00 1.0E+00 4.9E‐01  2  544  75%  1.6E‐01  1.2E‐01 7.2E‐03

miR‐15ab‐5p/16‐5p/195‐5p/424‐5p/497‐5p  1.0E+00 1.0E+00 5.1E‐01  2  1275  74%  2.4E‐01  9.5E‐02 7.9E‐03

miR‐202‐3p  1.0E+00 9.9E‐01  5.4E‐01  2  798  72%  5.1E‐01  8.6E‐02 8.6E‐03

miR‐499a‐5p  8.3E‐01  9.9E‐01  7.0E‐01  2  340  74%  2.5E‐02  8.6E‐02 1.4E‐02

miR‐221‐3p/222‐3p  1.0E+00 8.9E‐01  6.4E‐01  2  444  76%  3.1E‐01  3.0E‐02 1.2E‐02

miR‐505‐3p  1.0E+00 9.9E‐01  5.8E‐01  2  236  73%  3.8E‐01  6.6E‐02 9.8E‐03

miR‐223‐3p  1.0E+00 7.7E‐01  8.1E‐01  2  311  76%  1.7E‐01  1.8E‐02 2.1E‐02

miR‐143‐3p/4770  1.0E+00 7.5E‐01  8.5E‐01  1  407  73%  2.0E‐01  1.7E‐02 2.5E‐02

miR‐185‐5p/4306/4644  1.0E+00 1.0E+00 6.1E‐01  1  320  68%  1.7E‐01  1.1E‐01 1.1E‐02

miR‐384  9.9E‐01  9.8E‐01  6.7E‐01  1  302  78%  8.8E‐02  5.6E‐02 1.3E‐02

miR‐154‐5p  9.7E‐01  1.0E+00 6.9E‐01  1  129  77%  5.5E‐02  1.2E‐01 1.4E‐02

miR‐873‐5p  1.0E+00 1.0E+00 6.7E‐01  1  335  70%  3.7E‐01  4.4E‐01 1.3E‐02

miR‐328‐3p  1.0E+00 1.0E+00 6.9E‐01  1  209  76%  7.3E‐01  1.3E‐01 1.4E‐02

miR‐876‐5p/3167  7.7E‐01  9.7E‐01  9.6E‐01  1  268  66%  2.0E‐02  5.3E‐02 4.8E‐02

miR‐142‐3p  1.0E+00 8.3E‐01  8.9E‐01  1  331  75%  1.1E‐01  2.3E‐02 3.1E‐02

miR‐365a‐3p  8.9E‐01  8.4E‐01  1.0E+00 1  277  78%  3.2E‐02  2.3E‐02 1.0E‐01

miR‐208ab‐3p  1.0E+00 1.0E+00 7.6E‐01  1  182  70%  1.1E‐01  1.8E‐01 1.8E‐02

miR‐299‐3p  1.0E+00 1.0E+00 7.7E‐01  1  91  80%  9.4E‐02  1.4E‐01 1.8E‐02

miR‐653‐5p  1.0E+00 1.0E+00 7.6E‐01  1  224  71%  1.4E‐01  3.3E‐01 1.8E‐02

miR‐421  1.0E+00 9.7E‐01  8.2E‐01  1  433  77%  2.3E‐01  5.0E‐02 2.2E‐02

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 26: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

26

© 2016 American Medical Association. All rights reserved.

  TargetScan gene sets (Alternative analysis, R2=0.6, 3000kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐329‐3p/362‐3p  1.0E+00 9.5E‐01  8.5E‐01  1  314  73%  1.4E‐01  4.3E‐02 2.5E‐02

miR‐219a‐5p/4782‐3p  1.0E+00 1.0E+00 8.0E‐01  1  391  76%  5.2E‐01  1.1E‐01 2.1E‐02

miR‐216b‐5p  9.9E‐01  8.4E‐01  1.0E+00 1  290  73%  8.9E‐02  2.4E‐02 1.5E‐01

miR‐139‐5p  1.0E+00 8.5E‐01  1.0E+00 1  349  77%  2.0E‐01  2.5E‐02 3.0E‐01

miR‐488‐3p  1.0E+00 9.8E‐01  9.1E‐01  1  384  71%  8.4E‐01  6.4E‐02 3.3E‐02

miR‐324‐5p  1.0E+00 9.8E‐01  9.1E‐01  1  141  71%  7.2E‐01  6.0E‐02 3.4E‐02

miR‐490‐3p  1.0E+00 9.8E‐01  9.2E‐01  1  192  72%  4.8E‐01  6.3E‐02 3.5E‐02

miR‐599  9.8E‐01  9.2E‐01  1.0E+00 1  209  71%  6.9E‐02  3.5E‐02 2.0E‐01

miR‐33ab‐5p  1.0E+00 9.3E‐01  9.8E‐01  1  415  76%  1.2E‐01  3.7E‐02 6.4E‐02

miR‐103a‐3p/107  1.0E+00 1.0E+00 9.2E‐01  1  650  76%  1.6E‐01  4.9E‐01 3.6E‐02

miR‐21‐5p/590‐5p  9.3E‐01  1.0E+00 1.0E+00 1  308  75%  4.1E‐02  1.7E‐01 1.2E‐01

miR‐346  1.0E+00 1.0E+00 9.3E‐01  1  143  74%  1.8E‐01  1.1E‐01 3.9E‐02

miR‐383‐5p  1.0E+00 1.0E+00 9.4E‐01  1  176  75%  2.7E‐01  1.8E‐01 4.0E‐02

miR‐214‐3p/761/3619‐5p  1.0E+00 9.9E‐01  9.6E‐01  1  678  77%  1.2E‐01  8.1E‐02 4.9E‐02

miR‐361‐5p  1.0E+00 9.9E‐01  9.7E‐01  1  240  69%  1.7E‐01  7.0E‐02 5.8E‐02

miR‐190a‐5p/190b  9.7E‐01  1.0E+00 1.0E+00 1  185  71%  5.5E‐02  1.9E‐01 5.0E‐01

miR‐125a‐3p  9.8E‐01  1.0E+00 1.0E+00 1  223  72%  6.0E‐02  1.6E‐01 1.6E‐01

miR‐217  1.0E+00 9.8E‐01  1.0E+00 1  345  77%  1.5E‐01  5.8E‐02 2.3E‐01

miR‐433‐3p  1.0E+00 1.0E+00 9.9E‐01  1  321  75%  1.6E‐01  9.0E‐02 7.6E‐02

miR‐375  1.0E+00 1.0E+00 9.9E‐01  1  229  76%  9.4E‐01  3.4E‐01 7.4E‐02

miR‐183‐5p  1.0E+00 9.9E‐01  1.0E+00 1  386  78%  2.1E‐01  7.6E‐02 4.5E‐01

miR‐503‐5p  9.9E‐01  1.0E+00 1.0E+00 1  387  75%  9.2E‐02  1.3E‐01 1.1E‐01

miR‐10ab‐5p  1.0E+00 1.0E+00 9.9E‐01  1  272  74%  6.9E‐01  2.8E‐01 8.1E‐02

miR‐378a‐3p/378bcdefhi/422a  9.9E‐01  1.0E+00 1.0E+00 1  191  73%  9.3E‐02  1.1E‐01 4.9E‐01

miR‐193ab‐3p  1.0E+00 1.0E+00 1.0E+00 1  222  79%  2.6E‐01  4.9E‐01 1.1E‐01

miR‐136‐5p  1.0E+00 1.0E+00 1.0E+00 1  272  67%  3.7E‐01  1.9E‐01 1.1E‐01

miR‐296‐3p  1.0E+00 1.0E+00 1.0E+00 1  66  69%  1.8E‐01  1.7E‐01 1.2E‐01

miR‐99ab‐5p/100‐5p  1.0E+00 1.0E+00 1.0E+00 1  56  86%  7.3E‐01  1.2E‐01 5.0E‐01

miR‐379‐5p/3529‐5p  1.0E+00 1.0E+00 1.0E+00 1  93  66%  7.3E‐01  3.5E‐01 1.3E‐01

miR‐455‐5p  1.0E+00 1.0E+00 1.0E+00 1  198  77%  7.4E‐01  7.5E‐01 1.7E‐01

miR‐18ab‐5p/4735‐3p  1.0E+00 1.0E+00 1.0E+00 1  275  73%  6.8E‐01  2.3E‐01 2.0E‐01

miR‐411‐5p  1.0E+00 1.0E+00 1.0E+00 1  106  78%  9.0E‐01  2.0E‐01 2.6E‐01

miR‐134‐5p/3118  1.0E+00 1.0E+00 1.0E+00 1  171  75%  3.3E‐01  2.1E‐01 2.3E‐01

miR‐875‐5p  1.0E+00 1.0E+00 1.0E+00 1  110  81%  2.6E‐01  3.0E‐01 4.5E‐01

miR‐758‐3p  1.0E+00 1.0E+00 1.0E+00 1  235  70%  9.6E‐01  9.7E‐01 6.8E‐01

miR‐431‐5p  1.0E+00 1.0E+00 1.0E+00 1  167  75%  3.7E‐01  7.9E‐01 2.6E‐01

miR‐376ab‐3p  1.0E+00 1.0E+00 1.0E+00 1  214  75%  4.4E‐01  6.7E‐01 3.4E‐01

miR‐140‐5p  1.0E+00 1.0E+00 1.0E+00 1  345  77%  3.5E‐01  6.6E‐01 3.8E‐01

miR‐615‐3p  NA  NA  NA  1  11  70%  NA  NA  NA 

miR‐551b‐3p/551a  NA  NA  NA  1  8  75%  NA  NA  NA 

miR‐487b‐3p  NA  NA  NA  1  14  86%  NA  NA  NA 

miR‐451a  NA  NA  NA  1  20  68%  NA  NA  NA 

miR‐450a‐5p  NA  NA  NA  1  10  80%  NA  NA  NA 

miR‐210‐3p  NA  NA  NA  1  32  77%  NA  NA  NA 

miR‐187‐3p  NA  NA  NA  1  9  67%  NA  NA  NA 

miR‐184  NA  NA  NA  1  28  85%  NA  NA  NA 

miR‐127‐3p  NA  NA  NA  1  13  54%  NA  NA  NA 

miR‐126‐3p  NA  NA  NA  1  25  84%  NA  NA  NA 

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 27: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

27

© 2016 American Medical Association. All rights reserved.

eTable 3: Alternative TargetScan gene set analysis: lower LD-threshold. These are the results of the main gene set analysis (eTable 1) with the change that the clumping LD threshold was lowered to 0.1.

  TargetScan gene sets (Alternative analysis, R2=0.1, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐218‐5p  4.1E‐03  1.3E‐03  6.9E‐04  410  931  75%  3.8E‐05  1.0E‐05 1.3E‐06

miR‐137  2.3E‐02  5.8E‐04  6.9E‐04  333  1144  77%  2.3E‐04  1.3E‐06 1.3E‐06

miR‐25‐3p/32‐5p/92ab‐3p/363‐3p/367‐3p  3.2E‐03  7.2E‐03  6.9E‐04  331  892  76%  2.9E‐05  6.2E‐05 1.3E‐06

miR‐9‐5p  3.7E‐02  6.4E‐04  6.9E‐04  296  1237  75%  3.8E‐04  2.5E‐06 1.3E‐06

miR‐204‐5p/211‐5p  3.4E‐02  1.6E‐03  6.9E‐04  270  670  76%  3.4E‐04  1.3E‐05 1.3E‐06

miR‐34ac‐5p/449b‐5p/449a  5.8E‐02  8.0E‐04  6.9E‐04  259  655  78%  6.0E‐04  5.0E‐06 1.3E‐06

miR‐182‐5p  4.6E‐02  4.1E‐03  6.9E‐04  219  1122  73%  4.7E‐04  3.5E‐05 1.3E‐06

miR‐101‐3p  3.0E‐02  2.5E‐02  6.9E‐04  175  803  78%  3.1E‐04  2.3E‐04 1.3E‐06

miR‐19ab‐3p  1.5E‐01  4.7E‐03  6.9E‐04  153  1167  75%  1.7E‐03  4.0E‐05 1.3E‐06

miR‐7‐5p  7.8E‐02  1.4E‐02  9.8E‐04  149  444  73%  8.1E‐04  1.2E‐04 6.2E‐06

miR‐132‐3p/212‐3p  2.2E‐01  3.1E‐03  7.3E‐04  141  406  79%  2.6E‐03  2.6E‐05 2.5E‐06

miR‐128‐3p  2.9E‐01  3.0E‐03  6.9E‐04  126  1047  75%  3.7E‐03  2.5E‐05 1.3E‐06

miR‐141‐3p/200a‐3p  3.3E‐01  6.5E‐03  6.9E‐04  105  744  76%  4.5E‐03  5.6E‐05 1.3E‐06

miR‐138‐5p  6.0E‐03  3.4E‐01  1.3E‐03  98  560  77%  5.7E‐05  4.3E‐03 8.7E‐06

miR‐130ab‐3p/301a‐3p/301b/ 454‐3p/3666/4295 

8.0E‐01  9.4E‐04  6.9E‐04  81  899  76%  2.1E‐02  6.2E‐06 1.3E‐06

miR‐374ab‐5p  8.9E‐01  6.4E‐04  6.9E‐04  77  678  71%  3.2E‐02  2.5E‐06 1.3E‐06

miR‐200bc‐3p/429  9.6E‐01  5.8E‐04  6.9E‐04  72  1057  77%  5.2E‐02  1.3E‐06 1.3E‐06

miR‐340‐5p  1.0E+00 5.8E‐04  6.9E‐04  70  1424  74%  9.4E‐02  1.3E‐06 1.3E‐06

miR‐448  8.6E‐01  2.3E‐03  6.9E‐04  68  699  71%  2.7E‐02  1.9E‐05 1.3E‐06

miR‐96‐5p/1271‐5p  7.5E‐02  3.1E‐01  6.9E‐04  64  1049  75%  7.9E‐04  3.8E‐03 1.3E‐06

miR‐376c‐3p  8.0E‐01  5.2E‐03  6.9E‐04  64  254  72%  2.1E‐02  4.5E‐05 1.3E‐06

miR‐27ab‐3p  9.8E‐01  1.9E‐03  6.9E‐04  61  1212  74%  6.8E‐02  1.6E‐05 1.3E‐06

miR‐148ab‐3p/152‐3p  5.3E‐01  3.2E‐02  6.9E‐04  60  697  77%  9.0E‐03  3.1E‐04 1.3E‐06

miR‐410‐3p  7.6E‐01  9.4E‐03  6.9E‐04  60  636  76%  1.9E‐02  8.4E‐05 1.3E‐06

miR‐485‐5p  3.4E‐01  9.1E‐02  6.9E‐04  58  379  73%  4.8E‐03  9.0E‐04 1.3E‐06

miR‐22‐3p  3.2E‐02  7.1E‐01  6.9E‐04  50  507  71%  3.2E‐04  1.5E‐02 1.3E‐06

miR‐124‐3p/506‐3p  7.8E‐01  2.4E‐02  6.9E‐04  49  1654  77%  2.0E‐02  2.2E‐04 1.3E‐06

miR‐155‐5p  5.1E‐01  7.9E‐02  7.3E‐04  49  439  76%  8.5E‐03  7.8E‐04 2.5E‐06

miR‐300/381‐3p  1.0E+00 7.9E‐03  6.9E‐04  49  881  78%  9.9E‐02  7.0E‐05 1.3E‐06

miR‐377‐3p  4.0E‐01  8.4E‐02  2.6E‐03  46  573  75%  5.9E‐03  8.2E‐04 2.1E‐05

miR‐153‐3p  9.9E‐01  1.1E‐02  6.9E‐04  46  748  72%  8.7E‐02  9.5E‐05 1.3E‐06

miR‐539‐5p  4.8E‐01  1.2E‐01  6.9E‐04  44  698  73%  7.5E‐03  1.3E‐03 1.3E‐06

miR‐26ab‐5p/1297/4465  4.9E‐01  1.3E‐01  6.9E‐04  44  884  73%  7.8E‐03  1.3E‐03 1.3E‐06

miR‐186‐5p  1.0E+00 1.6E‐02  6.9E‐04  43  859  71%  3.0E‐01  1.4E‐04 1.3E‐06

miR‐125ab‐5p/4319  9.9E‐01  3.1E‐02  6.9E‐04  38  847  75%  7.5E‐02  2.9E‐04 1.3E‐06

miR‐495‐3p  6.7E‐01  1.2E‐01  6.9E‐04  36  903  75%  1.4E‐02  1.2E‐03 1.3E‐06

miR‐384  8.7E‐01  1.7E‐02  6.2E‐03  35  302  78%  2.9E‐02  1.5E‐04 5.4E‐05

miR‐31‐5p  1.0E+00 1.5E‐02  4.1E‐03  34  368  71%  1.3E‐01  1.3E‐04 3.5E‐05

miR‐320abcd/4429  9.9E‐01  4.9E‐02  6.9E‐04  34  788  76%  7.1E‐02  4.6E‐04 1.3E‐06

miR‐181abcd‐5p/4262  3.2E‐01  4.1E‐01  6.9E‐04  33  1195  75%  4.3E‐03  5.6E‐03 1.3E‐06

miR‐223‐3p  1.0E+00 7.4E‐03  1.4E‐02  31  311  76%  3.3E‐01  6.5E‐05 1.3E‐04

miR‐150‐5p  7.2E‐01  1.5E‐01  8.3E‐04  31  282  73%  1.7E‐02  1.6E‐03 3.8E‐06

miR‐590‐3p  1.0E+00 7.3E‐02  6.9E‐04  30  1250  72%  1.8E‐01  7.1E‐04 1.3E‐06

miR‐1/206/613  7.1E‐01  1.9E‐01  6.9E‐04  30  787  76%  1.6E‐02  2.0E‐03 1.3E‐06

miR‐23ab‐3p/23c  1.0E+00 7.7E‐02  6.9E‐04  30  1125  72%  1.2E‐01  7.6E‐04 1.3E‐06

miR‐142‐3p  9.3E‐01  6.0E‐02  2.2E‐03  29  331  75%  3.8E‐02  5.8E‐04 1.8E‐05

miR‐326/330‐5p  8.8E‐01  1.2E‐01  8.3E‐04  28  444  75%  3.0E‐02  1.2E‐03 3.8E‐06

miR‐544a  1.0E+00 9.4E‐02  6.9E‐04  28  573  72%  1.7E‐01  9.3E‐04 1.3E‐06

miR‐425‐5p  3.3E‐01  3.4E‐02  1.5E‐01  27  211  75%  4.4E‐03  3.1E‐04 1.5E‐03

miR‐15ab‐5p/16‐5p/195‐5p/424‐5p/497‐5p  1.0E+00 1.1E‐01  6.9E‐04  27  1275  74%  3.2E‐01  1.1E‐03 1.3E‐06

miR‐135ab‐5p  7.4E‐01  2.3E‐01  6.9E‐04  27  716  75%  1.7E‐02  2.6E‐03 1.3E‐06

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 28: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

28

© 2016 American Medical Association. All rights reserved.

  TargetScan gene sets (Alternative analysis, R2=0.1, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐371a‐5p  9.9E‐01  8.2E‐02  1.6E‐03  26  354  73%  9.1E‐02  8.1E‐04 1.1E‐05

miR‐342‐3p  1.0E+00 1.4E‐01  6.9E‐04  25  284  76%  1.7E‐01  1.4E‐03 1.3E‐06

miR‐30abcde‐5p  1.0E+00 1.6E‐01  6.9E‐04  23  1357  75%  1.0E‐01  1.7E‐03 1.3E‐06

miR‐205‐5p  1.0E+00 2.0E‐01  6.9E‐04  22  417  76%  5.6E‐01  2.2E‐03 1.3E‐06

miR‐133a‐3p/133b  9.3E‐01  2.5E‐01  6.9E‐04  21  648  75%  3.9E‐02  2.8E‐03 1.3E‐06

miR‐17‐5p/20ab‐5p/93‐5p/106ab‐5p/ 519d‐3p 

1.0E+00 2.4E‐01  6.9E‐04  20  1220  77%  2.7E‐01  2.7E‐03 1.3E‐06

miR‐199ab‐5p  9.3E‐01  3.1E‐01  1.1E‐03  18  494  77%  4.0E‐02  3.8E‐03 7.5E‐06

miR‐370‐3p  1.0E+00 3.3E‐01  7.3E‐04  17  391  76%  2.8E‐01  4.1E‐03 2.5E‐06

miR‐302abcd‐3p/302e/372‐3p/ 373‐3p/520acd‐3p/520be 

9.8E‐01  3.9E‐01  6.9E‐04  16  844  74%  6.8E‐02  5.3E‐03 1.3E‐06

miR‐139‐5p  8.2E‐01  2.8E‐01  8.0E‐03  16  349  77%  2.3E‐02  3.3E‐03 7.0E‐05

miR‐144‐3p  6.1E‐01  7.5E‐01  6.9E‐04  16  878  76%  1.1E‐02  1.8E‐02 1.3E‐06

miR‐494‐3p  9.9E‐01  3.8E‐01  9.2E‐04  16  574  74%  8.8E‐02  5.1E‐03 5.0E‐06

miR‐224‐5p  8.6E‐01  5.7E‐01  6.9E‐04  15  383  75%  2.8E‐02  9.7E‐03 1.3E‐06

miR‐504‐5p/4725‐5p  1.0E+00 4.7E‐01  8.3E‐04  14  212  74%  3.2E‐01  6.8E‐03 3.8E‐06

miR‐874‐3p  1.0E+00 5.0E‐01  8.3E‐04  14  269  76%  1.7E‐01  7.6E‐03 3.8E‐06

miR‐194‐5p  9.7E‐01  3.0E‐03  4.4E‐01  13  367  80%  5.8E‐02  2.5E‐05 6.4E‐03

miR‐543  9.4E‐01  6.5E‐01  6.9E‐04  13  737  75%  4.3E‐02  1.3E‐02 1.3E‐06

miR‐216a‐5p  1.0E+00 3.5E‐01  8.8E‐03  12  287  73%  3.7E‐01  4.6E‐03 7.9E‐05

miR‐197‐3p  6.3E‐01  3.4E‐01  6.9E‐02  11  219  71%  1.2E‐02  4.2E‐03 6.7E‐04

miR‐28‐5p/708‐5p/3139  3.3E‐01  8.0E‐01  4.3E‐02  11  209  80%  4.5E‐03  2.0E‐02 4.1E‐04

miR‐499a‐5p  1.0E+00 7.0E‐01  1.3E‐03  11  340  74%  9.8E‐02  1.4E‐02 8.7E‐06

miR‐421  1.0E+00 7.1E‐01  1.6E‐03  10  433  77%  3.1E‐01  1.5E‐02 1.1E‐05

miR‐505‐3p  1.0E+00 4.0E‐01  1.5E‐02  10  236  73%  5.8E‐01  5.4E‐03 1.3E‐04

miR‐338‐3p  1.0E+00 7.5E‐01  1.3E‐03  10  311  72%  1.2E‐01  1.7E‐02 8.7E‐06

miR‐202‐3p  1.0E+00 8.3E‐01  6.9E‐04  10  798  72%  2.0E‐01  2.3E‐02 1.3E‐06

miR‐503‐5p  1.0E+00 3.2E‐01  3.2E‐02  10  387  75%  1.8E‐01  3.9E‐03 3.0E‐04

miR‐214‐3p/761/3619‐5p  1.0E+00 8.6E‐01  8.3E‐04  9  678  77%  1.5E‐01  2.7E‐02 3.8E‐06

miR‐542‐3p  9.9E‐01  3.1E‐01  4.8E‐02  9  279  74%  7.5E‐02  3.7E‐03 4.6E‐04

miR‐149‐5p  1.0E+00 9.3E‐01  6.9E‐04  9  451  75%  3.9E‐01  3.9E‐02 1.3E‐06

miR‐203a  1.0E+00 9.6E‐01  6.9E‐04  9  867  74%  1.1E‐01  4.9E‐02 1.3E‐06

miR‐145‐5p  1.0E+00 9.6E‐01  6.9E‐04  9  730  74%  2.9E‐01  5.1E‐02 1.3E‐06

miR‐103a‐3p/107  1.0E+00 9.9E‐01  6.9E‐04  8  650  76%  1.7E‐01  7.7E‐02 1.3E‐06

miR‐24‐3p  9.8E‐01  1.0E+00 7.3E‐04  8  632  73%  6.8E‐02  2.1E‐01 2.5E‐06

miR‐129‐5p  1.0E+00 9.9E‐01  6.9E‐04  8  544  75%  2.9E‐01  8.3E‐02 1.3E‐06

let‐7abcdefgi‐5p/98‐5p/4458/4500  1.0E+00 1.0E+00 6.9E‐04  8  1072  73%  5.4E‐01  1.2E‐01 1.3E‐06

miR‐29abc‐3p  1.0E+00 1.0E+00 6.9E‐04  8  1077  75%  7.6E‐01  2.0E‐01 1.3E‐06

miR‐873‐5p  1.0E+00 1.0E+00 6.9E‐04  8  335  70%  5.8E‐01  2.7E‐01 1.3E‐06

miR‐33ab‐5p  9.9E‐01  8.4E‐01  4.9E‐03  7  415  76%  8.3E‐02  2.4E‐02 4.2E‐05

miR‐324‐5p  1.0E+00 4.3E‐01  4.7E‐02  7  141  71%  1.9E‐01  5.9E‐03 4.5E‐04

miR‐335‐5p  3.6E‐01  9.8E‐01  8.2E‐02  7  256  74%  5.0E‐03  5.7E‐02 8.0E‐04

miR‐216b‐5p  9.7E‐01  6.8E‐02  4.2E‐01  7  290  73%  5.3E‐02  6.4E‐04 5.9E‐03

miR‐219a‐5p/4782‐3p  1.0E+00 7.0E‐01  1.5E‐02  7  391  76%  3.8E‐01  1.5E‐02 1.3E‐04

miR‐329‐3p/362‐3p  9.4E‐01  9.8E‐01  4.9E‐03  7  314  73%  4.3E‐02  5.8E‐02 4.2E‐05

miR‐146ab‐5p  1.0E+00 5.1E‐01  5.5E‐02  7  225  74%  1.4E‐01  7.9E‐03 5.2E‐04

miR‐196ab‐5p  1.0E+00 8.9E‐01  1.1E‐02  6  295  72%  2.7E‐01  3.1E‐02 9.5E‐05

miR‐653‐5p  1.0E+00 1.0E+00 5.8E‐03  6  224  71%  1.9E‐01  1.2E‐01 4.9E‐05

miR‐217  1.0E+00 1.9E‐02  8.1E‐01  6  345  77%  1.1E‐01  1.7E‐04 2.3E‐02

miR‐143‐3p/4770  8.0E‐01  1.0E+00 2.4E‐02  6  407  73%  2.1E‐02  9.3E‐02 2.2E‐04

miR‐876‐5p/3167  9.9E‐01  1.0E+00 1.5E‐02  5  268  66%  7.8E‐02  1.3E‐01 1.4E‐04

miR‐183‐5p  1.0E+00 7.1E‐01  6.5E‐02  5  386  78%  2.9E‐01  1.5E‐02 6.2E‐04

miR‐192‐5p/215‐5p  1.0E+00 6.9E‐01  7.7E‐02  5  156  66%  1.4E‐01  1.4E‐02 7.5E‐04

miR‐122‐5p  9.9E‐01  3.7E‐02  8.8E‐01  5  172  79%  8.0E‐02  3.3E‐04 3.1E‐02

miR‐221‐3p/222‐3p  1.0E+00 5.5E‐01  1.6E‐01  5  444  76%  3.1E‐01  9.0E‐03 1.7E‐03

miR‐208ab‐3p  1.0E+00 7.7E‐01  7.8E‐02  4  182  70%  2.0E‐01  1.8E‐02 7.5E‐04

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 29: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

29

© 2016 American Medical Association. All rights reserved.

  TargetScan gene sets (Alternative analysis, R2=0.1, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐10ab‐5p  1.0E+00 9.2E‐01  4.4E‐02  4  272  74%  7.1E‐01  3.5E‐02 4.1E‐04

miR‐383‐5p  1.0E+00 1.0E+00 3.4E‐02  4  176  75%  5.6E‐01  1.1E‐01 3.2E‐04

miR‐299‐3p  1.0E+00 9.9E‐01  4.2E‐02  4  91  80%  2.0E‐01  9.1E‐02 4.0E‐04

miR‐361‐5p  1.0E+00 1.0E+00 4.7E‐02  4  240  69%  2.6E‐01  1.6E‐01 4.5E‐04

miR‐21‐5p/590‐5p  8.7E‐01  8.0E‐01  1.5E‐01  4  308  75%  3.0E‐02  2.1E‐02 1.6E‐03

miR‐185‐5p/4306/4644  1.0E+00 1.0E+00 5.4E‐02  4  320  68%  3.8E‐01  1.5E‐01 5.1E‐04

miR‐488‐3p  1.0E+00 9.1E‐01  8.1E‐02  4  384  71%  6.4E‐01  3.4E‐02 8.0E‐04

miR‐365a‐3p  5.5E‐01  8.6E‐01  3.5E‐01  4  277  78%  9.5E‐03  2.7E‐02 4.5E‐03

miR‐486‐5p  1.0E+00 1.0E+00 6.3E‐02  4  154  76%  5.4E‐01  2.0E‐01 6.2E‐04

miR‐328‐3p  1.0E+00 8.5E‐01  1.5E‐01  3  209  76%  3.4E‐01  2.5E‐02 1.6E‐03

miR‐433‐3p  1.0E+00 1.0E+00 1.3E‐01  3  321  75%  2.4E‐01  1.4E‐01 1.3E‐03

miR‐125a‐3p  9.8E‐01  1.0E+00 1.4E‐01  3  223  72%  6.3E‐02  1.4E‐01 1.5E‐03

miR‐491‐5p  1.0E+00 9.5E‐01  1.6E‐01  3  173  74%  3.1E‐01  4.4E‐02 1.7E‐03

miR‐490‐3p  1.0E+00 1.0E+00 1.6E‐01  3  192  72%  6.3E‐01  1.1E‐01 1.7E‐03

miR‐190a‐5p/190b  1.8E‐01  9.8E‐01  1.0E+00 3  185  71%  2.0E‐03  6.3E‐02 2.1E‐01

miR‐496  1.0E+00 5.1E‐01  5.8E‐01  3  128  77%  9.6E‐02  7.8E‐03 1.0E‐02

miR‐339‐5p  1.0E+00 8.8E‐01  3.3E‐01  2  185  75%  2.9E‐01  2.9E‐02 4.3E‐03

miR‐18ab‐5p/4735‐3p  1.0E+00 9.3E‐01  4.0E‐01  2  275  73%  5.4E‐01  3.7E‐02 5.4E‐03

miR‐382‐5p  1.0E+00 5.0E‐01  8.2E‐01  2  217  71%  9.4E‐02  7.5E‐03 2.3E‐02

miR‐375  1.0E+00 9.9E‐01  3.9E‐01  2  229  76%  6.5E‐01  7.7E‐02 5.4E‐03

miR‐193ab‐3p  1.0E+00 1.0E+00 4.4E‐01  2  222  79%  6.6E‐01  1.4E‐01 6.4E‐03

miR‐136‐5p  1.0E+00 9.9E‐01  4.7E‐01  2  272  67%  2.2E‐01  7.1E‐02 7.0E‐03

miR‐378a‐3p/378bcdefhi/422a  1.0E+00 1.0E+00 4.8E‐01  2  191  73%  3.0E‐01  1.7E‐01 7.4E‐03

miR‐376ab‐3p  1.0E+00 1.0E+00 4.9E‐01  2  214  75%  5.0E‐01  4.9E‐01 7.7E‐03

miR‐455‐5p  1.0E+00 1.0E+00 5.3E‐01  2  198  77%  7.8E‐01  2.8E‐01 8.7E‐03

miR‐134‐5p/3118  9.1E‐01  8.1E‐01  8.2E‐01  2  171  75%  3.6E‐02  2.1E‐02 2.4E‐02

miR‐346  1.0E+00 1.0E+00 5.7E‐01  2  143  74%  3.2E‐01  1.5E‐01 9.8E‐03

miR‐191‐5p  9.1E‐01  1.0E+00 6.5E‐01  2  54  78%  3.6E‐02  1.1E‐01 1.3E‐02

miR‐140‐5p  1.0E+00 1.0E+00 7.8E‐01  1  345  77%  3.2E‐01  3.0E‐01 2.0E‐02

miR‐758‐3p  1.0E+00 1.0E+00 8.0E‐01  1  235  70%  9.8E‐01  9.1E‐01 2.1E‐02

miR‐154‐5p  1.0E+00 1.0E+00 8.0E‐01  1  129  77%  2.0E‐01  1.0E‐01 2.2E‐02

miR‐599  1.0E+00 9.8E‐01  9.5E‐01  1  209  71%  3.5E‐01  6.5E‐02 4.8E‐02

miR‐431‐5p  1.0E+00 1.0E+00 9.4E‐01  1  167  75%  1.6E‐01  3.8E‐01 4.2E‐02

miR‐99ab‐5p/100‐5p  1.0E+00 9.9E‐01  9.6E‐01  1  56  86%  8.3E‐01  7.6E‐02 5.3E‐02

miR‐411‐5p  1.0E+00 1.0E+00 9.6E‐01  1  106  78%  6.6E‐01  5.5E‐01 5.2E‐02

miR‐875‐5p  1.0E+00 1.0E+00 9.7E‐01  1  110  81%  2.0E‐01  2.6E‐01 5.4E‐02

miR‐296‐3p  1.0E+00 1.0E+00 9.9E‐01  1  66  69%  1.8E‐01  1.4E‐01 8.3E‐02

miR‐379‐5p/3529‐5p  1.0E+00 1.0E+00 1.0E+00 1  93  66%  5.4E‐01  1.4E‐01 1.9E‐01

miR‐615‐3p  NA  NA  NA  1  11  70%  NA  NA  NA 

miR‐551b‐3p/551a  NA  NA  NA  1  8  75%  NA  NA  NA 

miR‐487b‐3p  NA  NA  NA  1  14  86%  NA  NA  NA 

miR‐451a  NA  NA  NA  1  20  68%  NA  NA  NA 

miR‐450a‐5p  NA  NA  NA  1  10  80%  NA  NA  NA 

miR‐210‐3p  NA  NA  NA  1  32  77%  NA  NA  NA 

miR‐187‐3p  NA  NA  NA  1  9  67%  NA  NA  NA 

miR‐184  NA  NA  NA  1  28  85%  NA  NA  NA 

miR‐127‐3p  NA  NA  NA  1  13  54%  NA  NA  NA 

miR‐126‐3p  NA  NA  NA  1  25  84%  NA  NA  NA 

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 30: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

30

© 2016 American Medical Association. All rights reserved.

eTable 4: Alternative TargetScan gene set analysis: lower LD-threshold and longer clumping range. These are the results of the main gene set analysis (eTable 1) with the change that the clumping range was 3000 kb and the LD threshold was lowered to 0.1.

  TargetScan gene sets (Alternative analysis, R2=0.1, 3000kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐218‐5p  2.0E‐03  6.7E‐04  7.6E‐04  492  931  75%  1.6E‐05  1.3E‐06 1.3E‐06

miR‐137  1.8E‐02  6.7E‐04  7.6E‐04  341  1144  77%  1.8E‐04  1.3E‐06 1.3E‐06

miR‐25‐3p/32‐5p/92ab‐3p/363‐3p/367‐3p  3.0E‐03  8.5E‐03  7.6E‐04  321  892  76%  2.8E‐05  7.5E‐05 1.3E‐06

miR‐101‐3p  2.0E‐02  7.2E‐03  7.6E‐04  237  803  78%  2.0E‐04  6.2E‐05 1.3E‐06

miR‐182‐5p  5.9E‐02  1.8E‐03  7.6E‐04  228  1122  73%  6.1E‐04  1.4E‐05 1.3E‐06

miR‐9‐5p  5.8E‐02  3.1E‐03  7.6E‐04  213  1237  75%  5.9E‐04  2.5E‐05 1.3E‐06

miR‐34ac‐5p/449b‐5p/449a  1.6E‐01  6.7E‐04  7.6E‐04  192  655  78%  1.8E‐03  1.3E‐06 1.3E‐06

miR‐204‐5p/211‐5p  1.5E‐01  1.2E‐03  7.6E‐04  185  670  76%  1.7E‐03  7.5E‐06 1.3E‐06

miR‐132‐3p/212‐3p  2.3E‐01  2.6E‐03  9.3E‐04  137  406  79%  2.8E‐03  2.0E‐05 3.8E‐06

miR‐141‐3p/200a‐3p  1.8E‐01  5.9E‐03  7.6E‐04  135  744  76%  2.1E‐03  5.2E‐05 1.3E‐06

miR‐7‐5p  6.0E‐02  3.4E‐02  1.1E‐03  130  444  73%  6.1E‐04  3.2E‐04 5.0E‐06

miR‐130ab‐3p/301a‐3p/301b/ 454‐3p/3666/4295 

3.6E‐01  1.7E‐03  7.6E‐04  121  899  76%  5.1E‐03  1.3E‐05 1.3E‐06

miR‐22‐3p  1.6E‐02  2.2E‐01  7.6E‐04  106  507  71%  1.5E‐04  2.5E‐03 1.3E‐06

miR‐138‐5p  2.0E‐02  3.1E‐01  9.3E‐04  86  560  77%  1.9E‐04  3.7E‐03 3.8E‐06

miR‐19ab‐3p  3.0E‐01  3.3E‐02  7.6E‐04  79  1167  75%  4.0E‐03  3.1E‐04 1.3E‐06

miR‐374ab‐5p  8.6E‐01  8.1E‐04  9.3E‐04  75  678  71%  2.8E‐02  3.8E‐06 3.8E‐06

miR‐448  8.1E‐01  1.4E‐03  7.6E‐04  75  699  71%  2.3E‐02  1.0E‐05 1.3E‐06

miR‐539‐5p  3.6E‐01  3.3E‐02  7.6E‐04  73  698  73%  4.9E‐03  3.1E‐04 1.3E‐06

miR‐340‐5p  9.9E‐01  6.7E‐04  7.6E‐04  69  1424  74%  7.9E‐02  1.3E‐06 1.3E‐06

miR‐200bc‐3p/429  9.9E‐01  6.7E‐04  7.6E‐04  69  1057  77%  8.3E‐02  1.3E‐06 1.3E‐06

miR‐410‐3p  6.9E‐01  7.2E‐03  7.6E‐04  67  636  76%  1.5E‐02  6.2E‐05 1.3E‐06

miR‐376c‐3p  7.0E‐01  7.0E‐03  7.6E‐04  66  254  72%  1.5E‐02  6.1E‐05 1.3E‐06

miR‐96‐5p/1271‐5p  1.4E‐01  2.7E‐01  7.6E‐04  56  1049  75%  1.6E‐03  3.1E‐03 1.3E‐06

miR‐27ab‐3p  1.0E+00 4.7E‐03  7.6E‐04  52  1212  74%  1.4E‐01  4.1E‐05 1.3E‐06

miR‐128‐3p  8.0E‐01  1.6E‐02  7.6E‐04  52  1047  75%  2.2E‐02  1.4E‐04 1.3E‐06

miR‐142‐3p  6.9E‐01  2.8E‐02  9.3E‐04  50  331  75%  1.5E‐02  2.5E‐04 3.8E‐06

miR‐300/381‐3p  1.0E+00 6.7E‐03  7.6E‐04  49  881  78%  1.7E‐01  5.9E‐05 1.3E‐06

miR‐186‐5p  1.0E+00 7.9E‐03  8.5E‐04  47  859  71%  1.6E‐01  6.7E‐05 2.5E‐06

miR‐125ab‐5p/4319  1.0E+00 1.1E‐02  7.6E‐04  45  847  75%  1.7E‐01  1.0E‐04 1.3E‐06

miR‐150‐5p  6.1E‐01  5.2E‐02  1.5E‐03  44  282  73%  1.2E‐02  5.0E‐04 8.7E‐06

miR‐148ab‐3p/152‐3p  4.9E‐01  1.2E‐01  8.5E‐04  43  697  77%  8.0E‐03  1.2E‐03 2.5E‐06

miR‐153‐3p  1.0E+00 1.4E‐02  7.6E‐04  43  748  72%  1.7E‐01  1.2E‐04 1.3E‐06

miR‐124‐3p/506‐3p  7.4E‐01  4.8E‐02  7.6E‐04  43  1654  77%  1.7E‐02  4.5E‐04 1.3E‐06

miR‐377‐3p  4.1E‐01  1.8E‐01  1.1E‐03  40  573  75%  6.0E‐03  1.9E‐03 5.0E‐06

miR‐320abcd/4429  9.3E‐01  3.3E‐02  7.6E‐04  39  788  76%  4.1E‐02  3.1E‐04 1.3E‐06

miR‐31‐5p  1.0E+00 1.1E‐02  2.9E‐03  38  368  71%  1.2E‐01  9.4E‐05 2.3E‐05

miR‐223‐3p  1.0E+00 8.6E‐03  4.0E‐03  38  311  76%  2.6E‐01  7.6E‐05 3.3E‐05

miR‐181abcd‐5p/4262  3.2E‐01  3.3E‐01  7.6E‐04  37  1195  75%  4.5E‐03  4.1E‐03 1.3E‐06

miR‐155‐5p  7.9E‐01  6.8E‐02  8.5E‐04  37  439  76%  2.1E‐02  6.4E‐04 2.5E‐06

miR‐485‐5p  4.8E‐01  2.1E‐01  7.6E‐04  37  379  73%  7.6E‐03  2.3E‐03 1.3E‐06

miR‐342‐3p  1.0E+00 3.4E‐02  7.6E‐04  36  284  76%  2.1E‐01  3.2E‐04 1.3E‐06

miR‐326/330‐5p  9.2E‐01  5.5E‐02  9.3E‐04  34  444  75%  3.7E‐02  5.3E‐04 3.8E‐06

miR‐495‐3p  8.7E‐01  8.3E‐02  7.6E‐04  33  903  75%  2.9E‐02  8.0E‐04 1.3E‐06

miR‐384  9.2E‐01  3.7E‐02  2.6E‐03  32  302  78%  3.9E‐02  3.4E‐04 2.0E‐05

miR‐30abcde‐5p  1.0E+00 6.7E‐02  7.6E‐04  30  1357  75%  1.1E‐01  6.2E‐04 1.3E‐06

miR‐135ab‐5p  8.7E‐01  1.1E‐01  7.6E‐04  30  716  75%  2.9E‐02  1.1E‐03 1.3E‐06

miR‐590‐3p  1.0E+00 7.9E‐02  7.6E‐04  29  1250  72%  1.9E‐01  7.6E‐04 1.3E‐06

miR‐26ab‐5p/1297/4465  6.3E‐01  2.7E‐01  7.6E‐04  28  884  73%  1.2E‐02  3.3E‐03 1.3E‐06

miR‐544a  1.0E+00 9.4E‐02  7.6E‐04  28  573  72%  2.1E‐01  9.4E‐04 1.3E‐06

miR‐371a‐5p  1.0E+00 6.1E‐02  2.0E‐03  27  354  73%  1.8E‐01  5.8E‐04 1.4E‐05

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 31: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

31

© 2016 American Medical Association. All rights reserved.

  TargetScan gene sets (Alternative analysis, R2=0.1, 3000kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐133a‐3p/133b  8.7E‐01  1.9E‐01  7.6E‐04  25  648  75%  2.9E‐02  2.1E‐03 1.3E‐06

miR‐503‐5p  1.0E+00 5.8E‐02  4.7E‐03  24  387  75%  2.6E‐01  5.6E‐04 3.9E‐05

miR‐23ab‐3p/23c  9.9E‐01  1.4E‐01  7.6E‐04  24  1125  72%  7.5E‐02  1.5E‐03 1.3E‐06

miR‐1/206/613  9.2E‐01  2.1E‐01  7.6E‐04  23  787  76%  3.7E‐02  2.4E‐03 1.3E‐06

miR‐494‐3p  1.0E+00 2.0E‐01  8.5E‐04  21  574  74%  1.4E‐01  2.1E‐03 2.5E‐06

miR‐224‐5p  8.7E‐01  2.7E‐01  9.3E‐04  21  383  75%  2.9E‐02  3.3E‐03 3.8E‐06

miR‐15ab‐5p/16‐5p/195‐5p/424‐5p/497‐5p  1.0E+00 2.3E‐01  7.6E‐04  20  1275  74%  3.6E‐01  2.6E‐03 1.3E‐06

miR‐197‐3p  6.5E‐01  8.0E‐02  4.8E‐02  20  219  71%  1.3E‐02  7.8E‐04 4.5E‐04

miR‐425‐5p  3.3E‐01  7.5E‐02  2.0E‐01  20  211  75%  4.6E‐03  7.2E‐04 2.2E‐03

miR‐17‐5p/20ab‐5p/93‐5p/106ab‐5p/ 519d‐3p 

1.0E+00 2.5E‐01  7.6E‐04  19  1220  77%  3.2E‐01  2.9E‐03 1.3E‐06

miR‐144‐3p  5.8E‐01  6.3E‐01  7.6E‐04  19  878  76%  1.1E‐02  1.2E‐02 1.3E‐06

miR‐219a‐5p/4782‐3p  1.0E+00 2.7E‐01  9.3E‐04  18  391  76%  4.1E‐01  3.3E‐03 3.8E‐06

miR‐199ab‐5p  9.6E‐01  3.2E‐01  1.1E‐03  17  494  77%  5.2E‐02  4.0E‐03 5.0E‐06

miR‐33ab‐5p  9.8E‐01  3.1E‐01  1.1E‐03  17  415  76%  7.0E‐02  3.8E‐03 5.0E‐06

miR‐370‐3p  1.0E+00 3.4E‐01  7.6E‐04  17  391  76%  2.8E‐01  4.3E‐03 1.3E‐06

miR‐505‐3p  1.0E+00 1.7E‐01  6.9E‐03  17  236  73%  5.5E‐01  1.8E‐03 6.0E‐05

miR‐216b‐5p  9.4E‐01  1.7E‐02  1.2E‐01  16  290  73%  4.5E‐02  1.6E‐04 1.3E‐03

miR‐194‐5p  8.9E‐01  3.1E‐03  3.7E‐01  15  367  80%  3.2E‐02  2.5E‐05 5.1E‐03

miR‐543  7.7E‐01  6.8E‐01  7.6E‐04  14  737  75%  2.0E‐02  1.4E‐02 1.3E‐06

miR‐302abcd‐3p/302e/372‐3p/ 373‐3p/520acd‐3p/520be 

1.0E+00 4.9E‐01  7.6E‐04  14  844  74%  1.5E‐01  7.4E‐03 1.3E‐06

miR‐205‐5p  1.0E+00 5.4E‐01  8.5E‐04  13  417  76%  6.2E‐01  8.8E‐03 2.5E‐06

miR‐874‐3p  1.0E+00 5.8E‐01  7.6E‐04  13  269  76%  2.3E‐01  9.9E‐03 1.3E‐06

miR‐139‐5p  8.7E‐01  4.7E‐01  5.0E‐03  13  349  77%  2.9E‐02  7.0E‐03 4.2E‐05

miR‐499a‐5p  8.9E‐01  7.3E‐01  7.6E‐04  12  340  74%  3.2E‐02  1.6E‐02 1.3E‐06

miR‐28‐5p/708‐5p/3139  5.3E‐01  5.1E‐01  3.8E‐02  12  209  80%  9.0E‐03  7.9E‐03 3.6E‐04

miR‐504‐5p/4725‐5p  1.0E+00 5.7E‐01  1.8E‐03  11  212  74%  4.4E‐01  9.7E‐03 1.1E‐05

miR‐145‐5p  1.0E+00 6.8E‐01  7.6E‐04  11  730  74%  3.4E‐01  1.4E‐02 1.3E‐06

miR‐338‐3p  9.9E‐01  6.5E‐01  1.2E‐03  11  311  72%  7.8E‐02  1.3E‐02 6.2E‐06

miR‐324‐5p  1.0E+00 1.7E‐01  7.3E‐02  10  141  71%  3.6E‐01  1.8E‐03 7.1E‐04

miR‐365a‐3p  4.0E‐01  8.0E‐01  4.6E‐02  10  277  78%  5.6E‐03  2.1E‐02 4.3E‐04

miR‐221‐3p/222‐3p  1.0E+00 5.1E‐01  8.9E‐03  10  444  76%  3.0E‐01  7.9E‐03 7.7E‐05

miR‐202‐3p  1.0E+00 8.6E‐01  7.6E‐04  9  798  72%  1.4E‐01  2.6E‐02 1.3E‐06

miR‐216a‐5p  1.0E+00 4.4E‐01  1.6E‐02  9  287  73%  4.7E‐01  6.4E‐03 1.4E‐04

miR‐335‐5p  3.4E‐01  8.3E‐01  6.7E‐02  9  256  74%  4.7E‐03  2.3E‐02 6.6E‐04

miR‐183‐5p  9.9E‐01  2.1E‐01  8.8E‐02  9  386  78%  9.0E‐02  2.3E‐03 8.6E‐04

miR‐203a  9.9E‐01  9.6E‐01  7.6E‐04  9  867  74%  7.9E‐02  5.0E‐02 1.3E‐06

miR‐192‐5p/215‐5p  9.8E‐01  4.2E‐01  3.2E‐02  9  156  66%  6.3E‐02  5.8E‐03 2.9E‐04

miR‐129‐5p  1.0E+00 9.8E‐01  7.6E‐04  8  544  75%  1.7E‐01  6.0E‐02 1.3E‐06

miR‐103a‐3p/107  1.0E+00 9.9E‐01  7.6E‐04  8  650  76%  2.8E‐01  8.1E‐02 1.3E‐06

miR‐149‐5p  1.0E+00 9.9E‐01  7.6E‐04  8  451  75%  3.8E‐01  9.1E‐02 1.3E‐06

let‐7abcdefgi‐5p/98‐5p/4458/4500  1.0E+00 1.0E+00 7.6E‐04  8  1072  73%  5.3E‐01  1.7E‐01 1.3E‐06

miR‐29abc‐3p  1.0E+00 1.0E+00 7.6E‐04  8  1077  75%  7.8E‐01  2.8E‐01 1.3E‐06

miR‐24‐3p  1.0E+00 1.0E+00 8.5E‐04  8  632  73%  1.1E‐01  3.3E‐01 2.5E‐06

miR‐214‐3p/761/3619‐5p  1.0E+00 9.9E‐01  1.4E‐03  8  678  77%  1.7E‐01  7.8E‐02 7.5E‐06

miR‐329‐3p/362‐3p  8.1E‐01  9.5E‐01  7.0E‐03  8  314  73%  2.2E‐02  4.6E‐02 6.1E‐05

miR‐873‐5p  1.0E+00 1.0E+00 2.0E‐03  7  335  70%  5.1E‐01  3.5E‐01 1.4E‐05

miR‐146ab‐5p  1.0E+00 4.5E‐01  4.9E‐02  7  225  74%  1.9E‐01  6.5E‐03 4.6E‐04

miR‐208ab‐3p  1.0E+00 6.5E‐01  3.2E‐02  6  182  70%  1.1E‐01  1.3E‐02 3.0E‐04

miR‐653‐5p  1.0E+00 9.9E‐01  5.8E‐03  6  224  71%  2.4E‐01  8.0E‐02 5.0E‐05

miR‐542‐3p  9.8E‐01  4.6E‐01  9.3E‐02  6  279  74%  6.2E‐02  6.7E‐03 9.3E‐04

miR‐122‐5p  9.7E‐01  6.4E‐02  5.6E‐01  6  172  79%  6.0E‐02  5.9E‐04 9.8E‐03

miR‐421  1.0E+00 7.7E‐01  2.7E‐02  6  433  77%  2.6E‐01  1.8E‐02 2.4E‐04

miR‐361‐5p  1.0E+00 1.0E+00 1.0E‐02  6  240  69%  3.4E‐01  1.4E‐01 8.9E‐05

miR‐488‐3p  1.0E+00 7.6E‐01  4.7E‐02  5  384  71%  5.9E‐01  1.8E‐02 4.5E‐04

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 32: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

32

© 2016 American Medical Association. All rights reserved.

  TargetScan gene sets (Alternative analysis, R2=0.1, 3000kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1%

 p‐value @top5%

miR‐10ab‐5p  1.0E+00 8.9E‐01  2.8E‐02  5  272  74%  8.5E‐01  3.1E‐02 2.6E‐04

miR‐125a‐3p  9.9E‐01  9.2E‐01  2.7E‐02  5  223  72%  7.8E‐02  3.7E‐02 2.4E‐04

miR‐217  1.0E+00 4.1E‐02  8.2E‐01  5  345  77%  1.9E‐01  3.8E‐04 2.4E‐02

miR‐21‐5p/590‐5p  9.5E‐01  7.7E‐01  8.1E‐02  5  308  75%  4.8E‐02  1.9E‐02 7.8E‐04

miR‐383‐5p  1.0E+00 9.9E‐01  2.8E‐02  5  176  75%  4.7E‐01  8.1E‐02 2.6E‐04

miR‐185‐5p/4306/4644  1.0E+00 1.0E+00 3.2E‐02  4  320  68%  4.1E‐01  2.1E‐01 2.9E‐04

miR‐491‐5p  1.0E+00 9.5E‐01  4.3E‐02  4  173  74%  4.0E‐01  4.6E‐02 4.0E‐04

miR‐876‐5p/3167  9.7E‐01  9.9E‐01  4.3E‐02  4  268  66%  5.7E‐02  9.2E‐02 4.0E‐04

miR‐433‐3p  1.0E+00 1.0E+00 3.9E‐02  4  321  75%  3.3E‐01  1.1E‐01 3.7E‐04

miR‐143‐3p/4770  9.6E‐01  9.5E‐01  5.6E‐02  4  407  73%  4.9E‐02  4.7E‐02 5.4E‐04

miR‐299‐3p  1.0E+00 9.8E‐01  4.7E‐02  4  91  80%  2.9E‐01  6.5E‐02 4.5E‐04

miR‐196ab‐5p  1.0E+00 9.1E‐01  6.3E‐02  4  295  72%  3.0E‐01  3.5E‐02 5.9E‐04

miR‐486‐5p  1.0E+00 1.0E+00 6.1E‐02  4  154  76%  2.3E‐01  1.7E‐01 5.8E‐04

miR‐328‐3p  1.0E+00 5.2E‐01  4.5E‐01  3  209  76%  3.5E‐01  8.2E‐03 6.8E‐03

miR‐193ab‐3p  1.0E+00 9.8E‐01  1.6E‐01  3  222  79%  7.0E‐01  6.2E‐02 1.7E‐03

miR‐382‐5p  1.0E+00 5.0E‐01  5.0E‐01  3  217  71%  1.0E‐01  7.7E‐03 8.0E‐03

miR‐190a‐5p/190b  2.5E‐01  8.6E‐01  1.0E+00 3  185  71%  3.1E‐03  2.6E‐02 1.0E‐01

miR‐455‐5p  1.0E+00 1.0E+00 1.8E‐01  3  198  77%  6.3E‐01  1.5E‐01 2.0E‐03

miR‐378a‐3p/378bcdefhi/422a  1.0E+00 1.0E+00 2.2E‐01  3  191  73%  2.6E‐01  1.7E‐01 2.5E‐03

miR‐154‐5p  9.9E‐01  1.0E+00 2.7E‐01  2  129  77%  9.7E‐02  9.5E‐02 3.3E‐03

miR‐140‐5p  1.0E+00 1.0E+00 2.8E‐01  2  345  77%  3.0E‐01  2.1E‐01 3.5E‐03

miR‐339‐5p  1.0E+00 9.2E‐01  4.1E‐01  2  185  75%  2.9E‐01  3.6E‐02 5.8E‐03

miR‐490‐3p  1.0E+00 9.6E‐01  3.8E‐01  2  192  72%  5.3E‐01  4.9E‐02 5.3E‐03

miR‐496  1.0E+00 7.2E‐01  6.6E‐01  2  128  77%  1.3E‐01  1.5E‐02 1.3E‐02

miR‐18ab‐5p/4735‐3p  1.0E+00 9.2E‐01  5.1E‐01  2  275  73%  5.1E‐01  3.6E‐02 8.2E‐03

miR‐376ab‐3p  1.0E+00 1.0E+00 4.7E‐01  2  214  75%  4.0E‐01  4.4E‐01 7.2E‐03

miR‐191‐5p  9.8E‐01  1.0E+00 5.7E‐01  2  54  78%  6.6E‐02  1.1E‐01 9.9E‐03

miR‐134‐5p/3118  9.8E‐01  9.7E‐01  6.9E‐01  1  171  75%  6.1E‐02  5.6E‐02 1.5E‐02

miR‐136‐5p  1.0E+00 9.1E‐01  7.5E‐01  1  272  67%  2.0E‐01  3.5E‐02 1.8E‐02

miR‐346  1.0E+00 9.8E‐01  8.1E‐01  1  143  74%  3.5E‐01  6.6E‐02 2.3E‐02

miR‐875‐5p  1.0E+00 1.0E+00 7.9E‐01  1  110  81%  2.2E‐01  2.7E‐01 2.1E‐02

miR‐375  1.0E+00 1.0E+00 8.5E‐01  1  229  76%  4.2E‐01  1.6E‐01 2.6E‐02

miR‐431‐5p  1.0E+00 1.0E+00 8.5E‐01  1  167  75%  1.7E‐01  3.9E‐01 2.7E‐02

miR‐296‐3p  1.0E+00 1.0E+00 8.6E‐01  1  66  69%  2.9E‐01  9.3E‐02 2.9E‐02

miR‐758‐3p  1.0E+00 1.0E+00 8.8E‐01  1  235  70%  9.6E‐01  8.1E‐01 3.1E‐02

miR‐599  1.0E+00 9.9E‐01  9.1E‐01  1  209  71%  4.7E‐01  7.7E‐02 3.8E‐02

miR‐99ab‐5p/100‐5p  1.0E+00 9.8E‐01  9.8E‐01  1  56  86%  9.0E‐01  6.0E‐02 6.7E‐02

miR‐411‐5p  1.0E+00 1.0E+00 9.8E‐01  1  106  78%  3.2E‐01  4.2E‐01 6.9E‐02

miR‐379‐5p/3529‐5p  1.0E+00 1.0E+00 1.0E+00 1  93  66%  5.7E‐01  2.1E‐01 2.1E‐01

miR‐615‐3p  NA  NA  NA  1  11  70%  NA  NA  NA 

miR‐551b‐3p/551a  NA  NA  NA  1  8  75%  NA  NA  NA 

miR‐487b‐3p  NA  NA  NA  1  14  86%  NA  NA  NA 

miR‐451a  NA  NA  NA  1  20  68%  NA  NA  NA 

miR‐450a‐5p  NA  NA  NA  1  10  80%  NA  NA  NA 

miR‐210‐3p  NA  NA  NA  1  32  77%  NA  NA  NA 

miR‐187‐3p  NA  NA  NA  1  9  67%  NA  NA  NA 

miR‐184  NA  NA  NA  1  28  85%  NA  NA  NA 

miR‐127‐3p  NA  NA  NA  1  13  54%  NA  NA  NA 

miR‐126‐3p  NA  NA  NA  1  25  84%  NA  NA  NA 

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 33: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

33

© 2016 American Medical Association. All rights reserved.

eTable 5: Validation of top-10 gene sets using MiRanda target predictions. Of the two groups of predictions in MiRanda, only the group “Good mirSVR score” was used. In order to match these algorithms to the TargetScan miRNA families, the union of predictions for the individual miRNA members in the TargetScan family was taken. The three different thresholds represent the different significance thresholds for the index-SNP used in clumping. Top-1% of SNPs have p-values less than 3.420 x 10-4, top 5% of SNPs have p-values less than 1.096 x 10-2. “OSF = Original set found” indicates the fraction of the TargetScan predictions also predicted by MiRanda. ”Corrected” are the p-values after correcting for multiple testing, whereas “Raw” are the unadjusted p-values. For a detailed description of the “Score” column please refer to the main text.   MiRanda top‐10 validation (R2=0.6, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score 

 Size 

 OSF 

 p‐value @1E‐5 

Raw p‐value @top1% 

 p‐value @top5%

miR‐9‐5p  1.5E‐01  5.0E‐02  1.3E‐04  116  3294  67%  2.0E‐02  6.0E‐03  1.3E‐06

miR‐200bc‐3p/429  3.6E‐01  2.9E‐02  1.3E‐04  91  4312  84%  5.6E‐02  3.4E‐03  1.3E‐06

miR‐7‐5p  1.1E‐01  2.1E‐01  1.3E‐04  82  2964  74%  1.4E‐02  2.9E‐02  1.3E‐06

miR‐101‐3p  7.9E‐01  1.1E‐01  1.4E‐04  39  3170  76%  1.9E‐01  1.4E‐02  3.8E‐06

miR‐485‐5p  6.8E‐01  4.2E‐01  1.3E‐04  26  3285  64%  1.4E‐01  6.8E‐02  1.3E‐06

miR‐34ac‐5p/449b‐5p/449a  9.9E‐01  3.0E‐01  1.3E‐04  22  3230  70%  5.4E‐01  4.4E‐02  1.3E‐06

miR‐1/206/613  6.5E‐01  4.6E‐01  6.8E‐04  21  3237  73%  1.4E‐01  7.8E‐02  6.0E‐05

miR‐137  9.4E‐01  8.3E‐01  1.8E‐04  12  3050  71%  3.5E‐01  2.3E‐01  6.2E‐06

miR‐374ab‐5p  9.5E‐01  9.9E‐01  1.3E‐04  11  5253  90%  3.8E‐01  5.7E‐01  1.3E‐06

miR‐28‐5p/708‐5p/3139  9.9E‐01  1.0E+00 1.3E‐04  10  2794  64%  5.6E‐01  7.7E‐01  1.3E‐06

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 34: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

34

© 2016 American Medical Association. All rights reserved.

eTable 6: Validation of top-10 gene sets using TargetMiner target predictions. In order to match these algorithms to the TargetScan miRNA families, the union of predictions for the individual miRNA members in the TargetScan family was taken. The three different thresholds represent the different significance thresholds for the index-SNP used in clumping. Top-1% of SNPs have p-values less than 3.420 x 10-4, top 5% of SNPs have p-values less than 1.096 x 10-2. “OSF = Original set found” indicates the fraction of the TargetScan predictions also predicted by MiRanda. ”Corrected” are the p-values after correcting for multiple testing, whereas “Raw” are the unadjusted p-values. For a detailed description of the “Score” column please refer to the main text.   TargetMiner top‐10 validation (R2=0.6, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

p‐value @top5%

 Score 

 Size 

 OSF 

 p‐value @1E‐5 

Raw p‐value @top1% 

p‐value @top5%

miR‐7‐5p  1.7E‐02  3.1E‐04  6.8E‐04  380  4385  62%  2.4E‐03  2.8E‐05  7.5E‐05

miR‐34ac‐5p/449b‐5p/449a  1.5E‐02  3.5E‐02  1.0E‐02  127  4077  67%  1.9E‐03  4.7E‐03  1.2E‐03

miR‐28‐5p/708‐5p/3139  1.8E‐01  1.3E‐02  2.8E‐02  67  3571  57%  2.9E‐02  1.6E‐03  3.5E‐03

miR‐485‐5p  1.7E‐01  5.2E‐02  1.1E‐01  34  1206  40%  2.9E‐02  6.9E‐03  1.7E‐02

miR‐9‐5p  7.8E‐01  2.7E‐03  7.0E‐01  12  1255  30%  2.5E‐01  3.2E‐04  2.0E‐01

miR‐137  6.0E‐01  1.7E‐02  9.2E‐01  8  713  23%  1.5E‐01  2.1E‐03  4.2E‐01

miR‐1/206/613  6.3E‐01  4.9E‐02  7.6E‐01  7  1001  35%  1.6E‐01  6.5E‐03  2.4E‐01

miR‐101‐3p  9.7E‐01  1.5E‐01  3.6E‐01  6  1984  48%  5.4E‐01  2.4E‐02  7.0E‐02

miR‐374ab‐5p  7.0E‐01  1.3E‐01  9.8E‐01  4  600  23%  2.0E‐01  1.8E‐02  6.1E‐01

miR‐200bc‐3p/429  9.5E‐01  2.2E‐01  9.8E‐01  3  274  12%  4.9E‐01  3.6E‐02  5.8E‐01

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 35: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

35

© 2016 American Medical Association. All rights reserved.

eTable 7: Results for the top-10 gene sets filtered with CLIP-data from 58 ex-periments. miRNA target sites were defined to be supported by CLIP data if the seed-region of the target sites were completely within a CLIP peak. The three different thresholds represent the different significance thresholds for the index-SNP used in clumping. Top-1% of SNPs have p-values less than 3.420 x 10-4, top 5% of SNPs have p-values less than 1.096 x 10-2. “OSF = Original set found” indicates the fraction of the TargetScan predictions also predicted by MiRanda. ”Corrected” are the p-values after correcting for multiple testing, whereas “Raw” are the unadjusted p-values. For a detailed description of the “Score” column please refer to the main text.   TargetScan top‐10 CLIP‐filtered (R2=0.6, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1%

 p‐value @top5%

 Score 

 Size 

 OSF 

 p‐value @1E‐5 

Raw p‐value @top1% 

 p‐value @top5%

miR‐485‐5p  2.9E‐01  4.5E‐02  2.7E‐03  63  120  32%  4.2E‐02  5.7E‐03  3.0E‐04

miR‐7‐5p  3.2E‐01  1.0E‐02  2.9E‐02  54  256  57%  4.8E‐02  1.3E‐03  3.4E‐03

miR‐9‐5p  8.4E‐02  4.9E‐02  7.1E‐02  51  539  44%  1.1E‐02  6.1E‐03  8.8E‐03

miR‐101‐3p  5.2E‐01  3.0E‐02  5.3E‐02  29  585  74%  9.2E‐02  3.7E‐03  6.7E‐03

miR‐1/206/613  6.4E‐01  2.9E‐01  1.5E‐02  17  411  52%  1.4E‐01  4.2E‐02  1.7E‐03

miR‐34ac‐5p/449b‐5p/449a  6.7E‐01  3.5E‐02  1.9E‐01  16  305  47%  1.5E‐01  4.3E‐03  2.6E‐02

miR‐28‐5p/708‐5p/3139  2.5E‐01  1.9E‐01  3.2E‐01  14  93  46%  4.0E‐02  2.6E‐02  4.5E‐02

miR‐137  9.1E‐01  5.3E‐02  2.8E‐01  10  606  54%  3.0E‐01  6.9E‐03  4.1E‐02

miR‐200bc‐3p/429  9.8E‐01  1.4E‐01  5.7E‐01  5  572  55%  4.6E‐01  1.8E‐02  1.0E‐01

miR‐374ab‐5p  9.9E‐01  4.2E‐01  6.3E‐01  3  402  60%  4.8E‐01  6.7E‐02  1.2E‐01

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 36: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

36

© 2016 American Medical Association. All rights reserved.

eTable 8: Signal for the top-10 gene sets in three unrelated traits. The top 10 conserved miRNA gene sets (Table 1), were tested in three well powered alternative GWAS traits10-12 to assess if the signal was specific or a general finding common to many traits. The three different thresholds represent the different significance thresholds for the index-SNP used in clumping. “Size” indicates the number of genes in the gene set. “Size” indicates the number of genes in the gene set. “Brain” indicates the percentage of the test genes expressed in the brain. ”Corrected” are the p-values after correcting for multiple testing, whereas “Raw” are the unadjusted p-values. For a detailed description of the “Score” column please refer to the main text.  

Signal in other traits (R2=0.6, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1% 

p‐value @top5%

 Score 

 Size 

 Brain 

p‐value @1E‐5 

Raw p‐value @top1% 

p‐value @top5% 

Age at menarche                  

miR‐485‐5p  2.1E‐01  9.5E‐01  9.1E‐01  3  379  73%  3.3E‐02  3.4E‐01  2.9E‐01 

miR‐101‐3p  5.7E‐01  7.0E‐01  1.0E+00  2  803  78%  1.2E‐01  1.5E‐01  1.0E+00 

miR‐200bc‐3p/429  5.6E‐01  9.5E‐01  1.0E+00  2  1057  77%  1.1E‐01  3.4E‐01  9.9E‐01 

miR‐1/206/613  5.4E‐01  1.0E+00  1.0E+00  2  787  76%  1.0E‐01  6.3E‐01  9.7E‐01 

miR‐374ab‐5p  1.0E+00  6.3E‐01  1.0E+00  1  678  71%  9.1E‐01  1.3E‐01  9.5E‐01 

miR‐9‐5p  7.2E‐01  9.1E‐01  1.0E+00  1  1237  75%  1.7E‐01  2.9E‐01  1.0E+00 

miR‐34ac‐5p/449b‐5p/449a  6.6E‐01  1.0E+00  1.0E+00  1  655  78%  1.5E‐01  7.8E‐01  1.0E+00 

miR‐7‐5p  8.6E‐01  1.0E+00  1.0E+00  1  444  73%  2.5E‐01  6.1E‐01  6.4E‐01 

miR‐28‐5p/708‐5p/3139  9.4E‐01  9.7E‐01  1.0E+00  1  209  80%  3.4E‐01  4.0E‐01  7.4E‐01 

miR‐137  9.9E‐01  1.0E+00  1.0E+00  1  1144  77%  5.4E‐01  8.7E‐01  1.0E+00 

Crohn’s disease                  

miR‐28‐5p/708‐5p/3139  8.3E‐01  7.8E‐01  1.0E+00  1  209  80%  2.4E‐01  1.8E‐01  8.0E‐01 

miR‐137  8.5E‐01  1.0E+00  1.0E+00  1  1144  77%  2.5E‐01  7.4E‐01  1.0E+00 

miR‐101‐3p  9.5E‐01  9.8E‐01  1.0E+00  1  803  78%  3.8E‐01  4.2E‐01  1.0E+00 

miR‐1/206/613  1.0E+00  1.0E+00  9.8E‐01  1  787  76%  7.0E‐01  9.1E‐01  4.2E‐01 

miR‐7‐5p  1.0E+00  1.0E+00  1.0E+00  1  444  73%  6.2E‐01  5.9E‐01  8.9E‐01 

miR‐485‐5p  1.0E+00  1.0E+00  1.0E+00  1  379  73%  5.9E‐01  6.9E‐01  8.7E‐01 

miR‐374ab‐5p  1.0E+00  1.0E+00  1.0E+00  1  678  71%  9.0E‐01  6.4E‐01  9.8E‐01 

miR‐9‐5p  1.0E+00  1.0E+00  1.0E+00  1  1237  75%  8.2E‐01  6.9E‐01  9.9E‐01 

miR‐34ac‐5p/449b‐5p/449a  1.0E+00  1.0E+00  1.0E+00  1  655  78%  7.9E‐01  7.5E‐01  9.8E‐01 

miR‐200bc‐3p/429  1.0E+00  1.0E+00  1.0E+00  1  1057  77%  8.8E‐01  9.5E‐01  1.0E+00 

Height                  

miR‐1/206/613  6.6E‐02  9.6E‐01  1.5E‐01  11  787  76%  7.9E‐03  3.6E‐01  1.9E‐02 

miR‐485‐5p  3.4E‐01  9.2E‐01  4.6E‐01  4  379  73%  5.0E‐02  3.0E‐01  7.4E‐02 

miR‐7‐5p  8.8E‐01  9.9E‐01  2.4E‐01  3  444  73%  2.6E‐01  5.1E‐01  3.2E‐02 

miR‐9‐5p  9.7E‐01  4.3E‐01  9.3E‐01  2  1237  75%  3.9E‐01  7.1E‐02  3.2E‐01 

miR‐200bc‐3p/429  8.5E‐01  9.7E‐01  5.6E‐01  2  1057  77%  2.3E‐01  4.0E‐01  1.0E‐01 

miR‐101‐3p  6.2E‐01  9.9E‐01  9.5E‐01  2  803  78%  1.2E‐01  5.1E‐01  3.6E‐01 

miR‐28‐5p/708‐5p/3139  1.0E+00  9.2E‐01  8.4E‐01  1  209  80%  7.7E‐01  3.0E‐01  2.2E‐01 

miR‐34ac‐5p/449b‐5p/449a  1.0E+00  1.0E+00  9.9E‐01  1  655  78%  7.9E‐01  9.5E‐01  4.8E‐01 

miR‐374ab‐5p  1.0E+00  1.0E+00  9.9E‐01  1  678  71%  9.5E‐01  9.7E‐01  5.2E‐01 

miR‐137  1.0E+00  1.0E+00  1.0E+00  1  1144  77%  9.8E‐01  1.0E+00  9.8E‐01 

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 37: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

37

© 2016 American Medical Association. All rights reserved.

eTable 9: Functional annotation of genes regulated by the top-10 miRNA – bio-logical processes. The following table contains a DAVID analysis showing enrichment of GO biological processes for genes targeted by two or more of the top ten conserved miRNA (Table 1). Only the hundred most significant processes are shown. “FE” is fold enrichment. The list of all genes in the categories can be obtained from the authors by request.

Top 10 miRNA GO Biological Process  Count  %  P‐value List Total 

Pop Hits 

Pop Total  FE 

Benja‐mini 

regulation of transcription 388 22 2.2E‐22 1303 2601  13528  1.5  7.4E‐19regulation of transcription from RNA polymerase II promoter 150 9 4.0E‐20 1303 727  13528  2.1  6.6E‐17positive regulation of transcription  123  7  1.5E‐18  1303  564  13528  2.3  1.7E‐15positive regulation of transcription, DNA‐dependent  110  6  1.7E‐18  1303  477  13528  2.4  1.4E‐15positive regulation of RNA metabolic process  110  6  3.3E‐18  1303  481  13528  2.4  2.2E‐15positive regulation of gene expression  124 7 6.7E‐18 1303 581  13528  2.2  3.7E‐15positive regulation of nucleobase, nucleoside, nucleotide and nu‐cleic acid metabolic process 

130 8 7.6E‐18 1303 624  13528  2.2  3.6E‐15

positive regulation of macromolecule biosynthetic process  133  8  2.4E‐17  1303  654  13528  2.1  1.0E‐14positive regulation of nitrogen compound metabolic process  130  8  2.2E‐16  1303  644  13528  2.1  8.2E‐14positive regulation of biosynthetic process  136  8  4.9E‐16  1303  695  13528  2.0  1.5E‐13positive regulation of cellular biosynthetic process 134 8 8.0E‐16 1303 685  13528  2.0  2.3E‐13transcription  307 18 1.4E‐15 1303 2101  13528  1.5  4.0E‐13negative regulation of gene expression  108 6 1.4E‐15 1303 504  13528  2.2  3.7E‐13negative regulation of transcription  101  6  2.1E‐15  1303  459  13528  2.3  5.0E‐13regulation of RNA metabolic process  270  16  1.4E‐14  1303  1813  13528  1.5  3.0E‐12positive regulation of transcription from RNA polymerase II pro‐moter 

85  5  4.2E‐14  1303  371  13528  2.4  8.7E‐12

positive regulation of macromolecule metabolic process 152 9 4.5E‐14 1303 857  13528  1.8  8.8E‐12negative regulation of macromolecule biosynthetic process 110 6 6.7E‐14 1303 547  13528  2.1  1.2E‐11regulation of transcription, DNA‐dependent  260  15  3.2E‐13  1303  1773  13528  1.5  5.5E‐11negative regulation of cellular biosynthetic process  110  6  3.8E‐13  1303  561  13528  2.0  6.3E‐11negative regulation of biosynthetic process  111  6  6.8E‐13  1303  573  13528  2.0  1.1E‐10protein amino acid phosphorylation  123 7 1.2E‐12 1303 667  13528  1.9  1.8E‐10negative regulation of transcription, DNA‐dependent 79 5 2.1E‐12 1303 356  13528  2.3  3.0E‐10negative regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 

101 6 2.7E‐12 1303 512  13528  2.0  3.8E‐10

negative regulation of RNA metabolic process  79  5  5.1E‐12  1303  362  13528  2.3  6.8E‐10negative regulation of nitrogen compound metabolic process  101  6  6.4E‐12  1303  519  13528  2.0  8.1E‐10phosphorus metabolic process  157 9 4.2E‐11 1303 973  13528  1.7  5.1E‐09phosphate metabolic process  157 9 4.2E‐11 1303 973  13528  1.7  5.1E‐09neuron development  72 4 1.9E‐10 1303 339  13528  2.2  2.2E‐08enzyme linked receptor protein signaling pathway  72  4  2.8E‐10  1303  342  13528  2.2  3.2E‐08cell morphogenesis  73  4  7.1E‐10  1303  356  13528  2.1  7.8E‐08negative regulation of macromolecule metabolic process  123  7  7.4E‐10  1303  734  13528  1.7  7.9E‐08cell morphogenesis involved in differentiation 56 3 1.3E‐09 1303 244  13528  2.4  1.4E‐07cell motion  88 5 2.2E‐09 1303 475  13528  1.9  2.2E‐07neuron differentiation  83 5 2.3E‐09 1303 438  13528  2.0  2.2E‐07cell migration  60  3  2.9E‐09  1303  276  13528  2.3  2.7E‐07cell projection organization  73  4  3.2E‐09  1303  368  13528  2.1  3.0E‐07negative regulation of transcription from RNA polymerase II pro‐moter 

58  3  4.9E‐09  1303  266  13528  2.3  4.3E‐07

neuron projection morphogenesis  50 3 5.2E‐09 1303 213  13528  2.4  4.5E‐07tube development  51 3 5.6E‐09 1303 220  13528  2.4  4.7E‐07chordate embryonic development  67  4  6.7E‐09  1303  331  13528  2.1  5.5E‐07forebrain development  40  2  7.7E‐09  1303  152  13528  2.7  6.2E‐07cell morphogenesis involved in neuron differentiation  49  3  7.8E‐09  1303  209  13528  2.4  6.2E‐07neuron projection development  56 3 8.2E‐09 1303 256  13528  2.3  6.3E‐07embryonic development ending in birth or egg hatching 67 4 9.7E‐09 1303 334  13528  2.1  7.3E‐07phosphorylation  127 7 1.2E‐08 1303 800  13528  1.6  8.5E‐07axonogenesis  46  3  1.4E‐08  1303  193  13528  2.5  1.0E‐06in utero embryonic development  43  2  2.1E‐08  1303  176  13528  2.5  1.5E‐06cell junction organization  22  1  2.7E‐08  1303  57  13528  4.0  1.9E‐06cell motility  62  4  2.9E‐08  1303  307  13528  2.1  1.9E‐06

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 38: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

38

© 2016 American Medical Association. All rights reserved.

Top 10 miRNA GO Biological Process  Count  %  P‐value List Total 

Pop Hits 

Pop Total  FE 

Benja‐mini 

localization of cell  62 4 2.9E‐08 1303 307  13528  2.1  1.9E‐06cell projection morphogenesis  53  3  3.2E‐08  1303  245  13528  2.2  2.1E‐06cellular component morphogenesis  74  4  3.8E‐08  1303  397  13528  1.9  2.5E‐06cell part morphogenesis  54  3  5.7E‐08  1303  256  13528  2.2  3.6E‐06transmembrane receptor protein tyrosine kinase signaling pathway 49 3 7.9E‐08 1303 224  13528  2.3  5.0E‐06intracellular signaling cascade  177 10 9.1E‐08 1303 1256  13528  1.5  5.6E‐06heart development  46 3 4.1E‐07 1303 215  13528  2.2  2.5E‐05respiratory system development  29  2  7.8E‐07  1303  108  13528  2.8  4.6E‐05chromatin modification  53  3  1.3E‐06  1303  274  13528  2.0  7.6E‐05cell‐cell junction organization  15  1  1.8E‐06  1303  35  13528  4.4  1.0E‐04embryonic morphogenesis  57 3 1.9E‐06 1303 307  13528  1.9  1.1E‐04camera‐type eye development  28 2 2.2E‐06 1303 107  13528  2.7  1.2E‐04pattern specification process  51 3 3.1E‐06 1303 267  13528  2.0  1.7E‐04palate development  14  1  3.5E‐06  1303  32  13528  4.5  1.8E‐04regulation of cell migration  37  2  3.8E‐06  1303  169  13528  2.3  2.0E‐04regulation of cell proliferation  115  7  4.5E‐06  1303  787  13528  1.5  2.3E‐04protein kinase cascade  64 4 4.9E‐06 1303 370  13528  1.8  2.5E‐04regulation of cell motion  40 2 5.8E‐06 1303 193  13528  2.2  2.9E‐04proteolysis involved in cellular protein catabolic process 92 5 6.9E‐06 1303 600  13528  1.6  3.4E‐04cellular protein catabolic process  92  5  8.4E‐06  1303  603  13528  1.6  4.1E‐04regulation of phosphate metabolic process  77  4  1.3E‐05  1303  485  13528  1.6  6.0E‐04regulation of phosphorus metabolic process  77  4  1.3E‐05  1303  485  13528  1.6  6.0E‐04regulation of locomotion  39 2 1.3E‐05 1303 192  13528  2.1  6.0E‐04cell junction assembly  15 1 1.6E‐05 1303 41  13528  3.8  7.4E‐04lung development  25 1 1.6E‐05 1303 99  13528  2.6  7.5E‐04positive regulation of kinase activity  44  3  1.7E‐05  1303  231  13528  2.0  7.9E‐04eye development  30  2  1.7E‐05  1303  132  13528  2.4  7.8E‐04modification‐dependent protein catabolic process  87  5  2.0E‐05  1303  574  13528  1.6  8.7E‐04modification‐dependent macromolecule catabolic process 87 5 2.0E‐05 1303 574  13528  1.6  8.7E‐04positive regulation of transferase activity  45 3 2.1E‐05 1303 240  13528  1.9  9.0E‐04axon guidance  26 2 2.2E‐05 1303 107  13528  2.5  9.3E‐04insulin receptor signaling pathway  14  1  2.2E‐05  1303  37  13528  3.9  9.5E‐04regulation of kinase activity  60  3  2.5E‐05  1303  357  13528  1.7  1.0E‐03MAPKKK cascade  37  2  2.7E‐05  1303  184  13528  2.1  1.1E‐03respiratory tube development  25 1 2.8E‐05 1303 102  13528  2.5  1.1E‐03protein catabolic process  92 5 2.9E‐05 1303 622  13528  1.5  1.1E‐03response to hormone stimulus  61 4 2.9E‐05 1303 367  13528  1.7  1.2E‐03vasculature development  46  3  3.0E‐05  1303  251  13528  1.9  1.2E‐03appendage development  25  1  3.3E‐05  1303  103  13528  2.5  1.3E‐03limb development  25  1  3.3E‐05  1303  103  13528  2.5  1.3E‐03regulation of protein kinase activity  58 3 3.4E‐05 1303 345  13528  1.7  1.3E‐03regulation of phosphorylation  73 4 3.4E‐05 1303 466  13528  1.6  1.3E‐03blood vessel development  45 3 3.5E‐05 1303 245  13528  1.9  1.3E‐03positive regulation of protein kinase activity  42  2  3.6E‐05  1303  223  13528  2.0  1.4E‐03chromatin organization  62  4  3.7E‐05  1303  378  13528  1.7  1.4E‐03BMP signaling pathway  15  1  3.9E‐05  1303  44  13528  3.5  1.4E‐03regulation of transferase activity  61 4 4.4E‐05 1303 372  13528  1.7  1.6E‐03cell fate commitment  30 2 4.8E‐05 1303 139  13528  2.2  1.7E‐03appendage morphogenesis  24 1 5.0E‐05 1303 99  13528  2.5  1.8E‐03limb morphogenesis  24  1  5.0E‐05  1303  99  13528  2.5  1.8E‐03

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 39: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

39

© 2016 American Medical Association. All rights reserved.

eTable 10: Functional annotation of genes regulated by the top-10 miRNA – annotation clusters. The following table contains a DAVID analysis showing enrichment of functional clusters for genes targeted by two or more of the top ten conserved miRNA (Table 1). Only the ten most significant annotation clusters are shown. “FE” is fold enrichment. The list of all genes in the categories can be obtained from the authors by request. Top 10 miRNA Annotation clusters  Score/Term  Count  %  P‐value 

List Total 

Pop Hits 

Pop Total  FE 

Benja‐mini 

Annotation Cluster 1  Enrichment Score: 15.9     GOTERM_BP_FAT  regulation of transcription 388 23 2.2E‐22 1303  2601  13528  1.6 7.4E‐19GOTERM_MF_FAT  transcription regulator activity 267 16 3.5E‐22 1309  1512  12983  1.8 3.6E‐19SP_PIR_KEYWORDS  transcription regulation  305 18 1.9E‐21 1722  2026  19235  1.7 3.3E‐19SP_PIR_KEYWORDS  nucleus  543 31 4.1E‐21 1722  4283  19235  1.4 5.4E‐19SP_PIR_KEYWORDS  Transcription  306 18 2.8E‐20 1722  2071  19235  1.7 2.9E‐18GOTERM_MF_FAT  transcription factor activity 179 10 4.3E‐16 1309  975  12983  1.8 2.3E‐13GOTERM_BP_FAT  transcription  307 18 1.4E‐15 1303  2101  13528  1.5 4.0E‐13GOTERM_BP_FAT  regulation of RNA metabolic process 270 16 1.4E‐14 1303  1813  13528  1.6 3.0E‐12GOTERM_BP_FAT  regulation of transcription, DNA‐dependent 260 15 3.2E‐13 1303  1773  13528  1.5 5.5E‐11SP_PIR_KEYWORDS  dna‐binding  254 15 3.1E‐12 1722  1868  19235  1.5 1.5E‐10GOTERM_MF_FAT  sequence‐specific DNA binding 115 7 2.1E‐11 1309  607  12983  1.9 7.2E‐09GOTERM_MF_FAT  DNA binding  314 18 5.8E‐09 1309  2331  12983  1.3 1.0E‐06       Annotation Cluster 2  Enrichment Score: 15.6     GOTERM_MF_FAT  transcription regulator activity 267 16 3.5E‐22 1309  1512  12983  1.8 3.6E‐19GOTERM_BP_FAT  regulation of transcription from RNA polymerase II promoter150 9 4.0E‐20 1303  727  13528  2.1 6.6E‐17SP_PIR_KEYWORDS  activator  112 7 1.4E‐18 1722  520  19235  2.4 1.2E‐16GOTERM_BP_FAT  positive regulation of transcription 123 7 1.5E‐18 1303  564  13528  2.3 1.7E‐15GOTERM_BP_FAT  positive regulation of transcription, DNA‐dependent 110 6 1.7E‐18 1303  477  13528  2.4 1.4E‐15GOTERM_BP_FAT  positive regulation of RNA metabolic process 110 6 3.3E‐18 1303  481  13528  2.4 2.2E‐15GOTERM_BP_FAT  positive regulation of gene expression 124 7 6.7E‐18 1303  581  13528  2.2 3.7E‐15GOTERM_BP_FAT  positive regulation of nucleobase, nucleoside, nucleotide 

and nucleic acid metabolic process 130 8 7.6E‐18 1303  624  13528  2.2 3.6E‐15

GOTERM_BP_FAT  positive regulation of macromolecule biosynthetic process 133 8 2.4E‐17 1303  654  13528  2.1 1.0E‐14GOTERM_BP_FAT  positive regulation of nitrogen compound metabolic process 130 8 2.2E‐16 1303  644  13528  2.1 8.2E‐14GOTERM_BP_FAT  positive regulation of biosynthetic process 136 8 4.9E‐16 1303  695  13528  2.0 1.5E‐13GOTERM_BP_FAT  positive regulation of cellular biosynthetic process 134 8 8.0E‐16 1303  685  13528  2.0 2.3E‐13GOTERM_BP_FAT  regulation of RNA metabolic process 270 16 1.4E‐14 1303  1813  13528  1.6 3.0E‐12GOTERM_BP_FAT  positive regulation of transcription from RNA polymerase II 

promoter 85 5 4.2E‐14 1303  371  13528  2.4 8.7E‐12

GOTERM_BP_FAT  positive regulation of macromolecule metabolic process 152 9 4.5E‐14 1303  857  13528  1.8 8.8E‐12GOTERM_BP_FAT  regulation of transcription, DNA‐dependent 260 15 3.2E‐13 1303  1773  13528  1.5 5.5E‐11SP_PIR_KEYWORDS  dna‐binding  254 15 3.1E‐12 1722  1868  19235  1.5 1.5E‐10GOTERM_MF_FAT  transcription activator activity 80 5 8.9E‐09 1309  410  12983  1.9 1.0E‐06       Annotation Cluster 3  Enrichment Score: 12.3     GOTERM_BP_FAT  regulation of transcription from RNA polymerase II promoter150 9 4.0E‐20 1303  727  13528  2.1 6.6E‐17GOTERM_BP_FAT  negative regulation of gene expression 108 6 1.4E‐15 1303  504  13528  2.2 3.7E‐13GOTERM_BP_FAT  negative regulation of transcription 101 6 2.1E‐15 1303  459  13528  2.3 5.0E‐13GOTERM_BP_FAT  negative regulation of macromolecule biosynthetic process 110 6 6.7E‐14 1303  547  13528  2.1 1.2E‐11GOTERM_BP_FAT  negative regulation of cellular biosynthetic process 110 6 3.8E‐13 1303  561  13528  2.0 6.3E‐11GOTERM_BP_FAT  negative regulation of biosynthetic process 111 6 6.8E‐13 1303  573  13528  2.0 1.1E‐10GOTERM_BP_FAT  negative regulation of transcription, DNA‐dependent 79 5 2.1E‐12 1303  356  13528  2.3 3.0E‐10GOTERM_BP_FAT  negative regulation of nucleobase, nucleoside, nucleotide 

and nucleic acid metabolic process 101 6 2.7E‐12 1303  512  13528  2.1 3.8E‐10

GOTERM_BP_FAT  negative regulation of RNA metabolic process 79 5 5.1E‐12 1303  362  13528  2.3 6.8E‐10GOTERM_BP_FAT  negative regulation of nitrogen compound metabolic pro‐

cess 101 6 6.4E‐12 1303  519  13528  2.0 8.1E‐10

GOTERM_MF_FAT  transcription repressor activity 72 4 4.9E‐11 1309  316  12983  2.3 1.3E‐08GOTERM_BP_FAT  negative regulation of macromolecule metabolic process 123 7 7.5E‐10 1303  734  13528  1.7 8.0E‐08GOTERM_BP_FAT  negative regulation of transcription from RNA polymerase II 

promoter 58 3 4.9E‐09 1303  266  13528  2.3 4.4E‐07

       Annotation Cluster 4  Enrichment Score: 8.07     GOTERM_BP_FAT  cell motion  88 5 2.2E‐09 1303  475  13528  1.9 2.2E‐07GOTERM_BP_FAT  cell migration  60 4 2.9E‐09 1303  276  13528  2.3 2.7E‐07GOTERM_BP_FAT  localization of cell  62 4 2.9E‐08 1303  307  13528  2.1 1.9E‐06GOTERM_BP_FAT  cell motility  62 4 2.9E‐08 1303  307  13528  2.1 1.9E‐06       

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 40: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

40

© 2016 American Medical Association. All rights reserved.

Top 10 miRNA Annotation clusters  Score/Term  Count  %  P‐value 

List Total 

Pop Hits 

Pop Total  FE 

Benja‐mini 

Annotation Cluster 5  Enrichment Score: 8.00     GOTERM_BP_FAT  neuron development  72 4 1.9E‐10 1303  339  13528  2.2 2.2E‐08GOTERM_BP_FAT  cell morphogenesis  73 4 7.1E‐10 1303  356  13528  2.1 7.8E‐08GOTERM_BP_FAT  cell morphogenesis involved in differentiation 56 3 1.3E‐09 1303  244  13528  2.4 1.4E‐07GOTERM_BP_FAT  neuron differentiation  83 5 2.3E‐09 1303  438  13528  2.0 2.2E‐07GOTERM_BP_FAT  cell projection organization 73 4 3.2E‐09 1303  368  13528  2.1 3.0E‐07GOTERM_BP_FAT  neuron projection morphogenesis 50 3 5.2E‐09 1303  213  13528  2.4 4.5E‐07GOTERM_BP_FAT  cell morphogenesis involved in neuron differentiation 49 3 7.8E‐09 1303  209  13528  2.4 6.2E‐07GOTERM_BP_FAT  neuron projection development 56 3 8.2E‐09 1303  256  13528  2.3 6.3E‐07GOTERM_BP_FAT  axonogenesis  46 3 1.4E‐08 1303  193  13528  2.5 1.0E‐06GOTERM_BP_FAT  cell projection morphogenesis 53 3 3.2E‐08 1303  245  13528  2.3 2.1E‐06GOTERM_BP_FAT  cellular component morphogenesis 74 4 3.8E‐08 1303  397  13528  1.9 2.5E‐06GOTERM_BP_FAT  cell part morphogenesis  54 3 5.7E‐08 1303  256  13528  2.2 3.6E‐06GOTERM_BP_FAT  axon guidance  26 2 2.2E‐05 1303  107  13528  2.5 9.3E‐04       Annotation Cluster 6  Enrichment Score: 7.45     GOTERM_CC_FAT  synapse  69 4 3.2E‐10 1114  355  12782  2.2 1.7E‐07GOTERM_CC_FAT  cell junction  88 5 1.2E‐09 1114  518  12782  2.0 3.2E‐07SP_PIR_KEYWORDS  cell junction  67 4 7.4E‐07 1722  399  19235  1.9 1.6E‐05SP_PIR_KEYWORDS  synapse  41 2 5.2E‐06 1722  213  19235  2.2 1.1E‐04       Annotation Cluster 7  Enrichment Score: 7.4     GOTERM_BP_FAT  chordate embryonic development 67 4 6.7E‐09 1303  331  13528  2.1 5.5E‐07GOTERM_BP_FAT  embryonic development ending in birth or egg hatching 67 4 9.7E‐09 1303  334  13528  2.1 7.3E‐07GOTERM_BP_FAT  in utero embryonic development 43 3 2.1E‐08 1303  176  13528  2.5 1.5E‐06GOTERM_BP_FAT  embryonic morphogenesis 57 3 1.9E‐06 1303  307  13528  1.9 1.1E‐04       Annotation Cluster 8  Enrichment Score: 7.4     SP_PIR_KEYWORDS  zinc‐finger  248 14 7.7E‐15 1722  1718  19235  1.6 5.1E‐13SP_PIR_KEYWORDS  metal‐binding  370 21 2.9E‐12 1722  2972  19235  1.4 1.5E‐10SP_PIR_KEYWORDS  zinc  288 17 3.4E‐12 1722  2189  19235  1.5 1.5E‐10GOTERM_MF_FAT  zinc ion binding  295 17 3.3E‐06 1309  2311  12983  1.3 2.6E‐04GOTERM_MF_FAT  metal ion binding  485 28 1.9E‐05 1309  4140  12983  1.2 1.3E‐03GOTERM_MF_FAT  cation binding  485 28 5.7E‐05 1309  4179  12983  1.2 3.5E‐03GOTERM_MF_FAT  ion binding  490 28 8.3E‐05 1309  4241  12983  1.2 4.1E‐03GOTERM_MF_FAT  transition metal ion binding 331 19 3.4E‐04 1309  2785  12983  1.2 1.5E‐02       Annotation Cluster 9  Enrichment Score: 6.77     GOTERM_BP_FAT  protein amino acid phosphorylation 123 7 1.2E‐12 1303  667  13528  1.9 1.8E‐10SP_PIR_KEYWORDS  serine/threonine‐protein kinase 78 5 6.9E‐12 1722  381  19235  2.3 2.8E‐10INTERPRO  Serine/threonine protein kinase, active site 76 4 1.4E‐11 1574  354  16659  2.3 2.5E‐08SP_PIR_KEYWORDS  kinase  116 7 2.9E‐11 1722  688  19235  1.9 1.1E‐09GOTERM_BP_FAT  phosphate metabolic process 157 9 4.2E‐11 1303  973  13528  1.7 5.2E‐09GOTERM_BP_FAT  phosphorus metabolic process 157 9 4.2E‐11 1303  973  13528  1.7 5.2E‐09INTERPRO  Protein kinase, ATP binding site 89 5 4.4E‐11 1574  455  16659  2.1 3.8E‐08INTERPRO  Serine/threonine protein kinase‐related 75 4 7.7E‐11 1574  359  16659  2.2 4.4E‐08INTERPRO  Serine/threonine protein kinase 60 4 1.1E‐10 1574  259  16659  2.5 4.8E‐08UP_SEQ_FEATURE  domain:Protein kinase  86 5 2.9E‐10 1722  469  19113  2.0 1.4E‐07INTERPRO  Protein kinase, core  89 5 4.9E‐10 1574  476  16659  2.0 1.7E‐07UP_SEQ_FEATURE  binding site:ATP  93 5 1.8E‐09 1722  542  19113  1.9 7.2E‐07GOTERM_MF_FAT  protein kinase activity  107 6 7.0E‐09 1309  606  12983  1.8 9.1E‐07GOTERM_BP_FAT  phosphorylation  127 7 1.2E‐08 1303  800  13528  1.7 8.5E‐07GOTERM_MF_FAT  protein serine/threonine kinase activity 81 5 3.6E‐08 1309  430  12983  1.9 3.8E‐06SP_PIR_KEYWORDS  atp‐binding  175 10 1.1E‐07 1722  1326  19235  1.5 3.1E‐06SP_PIR_KEYWORDS  nucleotide‐binding  212 12 1.9E‐07 1722  1686  19235  1.4 4.8E‐06SP_PIR_KEYWORDS  transferase  180 10 3.1E‐07 1722  1394  19235  1.4 7.6E‐06SMART  S_TKc 60 4 6.8E‐07 1095  259  9079  1.9 2.4E‐04UP_SEQ_FEATURE  nucleotide phosphate‐binding region:ATP 130 8 2.3E‐06 1722  962  19113  1.5 5.5E‐04UP_SEQ_FEATURE  active site:Proton acceptor 92 5 2.3E‐05 1722  658  19113  1.6 4.2E‐03GOTERM_MF_FAT  nucleotide binding  270 16 6.8E‐04 1309  2245  12983  1.2 2.4E‐02GOTERM_MF_FAT  adenyl ribonucleotide binding 183 11 3.1E‐03 1309  1497  12983  1.2 8.5E‐02GOTERM_MF_FAT  ATP binding  180 10 3.9E‐03 1309  1477  12983  1.2 9.4E‐02GOTERM_MF_FAT  purine ribonucleotide binding 216 13 7.8E‐03 1309  1836  12983  1.2 1.5E‐01GOTERM_MF_FAT  ribonucleotide binding  216 13 7.8E‐03 1309  1836  12983  1.2 1.5E‐01GOTERM_MF_FAT  adenyl nucleotide binding  187 11 9.7E‐03 1309  1577  12983  1.2 1.6E‐01GOTERM_MF_FAT  purine nucleoside binding  189 11 1.1E‐02 1309  1601  12983  1.2 1.7E‐01GOTERM_MF_FAT  nucleoside binding  189 11 1.5E‐02 1309  1612  12983  1.2 2.0E‐01GOTERM_MF_FAT  purine nucleotide binding  220 13 1.9E‐02 1309  1918  12983  1.1 2.5E‐01       

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 41: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

41

© 2016 American Medical Association. All rights reserved.

Top 10 miRNA Annotation clusters  Score/Term  Count  %  P‐value 

List Total 

Pop Hits 

Pop Total  FE 

Benja‐mini 

Annotation Cluster 10  Enrichment Score: 5.93     GOTERM_BP_FAT  tube development  51 3 5.6E‐09 1303  220  13528  2.4 4.7E‐07GOTERM_BP_FAT  respiratory system development 29 2 7.8E‐07 1303  108  13528  2.8 4.6E‐05GOTERM_BP_FAT  lung development  25 1 1.6E‐05 1303  99  13528  2.6 7.5E‐04GOTERM_BP_FAT  respiratory tube development 25 1 2.8E‐05 1303  102  13528  2.5 1.1E‐03

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 42: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

42

© 2016 American Medical Association. All rights reserved.

eTable 11: The top 50 most schizophrenia-associated genes targeted by miR-9-5p. ”p-value” is the p-value of association of the most strongly associated variant located within the boundaries of the gene, and ”SNP” is the name of this variant. Note that these p-values are without taking the PGC2 replication into account and do not refer to the clump definition from PGC2 (see above). The list therefore might differ with regards to the published p-values from PGC2 for these genes. Entrez  Gene  p‐value  SNP  Description  54805  CNNM2  3.64E‐16  rs7913682  cyclin M2 

23368  PPP1R13B  5.61E‐13  rs4906364  protein phosphatase 1, regulatory subunit 13B 

5045  FURIN  2.30E‐12  rs4702  furin (paired basic amino acid cleaving enzyme) 

57605  PITPNM2  1.63E‐11  rs12425850 phosphatidylinositol transfer protein, membrane‐associated 2 

783  CACNB2  3.56E‐11  rs7893279  calcium channel, voltage‐dependent, beta 2 subunit 

152330  CNTN4  4.87E‐11  rs17194490  contactin 4 

55193  PBRM1  1.18E‐10  rs139364760 polybromo 1

55626  AMBRA1  1.26E‐10  rs61882743 autophagy/beclin‐1 regulator 1

8087  FXR1  1.56E‐10  rs1805579  fragile X mental retardation, autosomal homolog 1 

51460  SFMBT1  1.56E‐10  rs2710313  Scm‐like with four mbt domains 1 

55206  SBNO1  3.66E‐10  rs56197170 strawberry notch homolog 1 (Drosophila)

473  RERE  2.03E‐09  rs34269918 arginine‐glutamic acid dipeptide (RE) repeats

375346  TMEM110  2.95E‐09  rs6445541  transmembrane protein 110 

1813  DRD2  1.45E‐08  rs4630328  dopamine receptor D2 

4775  NFATC3  3.27E‐08  rs8044995 nuclear factor of activated T‐cells, cytoplasmic, calcineurin‐dependen t3

2309  FOXO3  3.37E‐08  rs9398171  forkhead box O3 

4750  NEK1  4.25E‐08  rs5863995  NIMA‐related kinase 1 

56924  PAK6  4.92E‐08  rs56205728  p21 protein (Cdc42/Rac)‐activated kinase 6 

64506  CPEB1  5.52E‐08  15‐83303518 cytoplasmic polyadenylation element binding protein 1 

83857  TMTC1  7.06E‐08  rs679087  transmembrane and tetratricopeptide repeat containing 1 

27086  FOXP1  1.25E‐07  rs7372960  forkhead box P1 

4208  MEF2C  1.39E‐07  rs1065861  myocyte enhancer factor 2C 

25921  ZDHHC5  1.46E‐07  rs488769 zinc finger, DHHC‐type containing 5

22990  PCNX  1.59E‐07  rs67981189  pecanex homolog (Drosophila) 

4325  MMP16  2.13E‐07  rs7837860  matrix metallopeptidase 16 (membrane‐inserted) 

5520  PPP2R2A  2.27E‐07  rs11419341 protein phosphatase 2, regulatory subunit B, alpha 

11278  KLF12  2.47E‐07  rs12877581 Kruppel‐like factor 12

23362  PSD3  2.66E‐07  rs6984438  pleckstrin and Sec7 domain containing 3 

151011  SEPT10  2.83E‐07  rs58012425  septin 10 

53335  BCL11A  3.11E‐07  rs7599488 B‐cell CLL/lymphoma 11A (zinc finger protein)

118980  SFXN2  3.54E‐07  rs11191379 sideroflexin 2

389421  LIN28B  3.60E‐07  rs78370910  lin‐28 homolog B (C, elegans) 

22891  ZNF365  3.98E‐07  rs11598767  zinc finger protein 365 

8658  TNKS  4.00E‐07  rs12541709 tankyrase, TRF1‐interacting ankyrin‐related ADP‐ribose polymerase

23334  SZT2  5.31E‐07  rs141508822  seizure threshold 2 homolog (mouse) 

9568  GABBR2  5.48E‐07  rs2304389  gamma‐aminobutyric acid (GABA) B receptor, 2 

10082  GPC6  7.07E‐07  rs9584154  glypican 6 

4978  OPCML  8.38E‐07  rs2917569 opioid binding protein/cell adhesion molecule‐like 

55512  SMPD3  1.07E‐06  rs8059916  sphingomyelin phosphodiesterase 3, neutral membrane 

133418  EMB  1.15E‐06  rs62365899  embigin 

4179  CD46  1.17E‐06  rs1142469 CD46 molecule, complement regulatory protein 

9839  ZEB2  1.29E‐06  rs35015447 zinc finger E‐box binding homeobox 2

80114  BICC1  1.32E‐06  rs11006253  bicaudal C homolog 1 (Drosophila) 

23259  DDHD2  1.56E‐06  rs9643870  DDHD domain containing 2 

27303  RBMS3  1.70E‐06  rs6549963 RNA binding motif, single stranded interacting protein 3 

253832  ZDHHC20  1.71E‐06  rs9316337 zinc finger, DHHC‐type containing 20

80059  LRRTM4  1.96E‐06  rs61712019  leucine rich repeat transmembrane neuronal 4 

388336  SHISA6  2.13E‐06  rs2159292  shisa family member 6 

794  CALB2  2.32E‐06  rs62055045 calbindin 2

57520  HECW2  2.41E‐06  rs9677260  HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 43: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

43

© 2016 American Medical Association. All rights reserved.

eTable 12: Functional annotation of genes regulated by miR-9-5p – biological processes. The following table contains a DAVID analysis showing enrichment of GO biological processes for genes targeted by miR-9-5p. Only the hundred most significant processes are shown. “FE” is fold enrichment. The list of all genes in the categories can be obtained from the authors by request.

miR‐9‐5p DAVID GO Biological Process annotation  Count  %  P‐value List Total 

Pop Hits 

Pop Total  FE 

Benja‐mini 

regulation of transcription  238  19  9.7E‐07  934  2601  13528  1.3  3.0E‐03negative regulation of gene expression  65  5  1.3E‐06  934  504  13528  1.9  2.0E‐03negative regulation of macromolecule biosynthetic process  69  6  1.3E‐06  934  547  13528  1.8  1.4E‐03cell motion  62 5 1.6E‐06 934 475  13528  1.9  1.3E‐03negative regulation of cell differentiation  36 3 1.8E‐06 934 216  13528  2.4  1.1E‐03cell migration  42 3 2.4E‐06 934 276  13528  2.2  1.3E‐03cell projection organization  51  4  2.9E‐06  934  368  13528  2.0  1.3E‐03regulation of transcription from RNA polymerase II promoter  84  7  3.0E‐06  934  727  13528  1.7  1.2E‐03regulation of RNA metabolic process  173  14  4.3E‐06  934  1813  13528  1.4  1.5E‐03negative regulation of transcription  59 5 4.9E‐06 934 459  13528  1.9  1.5E‐03cell morphogenesis  49 4 5.5E‐06 934 356  13528  2.0  1.6E‐03negative regulation of cellular biosynthetic process 68 6 6.4E‐06 934 561  13528  1.8  1.7E‐03negative regulation of biosynthetic process  69  6  6.7E‐06  934  573  13528  1.7  1.6E‐03tube development  35  3  7.4E‐06  934  220  13528  2.3  1.6E‐03cellular component morphogenesis  52  4  1.1E‐05  934  397  13528  1.9  2.4E‐03negative regulation of macromolecule metabolic process 82 7 1.4E‐05 934 734  13528  1.6  2.8E‐03cell motility  43 3 1.5E‐05 934 307  13528  2.0  2.7E‐03localization of cell  43 3 1.5E‐05 934 307  13528  2.0  2.7E‐03regulation of transcription, DNA‐dependent  165  13  3.3E‐05  934  1773  13528  1.3  5.7E‐03neuron differentiation  54  4  4.1E‐05  934  438  13528  1.8  6.8E‐03vesicle‐mediated transport  66  5  5.1E‐05  934  576  13528  1.7  7.9E‐03tube morphogenesis  23 2 5.2E‐05 934 127  13528  2.6  7.7E‐03negative regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 

60 5 6.4E‐05 934 512  13528  1.7  9.0E‐03

negative regulation of RNA metabolic process  46  4  8.3E‐05  934  362  13528  1.8  1.1E‐02negative regulation of nitrogen compound metabolic process  60  5  9.3E‐05  934  519  13528  1.7  1.2E‐02negative regulation of transcription, DNA‐dependent  45  4  1.1E‐04  934  356  13528  1.8  1.4E‐02neuron projection morphogenesis  31 3 1.4E‐04 934 213  13528  2.1  1.7E‐02neuron development  43 3 1.5E‐04 934 339  13528  1.8  1.7E‐02cell projection morphogenesis  34 3 1.6E‐04 934 245  13528  2.0  1.8E‐02neuron projection development  35  3  1.7E‐04  934  256  13528  2.0  1.8E‐02cell morphogenesis involved in neuron differentiation  30  2  2.4E‐04  934  209  13528  2.1  2.5E‐02protein amino acid phosphorylation  71  6  2.5E‐04  934  667  13528  1.5  2.4E‐02transcription  184 15 3.0E‐04 934 2101  13528  1.3  2.9E‐02cell morphogenesis involved in differentiation 33 3 3.3E‐04 934 244  13528  2.0  3.1E‐02axonogenesis  28 2 3.4E‐04 934 193  13528  2.1  3.1E‐02cell part morphogenesis  34  3  3.7E‐04  934  256  13528  1.9  3.2E‐02cell junction organization  13  1  4.2E‐04  934  57  13528  3.3  3.6E‐02intracellular transport  69  6  4.6E‐04  934  657  13528  1.5  3.8E‐02regulation of specific transcription from RNA polymerase II pro‐moter 

17 1 6.5E‐04 934 94  13528  2.6  5.2E‐02

blood vessel development  32 3 7.6E‐04 934 245  13528  1.9  5.9E‐02vasculature development  32  3  1.1E‐03  934  251  13528  1.8  8.4E‐02positive regulation of transcription, DNA‐dependent  52  4  1.1E‐03  934  477  13528  1.6  8.2E‐02lysosomal transport  8  1  1.2E‐03  934  25  13528  4.6  8.2E‐02central nervous system neuron development 9 1 1.2E‐03 934 32  13528  4.1  8.2E‐02response to insulin stimulus  17 1 1.3E‐03 934 100  13528  2.5  8.7E‐02chordate embryonic development  39 3 1.3E‐03 934 331  13528  1.7  8.8E‐02central nervous system neuron differentiation  10  1  1.3E‐03  934  40  13528  3.6  8.6E‐02positive regulation of RNA metabolic process  52  4  1.4E‐03  934  481  13528  1.6  8.6E‐02negative regulation of transcription from RNA polymerase II pro‐moter 

33  3  1.5E‐03  934  266  13528  1.8  9.0E‐02

embryonic development ending in birth or egg hatching 39 3 1.6E‐03 934 334  13528  1.7  9.5E‐02cell junction assembly  10 1 1.6E‐03 934 41  13528  3.5  9.5E‐02membrane organization  43  3  1.7E‐03  934  381  13528  1.6  9.8E‐02

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 44: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

44

© 2016 American Medical Association. All rights reserved.

miR‐9‐5p DAVID GO Biological Process annotation  Count  %  P‐value List Total 

Pop Hits 

Pop Total  FE 

Benja‐mini 

positive regulation of transcription from RNA polymerase II pro‐moter 

42 3 1.8E‐03 934 371  13528  1.6  1.0E‐01

regulation of gene‐specific transcription  20  2  2.1E‐03  934  134  13528  2.2  1.2E‐01in utero embryonic development  24  2  2.3E‐03  934  176  13528  2.0  1.2E‐01chromatin modification  33 3 2.3E‐03 934 274  13528  1.7  1.2E‐01cellular protein localization  45 4 2.3E‐03 934 411  13528  1.6  1.2E‐01hindbrain development  12 1 2.4E‐03 934 60  13528  2.9  1.2E‐01protein transport  74  6  2.4E‐03  934  762  13528  1.4  1.2E‐01endocytosis  28  2  2.5E‐03  934  220  13528  1.8  1.2E‐01membrane invagination  28  2  2.5E‐03  934  220  13528  1.8  1.2E‐01regulation of Ras protein signal transduction  27 2 2.6E‐03 934 210  13528  1.9  1.3E‐01striated muscle cell differentiation  15 1 2.7E‐03 934 88  13528  2.5  1.3E‐01positive regulation of gene expression  59 5 2.7E‐03 934 581  13528  1.5  1.3E‐01cellular macromolecule localization  45  4  2.7E‐03  934  414  13528  1.6  1.2E‐01blood vessel morphogenesis  27  2  2.8E‐03  934  211  13528  1.9  1.3E‐01positive regulation of nitrogen compound metabolic process  64  5  2.9E‐03  934  644  13528  1.4  1.3E‐01establishment of protein localization  74 6 3.0E‐03 934 769  13528  1.4  1.3E‐01protein localization  83 7 3.1E‐03 934 882  13528  1.4  1.3E‐01positive regulation of biosynthetic process  68 6 3.2E‐03 934 695  13528  1.4  1.3E‐01positive regulation of cellular biosynthetic process  67  5  3.3E‐03  934  685  13528  1.4  1.4E‐01proteolysis involved in cellular protein catabolic process  60  5  3.4E‐03  934  600  13528  1.4  1.4E‐01positive regulation of nucleobase, nucleoside, nucleotide and nu‐cleic acid metabolic process 

62  5  3.4E‐03  934  624  13528  1.4  1.4E‐01

positive regulation of transcription  57 5 3.5E‐03 934 564  13528  1.5  1.4E‐01myotube differentiation  6 0 3.6E‐03 934 16  13528  5.4  1.4E‐01lamellipodium assembly  6  0  3.6E‐03  934  16  13528  5.4  1.4E‐01cell adhesion  68  6  3.7E‐03  934  700  13528  1.4  1.4E‐01small GTPase mediated signal transduction  35  3  3.7E‐03  934  305  13528  1.7  1.4E‐01morphogenesis of an epithelium  16 1 3.8E‐03 934 101  13528  2.3  1.4E‐01biological adhesion  68 6 3.8E‐03 934 701  13528  1.4  1.4E‐01muscle cell differentiation  18 1 3.9E‐03 934 121  13528  2.2  1.4E‐01cellular protein catabolic process  60  5  3.9E‐03  934  603  13528  1.4  1.4E‐01cell‐substrate junction assembly  7  1  3.9E‐03  934  23  13528  4.4  1.4E‐01positive regulation of macromolecule biosynthetic process  64  5  4.1E‐03  934  654  13528  1.4  1.5E‐01enzyme linked receptor protein signaling pathway 38 3 4.2E‐03 934 342  13528  1.6  1.5E‐01cell projection assembly  14 1 4.3E‐03 934 83  13528  2.4  1.5E‐01sphingolipid biosynthetic process  8 1 4.4E‐03 934 31  13528  3.7  1.5E‐01morphogenesis of a branching structure  13  1  4.5E‐03  934  74  13528  2.5  1.5E‐01response to peptide hormone stimulus  21  2  4.6E‐03  934  154  13528  2.0  1.5E‐01ubiquitin cycle  7  1  4.9E‐03  934  24  13528  4.2  1.6E‐01positive regulation of specific transcription from RNA polymerase II promoter 

11 1 5.2E‐03 934 57  13528  2.8  1.7E‐01

vacuolar transport  8 1 5.3E‐03 934 32  13528  3.6  1.7E‐01palate development  8  1  5.3E‐03  934  32  13528  3.6  1.7E‐01epithelial tube morphogenesis  12  1  5.8E‐03  934  67  13528  2.6  1.8E‐01regulation of vesicle‐mediated transport  15  1  6.0E‐03  934  96  13528  2.3  1.8E‐01intracellular protein transport  40 3 6.2E‐03 934 374  13528  1.5  1.9E‐01negative regulation of specific transcription from RNA polymerase II promoter 

9 1 6.2E‐03 934 41  13528  3.2  1.9E‐01

transmembrane receptor protein tyrosine kinase signaling pathway 27  2  6.3E‐03  934  224  13528  1.7  1.9E‐01angiogenesis  20  2  6.4E‐03  934  148  13528  2.0  1.9E‐01negative regulation of neuron differentiation  8  1  6.4E‐03  934  33  13528  3.5  1.9E‐01

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 45: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

45

© 2016 American Medical Association. All rights reserved.

eTable 13: Functional annotation of genes regulated by miR-9-5p – annotation clusters. The following table contains a DAVID analysis showing enrichment of functional clusters for genes targeted miR-9-5p. Only the ten most significant annotation clusters are shown. “FE” is fold enrichment. The list of all genes in the categories can be obtained from the authors by request. miR‐9‐5p Annotation clusters  Term  Count  %  P‐value 

List Total 

Pop Hits 

Pop Total  FE 

Benja‐mini 

Annotation Cluster 1  Enrichment Score: 5.58     SP_PIR_KEYWORDS  metal‐binding  266 22 2.9E‐09 1231  2972  19235  1.40 4.7E‐07SP_PIR_KEYWORDS  zinc  202 16 4.5E‐08 1231  2189  19235  1.44 4.4E‐06SP_PIR_KEYWORDS  zinc‐finger  163 13 2.1E‐07 1231  1718  19235  1.48 1.2E‐05GOTERM_MF_FAT  metal ion binding  354 29 9.1E‐06 921  4140  12983  1.21 2.9E‐03GOTERM_MF_FAT  ion binding  361 29 1.1E‐05 921  4241  12983  1.20 2.6E‐03GOTERM_MF_FAT  cation binding  354 29 2.3E‐05 921  4179  12983  1.19 3.7E‐03GOTERM_MF_FAT  zinc ion binding  209 17 6.8E‐05 921  2311  12983  1.27 9.3E‐03GOTERM_MF_FAT  transition metal ion binding 239 19 5.3E‐04 921  2785  12983  1.21 4.6E‐02       Annotation Cluster 2  Enrichment Score: 5.26     GOTERM_BP_FAT  cell motion  62 5 1.6E‐06 934  475  13528  1.89 1.3E‐03GOTERM_BP_FAT  cell migration  42 3 2.4E‐06 934  276  13528  2.20 1.3E‐03GOTERM_BP_FAT  localization of cell  43 4 1.5E‐05 934  307  13528  2.03 2.7E‐03GOTERM_BP_FAT  cell motility  43 4 1.5E‐05 934  307  13528  2.03 2.7E‐03       Annotation Cluster 3  Enrichment Score: 5.25     GOTERM_CC_FAT  basolateral plasma membrane 35 3 2.7E‐07 829  203  12782  2.66 4.4E‐05GOTERM_CC_FAT  adherens junction  29 2 6.4E‐07 829  155  12782  2.88 7.7E‐05GOTERM_CC_FAT  anchoring junction  29 2 5.4E‐06 829  172  12782  2.60 4.3E‐04GOTERM_CC_FAT  focal adhesion  20 2 2.6E‐05 829  102  12782  3.02 1.2E‐03GOTERM_CC_FAT  cell‐substrate junction  21 2 3.0E‐05 829  112  12782  2.89 1.3E‐03GOTERM_CC_FAT  cell‐substrate adherens junction 20 2 4.5E‐05 829  106  12782  2.91 1.8E‐03       Annotation Cluster 4  Enrichment Score: 5.24     SP_PIR_KEYWORDS  nucleus  354 29 3.1E‐08 1231  4283  19235  1.29 3.8E‐06GOTERM_MF_FAT  transcription regulator activity 161 13 6.1E‐08 921  1512  12983  1.50 5.9E‐05SP_PIR_KEYWORDS  transcription regulation  184 15 6.4E‐07 1231  2026  19235  1.42 3.1E‐05GOTERM_BP_FAT  regulation of transcription 238 19 9.7E‐07 934  2601  13528  1.33 3.0E‐03SP_PIR_KEYWORDS  Transcription  184 15 2.6E‐06 1231  2071  19235  1.39 1.1E‐04GOTERM_BP_FAT  regulation of RNA metabolic process 173 14 4.3E‐06 934  1813  13528  1.38 1.5E‐03GOTERM_MF_FAT  transcription factor activity 104 8 2.0E‐05 921  975  12983  1.50 3.9E‐03GOTERM_BP_FAT  regulation of transcription, DNA‐dependent 165 13 3.3E‐05 934  1773  13528  1.35 5.7E‐03SP_PIR_KEYWORDS  dna‐binding  161 13 6.3E‐05 1231  1868  19235  1.35 1.5E‐03GOTERM_BP_FAT  transcription  184 15 3.0E‐04 934  2101  13528  1.27 2.9E‐02GOTERM_MF_FAT  DNA binding  201 16 1.4E‐03 921  2331  12983  1.22 9.1E‐02       Annotation Cluster 5  Enrichment Score: 5.04     GOTERM_CC_FAT  Golgi apparatus  94 8 9.1E‐07 829  872  12782  1.66 8.7E‐05SP_PIR_KEYWORDS  golgi apparatus  66 5 1.1E‐05 1231  588  19235  1.75 3.9E‐04GOTERM_CC_FAT  Golgi apparatus part  38 3 7.7E‐05 829  294  12782  1.99 2.6E‐03       Annotation Cluster 6  Enrichment Score: 4.80     SP_PIR_KEYWORDS  repressor  59 5 8.3E‐08 1231  435  19235  2.12 5.8E‐06GOTERM_BP_FAT  negative regulation of gene expression 65 5 1.3E‐06 934  504  13528  1.87 2.1E‐03GOTERM_BP_FAT  negative regulation of macromolecule biosynthetic process 69 6 1.3E‐06 934  547  13528  1.83 1.4E‐03GOTERM_BP_FAT  negative regulation of transcription 59 5 4.9E‐06 934  459  13528  1.86 1.5E‐03GOTERM_BP_FAT  negative regulation of cellular biosynthetic process 68 6 6.4E‐06 934  561  13528  1.76 1.7E‐03GOTERM_BP_FAT  negative regulation of biosynthetic process 69 6 6.7E‐06 934  573  13528  1.74 1.6E‐03GOTERM_BP_FAT  negative regulation of macromolecule metabolic process 82 7 1.4E‐05 934  734  13528  1.62 2.8E‐03

GOTERM_BP_FAT negative regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process  60  5  6.4E‐05  934  512  13528  1.70 9.0E‐03

GOTERM_BP_FAT  negative regulation of RNA metabolic process 46 4 8.3E‐05 934  362  13528  1.84 1.1E‐02

GOTERM_BP_FAT negative regulation of nitrogen compound metabolic pro‐cess  60  5  9.3E‐05  934  519  13528  1.67 1.2E‐02

GOTERM_BP_FAT  negative regulation of transcription, DNA‐dependent 45 4 1.1E‐04 934  356  13528  1.83 1.4E‐02GOTERM_MF_FAT  transcription repressor activity 42 3 1.2E‐04 921  316  12983  1.87 1.3E‐02

GOTERM_BP_FAT negative regulation of transcription from RNA polymerase II promoter  33  3  1.5E‐03  934  266  13528  1.80 9.0E‐02

       

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 46: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

46

© 2016 American Medical Association. All rights reserved.

miR‐9‐5p Annotation clusters  Term  Count  %  P‐value 

List Total 

Pop Hits 

Pop Total  FE 

Benja‐mini 

Annotation Cluster 7  Enrichment Score: 4.68     GOTERM_MF_FAT  cytoskeletal protein binding 66 5 1.6E‐06 921  504  12983  1.85 7.9E‐04SP_PIR_KEYWORDS  actin‐binding  34 3 4.8E‐05 1231  247  19235  2.15 1.2E‐03GOTERM_MF_FAT  actin binding  43 4 1.2E‐04 921  326  12983  1.86 1.4E‐02       Annotation Cluster 8  Enrichment Score: 4.266     GOTERM_CC_FAT  cytoplasmic vesicle  72 6 5.5E‐06 829  642  12782  1.73 3.8E‐04GOTERM_CC_FAT  vesicle  74 6 6.9E‐06 829  670  12782  1.70 4.1E‐04SP_PIR_KEYWORDS  cytoplasmic vesicle  34 3 2.2E‐05 1231  238  19235  2.23 6.9E‐04GOTERM_CC_FAT  coated vesicle  25 2 8.7E‐05 829  159  12782  2.42 2.8E‐03GOTERM_CC_FAT  clathrin‐coated vesicle  22 2 1.1E‐04 829  132  12782  2.57 3.3E‐03GOTERM_CC_FAT  membrane‐bounded vesicle 59 5 3.5E‐04 829  568  12782  1.60 8.9E‐03GOTERM_CC_FAT  cytoplasmic membrane‐bounded vesicle 57 5 4.8E‐04 829  550  12782  1.60 1.1E‐02       Annotation Cluster 9  Enrichment Score: 4.11     UP_SEQ_FEATURE  zinc finger region:PHD‐type 14 1 1.8E‐05 1229  52  19113  4.19 6.1E‐03INTERPRO  Zinc finger, PHD‐type, conserved site 19 2 4.3E‐05 1126  93  16659  3.02 5.9E‐02INTERPRO  Zinc finger, PHD‐finger  18 2 4.5E‐05 1126  85  16659  3.13 3.1E‐02INTERPRO  Zinc finger, PHD‐type  18 2 9.5E‐05 1126  90  16659  2.96 2.7E‐02SMART  PHD  18 2 8.6E‐04 743  90  9079  2.44 2.3E‐01       Annotation Cluster 10  Enrichment Score: 3.93     GOTERM_BP_FAT  cell projection organization 51 4 2.9E‐06 934  368  13528  2.01 1.3E‐03GOTERM_BP_FAT  cell morphogenesis  49 4 5.6E‐06 934  356  13528  1.99 1.6E‐03GOTERM_BP_FAT  cellular component morphogenesis 52 4 1.2E‐05 934  397  13528  1.90 2.4E‐03GOTERM_BP_FAT  neuron differentiation  54 4 4.2E‐05 934  438  13528  1.79 6.8E‐03GOTERM_BP_FAT  neuron projection morphogenesis 31 3 1.4E‐04 934  213  13528  2.11 1.7E‐02GOTERM_BP_FAT  neuron development  43 4 1.5E‐04 934  339  13528  1.84 1.7E‐02GOTERM_BP_FAT  cell projection morphogenesis 34 3 1.6E‐04 934  245  13528  2.01 1.8E‐02GOTERM_BP_FAT  neuron projection development 35 3 1.7E‐04 934  256  13528  1.98 1.8E‐02GOTERM_BP_FAT  cell morphogenesis involved in neuron differentiation 30 2 2.4E‐04 934  209  13528  2.08 2.5E‐02GOTERM_BP_FAT  cell morphogenesis involved in differentiation 33 3 3.3E‐04 934  244  13528  1.96 3.1E‐02GOTERM_BP_FAT  axonogenesis  28 2 3.4E‐04 934  193  13528  2.10 3.1E‐02GOTERM_BP_FAT  cell part morphogenesis  34 3 3.7E‐04 934  256  13528  1.92 3.3E‐02GOTERM_BP_FAT  axon guidance  15 1 1.5E‐02 934  107  13528  2.03 3.2E‐01

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 47: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

47

© 2016 American Medical Association. All rights reserved.

eTable 14: Functional annotation of genes regulated by miR-9-5p – transcrip-tion factors. The following table contains a DAVID analysis showing enrichment of transcription factor regulation for genes targeted by miR-9-5p. Only the hundred most significant transcription factors are shown. “FE” is fold enrichment. The list of all genes in the categories can be obtained from the authors by request.

miR‐9‐5p DAVID Transcription Factor regulation  Count  %  P‐value List Total 

Pop Hits 

Pop Total  FE 

Benja‐mini 

MEF2  1041  84  1.9E‐62  1229  12495  19536  1.3  3.5E‐60RSRFC4  762  62  8.9E‐62  1229  7682  19536  1.6  7.9E‐60FREAC3  713  58  2.1E‐61  1229  6955  19536  1.6  1.2E‐59HNF1  854 69 2.3E‐61 1229 9163  19536  1.5  1.0E‐59CART1  763 62 3.9E‐60 1229 7757  19536  1.6  1.4E‐58NKX25  932 76 1.8E‐59 1229 10569  19536  1.4  5.2E‐58FOXJ2  950  77  2.3E‐58  1229  10934  19536  1.4  5.7E‐57NKX22  725  59  4.4E‐58  1229  7253  19536  1.6  9.9E‐57TATA  828  67  8.6E‐58  1229  8874  19536  1.5  1.7E‐56FOXO1  688 56 1.7E‐57 1229 6724  19536  1.6  3.0E‐56FOXO4  830 67 2.6E‐57 1229 8925  19536  1.5  4.2E‐56HFH3  679 55 6.4E‐57 1229 6613  19536  1.6  9.4E‐56POU3F2  880  71  7.4E‐57  1229  9773  19536  1.4  1.0E‐55TBP  615  50  1.9E‐56  1229  5716  19536  1.7  2.4E‐55SOX5  760  62  3.3E‐56  1229  7857  19536  1.5  4.0E‐55CDP  888 72 7.8E‐56 1229 9950  19536  1.4  8.7E‐55E4BP4  704 57 8.9E‐55 1229 7060  19536  1.6  9.4E‐54CDC5  718 58 3.9E‐54 1229 7294  19536  1.6  3.9E‐53HFH1  720  58  1.2E‐53  1229  7342  19536  1.6  1.1E‐52FREAC7  758  61  2.0E‐53  1229  7933  19536  1.5  1.8E‐52EVI1  1086  88  1.1E‐51  1229  13849  19536  1.2  9.7E‐51SRY  679 55 2.5E‐51 1229 6819  19536  1.6  2.0E‐50PAX6  814 66 7.3E‐51 1229 8924  19536  1.4  5.6E‐50OCT1  1141 92 3.4E‐49 1229 15177  19536  1.2  2.5E‐48S8  715  58  4.6E‐49  1229  7446  19536  1.5  3.2E‐48CREBP1  732  59  1.2E‐48  1229  7723  19536  1.5  8.4E‐48FREAC4  718  58  1.8E‐48  1229  7516  19536  1.5  1.2E‐47HNF3B  657 53 3.0E‐47 1229 6653  19536  1.6  1.9E‐46OCT  716 58 8.6E‐47 1229 7554  19536  1.5  5.3E‐46MRF2  764 62 3.9E‐46 1229 8325  19536  1.5  2.3E‐45NKX3A  715  58  7.6E‐46  1229  7578  19536  1.5  4.3E‐45RORA2  724  59  2.1E‐45  1229  7734  19536  1.5  1.1E‐44POU6F1  669  54  7.1E‐45  1229  6926  19536  1.5  3.8E‐44FOXD3  570 46 1.1E‐44 1229 5509  19536  1.6  5.9E‐44HLF  643 52 2.1E‐44 1229 6562  19536  1.6  1.1E‐43SRF  965 78 3.9E‐44 1229 11813  19536  1.3  1.9E‐43PAX4  1035  84  7.2E‐44  1229  13147  19536  1.3  3.5E‐43CHX10  658  53  1.5E‐43  1229  6818  19536  1.5  7.1E‐43PBX1  828  67  1.5E‐43  1229  9470  19536  1.4  7.0E‐43CEBPB  805 65 3.8E‐43 1229 9112  19536  1.4  1.7E‐42CDPCR3  797 65 4.5E‐43 1229 8986  19536  1.4  2.0E‐42FOXO3  486 39 5.2E‐43 1229 4429  19536  1.7  2.2E‐42CEBP  1020  83  6.5E‐42  1229  12945  19536  1.3  2.7E‐41BRN2  745  60  8.8E‐42  1229  8218  19536  1.4  3.6E‐41AP1  848  69  2.6E‐40  1229  9952  19536  1.4  1.0E‐39MEIS1BHOXA9  743 60 3.1E‐40 1229 8257  19536  1.4  1.2E‐39IRF2  635 51 1.0E‐39 1229 6641  19536  1.5  3.8E‐39GATA1  1054 85 1.0E‐39 1229 13713  19536  1.2  3.8E‐39NFAT  642  52  1.1E‐39  1229  6746  19536  1.5  4.0E‐39FREAC2  535  43  1.4E‐39  1229  5220  19536  1.6  5.0E‐39SOX9  672  54  3.1E‐39  1229  7213  19536  1.5  1.1E‐38LHX3  588 48 4.6E‐39 1229 5987  19536  1.6  1.6E‐38NKX61  660 53 1.9E‐38 1229 7068  19536  1.5  6.3E‐38AML1  1015 82 3.9E‐37 1229 13077  19536  1.2  1.3E‐36GATA  668  54  3.1E‐36  1229  7290  19536  1.5  1.0E‐35

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 48: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

48

© 2016 American Medical Association. All rights reserved.

miR‐9‐5p DAVID Transcription Factor regulation  Count  %  P‐value List Total 

Pop Hits 

Pop Total  FE 

Benja‐mini 

EN1  765 62 5.9E‐36 1229 8809  19536  1.4  1.9E‐35ISRE  658  53  9.8E‐36  1229  7163  19536  1.5  3.1E‐35LMO2COM  820  66  4.1E‐35  1229  9743  19536  1.3  1.3E‐34YY1  935  76  7.3E‐35  1229  11722  19536  1.3  2.2E‐34IRF7  668 54 1.3E‐34 1229 7368  19536  1.4  4.0E‐34FAC1  695 56 4.5E‐34 1229 7806  19536  1.4  1.3E‐33PAX2  810 66 5.3E‐33 1229 9688  19536  1.3  1.5E‐32HTF  756  61  6.0E‐33  1229  8818  19536  1.4  1.7E‐32BRACH  771  62  3.7E‐32  1229  9099  19536  1.3  1.0E‐31MYB  661  54  4.4E‐32  1229  7386  19536  1.4  1.2E‐31BACH1  716 58 5.2E‐32 1229 8236  19536  1.4  1.4E‐31STAT  546 44 7.6E‐32 1229 5705  19536  1.5  2.0E‐31MSX1  619 50 9.3E‐32 1229 6772  19536  1.5  2.4E‐31MZF1  696  56  1.1E‐31  1229  7943  19536  1.4  3.0E‐31CHOP  691  56  1.7E‐31  1229  7875  19536  1.4  4.4E‐31E2F  788  64  1.8E‐31  1229  9411  19536  1.3  4.6E‐31NFY  696 56 2.8E‐31 1229 7963  19536  1.4  6.9E‐31IK3  648 53 5.8E‐31 1229 7246  19536  1.4  1.4E‐30TCF11MAFG  738 60 9.0E‐31 1229 8647  19536  1.4  2.2E‐30MYCMAX  846  69  1.2E‐30  1229  10413  19536  1.3  2.9E‐30HOXA3  611  50  2.4E‐30  1229  6724  19536  1.4  5.7E‐30SREBP1  821  67  2.5E‐30  1229  10014  19536  1.3  5.9E‐30HAND1E47  668 54 2.7E‐30 1229 7584  19536  1.4  6.1E‐30RORA1  648 53 4.2E‐30 1229 7290  19536  1.4  9.4E‐30IRF1  420 34 9.6E‐30 1229 4059  19536  1.6  2.1E‐29CDPCR1  582  47  1.0E‐29  1229  6328  19536  1.5  2.3E‐29BACH2  630  51  1.1E‐29  1229  7041  19536  1.4  2.4E‐29STAT1  589  48  1.7E‐29  1229  6442  19536  1.5  3.7E‐29CEBPA  459 37 1.9E‐29 1229 4598  19536  1.6  3.9E‐29PPARG  1037 84 2.5E‐29 1229 13898  19536  1.2  5.1E‐29TGIF  618 50 3.2E‐29 1229 6885  19536  1.4  6.5E‐29GFI1  641  52  6.3E‐29  1229  7246  19536  1.4  1.3E‐28AREB6  1060  86  1.2E‐28  1229  14383  19536  1.2  2.5E‐28RFX1  826  67  3.7E‐28  1229  10219  19536  1.3  7.4E‐28NFE2  535 43 6.9E‐28 1229 5738  19536  1.5  1.4E‐27GRE  671 54 7.0E‐28 1229 7760  19536  1.4  1.4E‐27GCNF  778 63 1.0E‐27 1229 9457  19536  1.3  2.0E‐27P53  869  70  1.7E‐27  1229  10980  19536  1.3  3.3E‐27CDPCR3HD  638  52  3.8E‐27  1229  7297  19536  1.4  7.2E‐27TCF11  703  57  1.2E‐26  1229  8326  19536  1.3  2.3E‐26TST1  629 51 1.2E‐26 1229 7189  19536  1.4  2.3E‐26RP58  717 58 2.4E‐26 1229 8563  19536  1.3  4.5E‐26USF  786 64 2.4E‐25 1229 9727  19536  1.3  4.3E‐25MEIS1AHOXA9  519  42  2.4E‐25  1229  5638  19536  1.5  4.3E‐25STAT5B  497  40  2.6E‐25  1229  5326  19536  1.5  4.7E‐25

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 49: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

49

© 2016 American Medical Association. All rights reserved.

eTable 15: Genes in the schizophrenia enriched miR-9-5p subset. This subset of 497 co-expressed gene targets of the miR-9-5p targetome was found enriched in schizophrenia genes. Genes located in GWAS regions (clumps) with p-values < 1 x 10-5 in PGC2 are underlined and additionally printed in bold if the p-value was < 5 x 10-8 in PGC2. Note that these p-values are taking the PGC2 replication into account. Subset of the miR‐9‐5‐p targetome (497 genes)

ABAT, ABCA1, ABL2, ACTR1A, ACVR1B, ADAM10, ADCY6, ADPGK, AEBP2, AFAP1, AGFG1, AHDC1, AK2, AKAP11, ALAD, ALG6, ALG9, AMBRA1, AMER1, AMOTL1, AMOTL2, ANK2, ANKRD12, ANKRD13A, ANKRD40, ANP32B, AP2M1, AP3B1, AP4E1, ARCN1, ARF6, ARFIP2, ARHGAP39, ARHGDIA, ARHGEF2, ARID1A, ASB7, ASPH, ASXL1, ATF1, ATG14, ATP11A, ATP11B, ATP11C, ATP7A, ATP8A1, ATXN3, BAHD1, BAIAP2, BCLAF1, BRAF, BRD4, BTBD7, C11orf58, C17orf70, C17orf85, C18orf25, C19orf55, C21orf91, C4orf46, C5orf24, C7orf25, CAMKK2, CAP1, CAPZA1, CARM1, CBFA2T2, CBL, CBX5, CCDC43, CCDC50, CCDC88A, CCNDBP1, CCNG1, CCNJ, CCNT2, CCSER2, CD46, CD47, CDC23, CDC73, CEP350, CEP63, CERS2, CERS6, CHD3, CHSY1, CISD3, CLIC4, CMTM6, CMTR2, CNNM4, CNOT6L, CNP, COG3, COG6, CPSF6, CREBRF, CREBZF, CTDP1, CTDSP2, CTNNA1, CUL4A, CXCR4, DBNL, DBT, DCAF10, DCBLD2, DCP2, DDX17, DEDD, DEDD2, DGCR8, DHX40, DIAPH1, DICER1, DNAJB1, DNAJC14, DNAJC3, DNAJC8, DOLPP1, DONSON, DOT1L, DSE, DTD1, DYNC1LI2, DYRK1B, DYRK2, ECHDC1, ELAVL1, ELAVL2, ELL, ELMOD2, ENAH, ENTPD1, ENTPD5, ENTPD7, EP400, EPHB2, ERBB2IP, ERP44, EXTL3, FAF2, FAM107B, FAM115A, FAM117B, FAM118A, FAM155B, FAM19A5, FAM58A, FAM63B, FARP1, FBXL19, FBXO28, FBXO33, FMR1, FNDC3B, FOXN2, FOXN3, FOXO3, FRMD4A, FRY, FXR1, FYTTD1, GALNT4, GDF11, GFPT1, GIGYF1, GLCCI1, GLG1, GLTSCR1L, GMEB2, GNA13, GNPNAT1, GOLPH3, GOPC, GOSR1, GPATCH8, GPBP1L1, GPR153, GRSF1, GTPBP1, GTPBP3, GXYLT1, GZF1, HCFC2, HDAC4, HDAC5, HIAT1, HIPK1, HLCS, HMG20A, HN1L, HOOK3, HSP90AA1, HUNK, ICMT, ID4, IGF2R, IKZF4, INSIG1, IPO11, IPO13, IPO4, ITM2C, ITPKC, JHDM1D, JMY, JUP, KCNK10, KCTD10, KCTD12, KDM5A, KIAA0754, KIAA0930, KIAA1549, KIAA1549L, KIAA1967, KIAA2013, KLF12, KLF13, KLHDC10, KLHL24, KPNB1, LAMP1, LASP1, LDLRAD3, LGALSL, LHFP, LIFR, LIN7C, LMAN1, LSM14A, MAEA, MAGI1, MAP3K1, MAP3K3, MAPKAPK2, MARCH6, MBTPS1, MCMBP, MESDC1, MGA, MGAT1, MICAL3, MICALL1, MIER3, MKLN1, MKRN2, MLXIP, MMP15, MMP16, MNT, MPP3, MRE11A, MRFAP1, MTF2, MTHFD1L, MTHFD2, MTR, MYO1D, NAP1L1, NCOA3, NCOR2, NEK1, NEO1, NFATC3, NHP2L1, NLN, NMT2, NPLOC4, NRF1, NTAN1, NUS1, NUTF2, NXPE3, OSBPL11, OTUD3, OXSR1, PAK2, PANK3, PBRM1, PCGF6, PCNX, PDCD6IP, PDE3B, PEG3, PGAP1, PGRMC2, PHACTR4, PHF13, PHF20L1, PHF21A, PHF8, PHTF2, PIGM, PIK3C2A, PIK3R3, PIM3, PLSCR3, PLXNA2, POC1B‐GALNT4, POU2F1, PPAPDC2, PPAT, PPIP5K2, PPM1F, PPP2R4, PPP2R5D, PPP6R3, PRDM10, PRKCA, PRKD3, PRUNE, PSMD9, PTAR1, PTBP1, PTBP2, PTBP3, PTCH1, PTGFRN, PTMA, PUS10, PYGO2, RAB33B, RAB8A, RABGEF1, RALGAPB, RALGDS, RANBP17, RAP1B, RAP2C, RAPH1, RBFOX2, RC3H1, RCOR1, RERE, RFX1, RFX7, RMND5A, RNF111, RNF144A, RNF169, RNF19A, RNF24, RNF38, RP2, RPS6KA6, RTF1, S100PBP, S1PR3, SACM1L, SACS, SAP30L, SAR1B, SASS6, SCUBE3, SCYL3, SEC23IP, SEMA6D, SENP1, SEPT10, SFMBT1, SH3BP4, SH3GLB1, SH3PXD2B, SHC3, SHISA5, SHISA6, SHROOM3, SIN3A, SIRT1, SLAIN2, SLC19A2, SLC20A2, SLC22A23, SLC25A24, SLC25A36, SLC26A2, SLC30A5, SLC33A1, SLC35B3, SLC39A9, SLC5A3, SMAD4, SMAP2, SMARCA5, SMARCE1, SMC1A, SMEK1, SMPD4, SMURF1, SNIP1, SNX25, SNX30, SOAT1, SOCS4, SON, SPAG9, SPECC1L, SPG20, SPRYD4, SPTSSA, SRC, SRCAP, SREK1IP1, SRF, SRRM4, SRSF1, SRSF10, SRSF6, ST3GAL2, ST8SIA4, STXBP1, SUPT7L, SYNJ2BP, SYT1, SZRD1, SZT2, TAB3, TBC1D2B, TBC1D4, TEAD1, TES, TFRC, TGFBR1, THAP2, THOC5, TMEM110, TMEM136, TMEM164, TNKS, TNRC6B, TOX4, TRA2B, TRAM1, TRERF1, TRIM11, TRIM9, TRPM7, TSC22D2, TSPAN18, TSPAN9, TUFT1, TULP4, TXNDC5, UBASH3B, UBE2H, UBE2Q1, UBE3A, UBE4B, UBN2, UBR5, UBXN7, UHRF1BP1, UPF3B, USP31, VAT1, VCAN, VGLL4, WAPAL, WASF2, WDTC1, WIPI2, WIZ, WWP2, XPO4, XRN1, XYLT1, ZBED3, ZBTB1, ZBTB14, ZBTB34, ZBTB39, ZBTB44, ZC3H10, ZDHHC18, ZDHHC20, ZDHHC5, ZFP90, ZKSCAN1, ZNF131, ZNF236, ZNF24, ZNF248, ZNF280D, ZNF319, ZNF354A, ZNF362, ZNF395, ZNF407, ZNF48, ZNF512, ZNF629, ZNF646, ZNF704, ZNRF2

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 50: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

50

© 2016 American Medical Association. All rights reserved.

eTable 16: Gene set results for miRNA in schizophrenia GWAS loci. The gene set analysis for the targets of miRNA located in genome-wide significant schizophrenia GWAS loci was performed using three different prediction methods. The number of miRNA varies between the prediction methods as not all miRNA have predictions for each method. The three different thresholds represent the differ-ent significance thresholds for the index-SNP used in clumping. Top-1% of SNPs have p-values less than 3.420 x 10-4, top 5% of SNPs have p-values less than 1.096 x 10-2. “Size” indicates the number of genes in the gene set. “Brain” indicates the percentage of the test genes expressed in the brain. “Corrected” are the p-values after cor-recting for multiple testing, whereas “Raw” are the unadjusted p-values. For a detailed description of the “Score” column please refer to the main text.  

miRNA in GWAS Loci (R2=0.6, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1% 

p‐value @top5%

 Score 

 Size 

 Brain 

p‐value @1E‐5 

Raw p‐value @top1% 

p‐value @top5% 

TargetScan                  

miR‐4677‐3p  2.2E‐02  4.7E‐01  2.2E‐04  80  3333  69%  1.3E‐03  4.0E‐02  1.3E‐06 

miR‐33a‐5p  1.1E‐01  6.0E‐02  5.5E‐03  75  2832  68%  7.5E‐03  3.4E‐03  2.8E‐04 

miR‐3160‐3p  3.6E‐01  1.6E‐01  2.2E‐04  54  3343  69%  2.8E‐02  9.7E‐03  1.3E‐06 

miR‐4688  8.1E‐02  6.9E‐01  2.2E‐04  46  2842  71%  5.1E‐03  7.7E‐02  1.3E‐06 

miR‐137  1.5E‐01  8.1E‐01  2.2E‐04  33  2742  69%  9.8E‐03  1.1E‐01  1.3E‐06 

miR‐3160‐5p  1.9E‐01  9.3E‐01  2.2E‐04  27  3496  68%  1.3E‐02  1.9E‐01  1.3E‐06 

miR‐1281  8.9E‐01  2.3E‐01  9.4E‐04  22  1174  70%  1.5E‐01  1.5E‐02  4.5E‐05 

miR‐4529‐5p  9.6E‐01  3.0E‐01  2.2E‐04  22  2181  70%  2.1E‐01  2.2E‐02  1.3E‐06 

miR‐4677‐5p  6.5E‐01  8.5E‐01  2.5E‐04  16  3521  68%  6.8E‐02  1.3E‐01  5.0E‐06 

miR‐640  9.7E‐01  4.9E‐01  4.1E‐04  16  2081  67%  2.4E‐01  4.4E‐02  1.5E‐05 

miR‐1228‐3p  8.6E‐01  8.4E‐01  2.2E‐04  13  3029  71%  1.4E‐01  1.2E‐01  1.3E‐06 

miR‐2682‐5p  1.0E+00  4.0E‐01  6.4E‐03  12  2023  69%  4.1E‐01  3.1E‐02  3.3E‐04 

miR‐4301  9.3E‐01  9.5E‐01  2.2E‐04  11  2473  66%  1.9E‐01  2.1E‐01  1.3E‐06 

miR‐4655‐3p  9.6E‐01  9.9E‐01  1.3E‐03  8  652  69%  2.2E‐01  3.6E‐01  6.1E‐05 

miR‐130a‐3p  8.0E‐01  4.3E‐01  1.2E‐01  7  932  70%  1.1E‐01  3.5E‐02  6.9E‐03 

miR‐1307‐3p  1.0E+00  9.2E‐01  4.6E‐02  4  987  66%  6.0E‐01  1.7E‐01  2.5E‐03 

miR‐4529‐3p  1.0E+00  1.0E+00  3.8E‐02  4  1807  70%  4.9E‐01  7.2E‐01  2.0E‐03 

miR‐29b‐3p  8.8E‐01  8.9E‐01  1.1E‐01  4  444  66%  1.5E‐01  1.5E‐01  6.4E‐03 

miR‐4655‐5p  1.0E+00  8.9E‐01  2.2E‐01  3  488  72%  4.1E‐01  1.5E‐01  1.5E‐02 

miR‐4304  7.4E‐01  9.9E‐01  9.8E‐01  1  490  72%  8.8E‐02  3.6E‐01  2.9E‐01 

miR‐3655  1.0E+00  1.0E+00  7.7E‐01  1  1470  67%  4.1E‐01  6.5E‐01  1.0E‐01 

miR‐33b‐5p  1.0E+00  1.0E+00  9.1E‐01  1  65  75%  1.0E+00  9.3E‐01  1.8E‐01 

miR‐378i  NA  NA  NA  1  13  88%  NA  NA  NA 

miR‐29c‐3p  NA  NA  NA  1  1  100%  NA  NA  NA 

 MiRanda 

                 

miR‐640  5.3E‐01  4.6E‐01  5.4E‐03  18  1869  71%  5.5E‐02  4.4E‐02  3.3E‐04 

miR‐130a‐3p  7.0E‐01  9.2E‐01  1.6E‐04  14  2957  72%  8.6E‐02  1.8E‐01  2.5E‐06 

miR‐33b‐3p  9.2E‐01  8.9E‐01  1.5E‐04  12  1780  70%  1.9E‐01  1.6E‐01  1.3E‐06 

miR‐3160‐3p  1.0E+00  9.1E‐01  1.5E‐04  11  2726  70%  7.5E‐01  1.8E‐01  1.3E‐06 

miR‐130a‐5p  9.4E‐01  1.0E+00  1.5E‐04  10  4469  70%  2.2E‐01  6.0E‐01  1.3E‐06 

miR‐33a‐3p  1.0E+00  1.0E+00  1.5E‐04  10  5293  70%  8.6E‐01  6.8E‐01  1.3E‐06 

miR‐1228‐3p  1.0E+00  9.9E‐01  1.6E‐04  10  1967  73%  5.5E‐01  3.7E‐01  2.5E‐06 

miR‐137  9.9E‐01  9.5E‐01  2.8E‐04  10  3050  71%  3.2E‐01  2.2E‐01  1.3E‐05 

miR‐29c‐3p  1.0E+00  1.0E+00  1.6E‐04  10  2534  72%  6.7E‐01  6.1E‐01  2.5E‐06 

miR‐29b‐3p  1.0E+00  1.0E+00  1.6E‐04  10  2762  72%  7.0E‐01  7.3E‐01  3.8E‐06 

miR‐29b‐2‐5p  1.0E+00  9.7E‐01  4.1E‐04  9  3636  70%  5.0E‐01  2.5E‐01  2.0E‐05 

miR‐4301  4.0E‐01  3.9E‐01  2.6E‐01  9  1272  67%  3.5E‐02  3.5E‐02  2.1E‐02 

miR‐33a‐5p  8.2E‐01  1.0E+00  1.4E‐01  4  2801  70%  1.3E‐01  5.9E‐01  1.0E‐02 

miR‐29c‐5p  1.0E+00  9.8E‐01  1.4E‐01  3  318  68%  5.7E‐01  2.8E‐01  1.0E‐02 

miR‐4304  1.0E+00  1.0E+00  1.6E‐01  3  532  75%  6.0E‐01  3.9E‐01  1.2E‐02 

miR‐1228‐5p  1.0E+00  1.0E+00  1.8E‐01  3  517  72%  6.0E‐01  7.2E‐01  1.4E‐02 

miR‐33b‐5p  1.0E+00  1.0E+00  3.4E‐01  2  2647  71%  3.8E‐01  5.9E‐01  3.0E‐02 

miR‐1281  1.0E+00  6.6E‐01  8.6E‐01  2  639  74%  6.1E‐01  7.9E‐02  1.6E‐01 

miR‐1307‐3p  1.0E+00  1.0E+00  9.6E‐01  1  196  73%  8.3E‐01  8.5E‐01  2.5E‐01 

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 51: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

51

© 2016 American Medical Association. All rights reserved.

 

miRNA in GWAS Loci (R2=0.6, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1% 

 p‐value @top5%

 Score 

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1% 

 p‐value @top5% 

 TargetMiner 

                 

miR‐1228‐5p  3.7E‐01  1.4E‐03  2.3E‐04  141  2115  77%  3.4E‐02  6.5E‐05  2.5E‐06 

miR‐4688  1.2E‐01  4.5E‐02  2.3E‐04  121  3775  77%  8.2E‐03  2.6E‐03  1.3E‐06 

miR‐2682‐5p  4.1E‐02  2.6E‐01  2.3E‐04  92  4602  76%  2.5E‐03  1.9E‐02  1.3E‐06 

miR‐3160‐3p  4.7E‐02  7.9E‐02  7.4E‐02  52  3536  77%  2.8E‐03  4.6E‐03  4.3E‐03 

miR‐130a‐3p  4.6E‐01  1.1E‐01  3.4E‐02  25  3853  77%  4.6E‐02  6.8E‐03  1.9E‐03 

miR‐33b‐3p  2.9E‐01  4.7E‐01  8.4E‐03  23  1784  76%  2.5E‐02  4.5E‐02  4.3E‐04 

miR‐1281  1.0E+00  1.8E‐01  1.7E‐03  20  717  79%  8.1E‐01  1.3E‐02  8.1E‐05 

miR‐4655‐5p  9.3E‐01  3.5E‐01  4.4E‐02  9  348  74%  2.3E‐01  2.8E‐02  2.5E‐03 

miR‐29b‐2‐5p  9.7E‐01  6.1E‐02  4.7E‐01  7  1525  75%  3.1E‐01  3.7E‐03  4.7E‐02 

miR‐4677‐3p  2.0E‐01  2.4E‐01  9.8E‐01  6  2353  75%  1.5E‐02  1.8E‐02  3.4E‐01 

miR‐4304  7.4E‐01  4.3E‐01  2.4E‐01  6  2401  76%  1.1E‐01  3.9E‐02  1.8E‐02 

miR‐4677‐5p  4.2E‐01  1.4E‐01  9.9E‐01  6  745  72%  4.1E‐02  9.3E‐03  3.9E‐01 

miR‐137  7.7E‐01  4.0E‐02  9.8E‐01  5  713  74%  1.3E‐01  2.2E‐03  3.7E‐01 

miR‐1307‐3p  9.4E‐01  7.1E‐01  1.2E‐01  4  790  78%  2.5E‐01  9.7E‐02  7.5E‐03 

miR‐33ab‐5p  7.3E‐01  2.1E‐01  9.9E‐01  3  2339  76%  1.1E‐01  1.5E‐02  4.4E‐01 

miR‐29bc‐3p  9.6E‐01  9.2E‐01  1.6E‐01  3  1767  77%  2.8E‐01  2.2E‐01  1.1E‐02 

miR‐3160‐5p  7.5E‐01  4.2E‐01  9.8E‐01  2  804  74%  1.2E‐01  3.7E‐02  3.4E‐01 

miR‐33a‐3p  5.4E‐01  6.4E‐01  9.6E‐01  2  1837  74%  6.0E‐02  8.1E‐02  2.8E‐01 

miR‐4529‐5p  9.6E‐01  6.2E‐01  5.8E‐01  2  1205  76%  3.0E‐01  7.5E‐02  6.5E‐02 

miR‐378i  6.6E‐01  5.5E‐01  9.7E‐01  2  158  76%  8.4E‐02  6.0E‐02  3.1E‐01 

miR‐130a‐5p  1.0E+00  6.6E‐01  1.0E+00  1  145  73%  7.3E‐01  8.4E‐02  7.5E‐01 

miR‐2682‐3p  9.8E‐01  9.1E‐01  8.0E‐01  1  355  79%  3.5E‐01  2.1E‐01  1.4E‐01 

miR‐4529‐3p  1.0E+00  8.2E‐01  9.8E‐01  1  213  75%  4.9E‐01  1.4E‐01  3.5E‐01 

miR‐3655  1.0E+00  1.0E+00  1.0E+00  1  74  76%  6.3E‐01  7.0E‐01  9.5E‐01 

miR‐640  NA  NA  NA  1  34  68%  NA  NA  NA 

miR‐4655‐3p  NA  NA  NA  1  11  73%  NA  NA  NA 

miR‐4301  NA  NA  NA  1  4  67%  NA  NA  NA 

miR‐29c‐5p  NA  NA  NA  1  15  60%  NA  NA  NA 

miR‐1307‐5p  NA  NA  NA  1  7  71%  NA  NA  NA 

miR‐1228‐3p  NA  NA  NA  1  3  33%  NA  NA  NA 

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021

Page 52: Supplementary Online Content - JAMA · Supplementary Online Content - JAMA ... p

52

© 2016 American Medical Association. All rights reserved.

eTable 17: Gene set results for miRNA in schizophrenia CNVs. The gene set analysis for the targets of miRNA located in schizophrenia associated CNVs was performed using three different prediction methods. The number of miRNA varies between the prediction methods as not all miRNA have predictions for each method. The three different thresholds represent the different significance thresholds for the index-SNP used in clumping. Top-1% of SNPs have p-values less than 3.420 x 10-4, top 5% of SNPs have p-values less than 1.096 x 10-2. “Size” indicates the number of genes in the gene set. “Size” indicates the number of genes in the gene set. “Brain” indicates the percentage of the test genes expressed in the brain. “Corrected” are the p-values after correcting for multiple testing, whereas “Raw” are the unadjusted p-values. For a detailed description of the “Score” column please refer to the main text.  

miRNA in CNVs (R2=0.6, 500kb) 

 p‐value @1E‐5 

Corrected p‐value @top1% 

 p‐value @top5% 

 Score

 Size 

 Brain 

 p‐value @1E‐5 

Raw p‐value @top1% 

 p‐value @top5% 

TargetScan                  

miR‐922  1.0E‐01  1.1E‐02  1.2E‐04  183  4226  69%  1.3E‐02  1.3E‐03  1.3E‐06 

miR‐185‐5p  1.1E‐02  1.4E‐01  1.2E‐04  165  2484  69%  1.4E‐03  1.8E‐02  1.3E‐06 

miR‐4761‐5p  3.7E‐01  3.3E‐01  3.8E‐03  28  2853  68%  5.8E‐02  5.1E‐02  4.0E‐04 

miR‐3680‐5p  3.6E‐01  9.7E‐01  1.9E‐02  10  1989  69%  5.8E‐02  4.3E‐01  2.1E‐03 

miR‐4761‐3p  9.3E‐01  1.0E+00  1.0E‐03  8  2272  68%  3.2E‐01  8.8E‐01  9.9E‐05 

miR‐4509  9.9E‐01  7.8E‐01  3.8E‐03  8  2738  69%  4.9E‐01  2.0E‐01  4.0E‐04 

miR‐1306‐3p  9.9E‐01  5.2E‐01  8.7E‐02  6  404  69%  4.9E‐01  9.0E‐02  1.1E‐02 

miR‐648  9.3E‐01  1.0E+00  4.1E‐02  5  1904  70%  3.2E‐01  8.5E‐01  4.7E‐03 

miR‐3618  9.5E‐01  9.3E‐01  2.6E‐01  3  1728  68%  3.7E‐01  3.3E‐01  3.8E‐02 

miR‐3198  8.7E‐01  8.9E‐01  8.6E‐01  1  1453  68%  2.6E‐01  2.8E‐01  2.7E‐01 

 MiRanda 

                 

miR‐185‐3p  5.0E‐01  6.2E‐01  5.0E‐05  27  2493  72%  1.3E‐01  1.7E‐01  1.3E‐06 

miR‐185‐5p  9.4E‐01  7.6E‐01  4.7E‐04  12  3365  70%  4.4E‐01  2.5E‐01  9.5E‐05 

miR‐648  7.2E‐02  3.1E‐01  6.7E‐01  11  1660  72%  1.4E‐02  7.2E‐02  2.0E‐01 

miR‐922  8.8E‐01  7.7E‐01  2.6E‐03  10  3778  71%  3.6E‐01  2.6E‐01  4.4E‐04 

miR‐3198  9.0E‐01  9.9E‐01  1.7E‐01  3  2141  69%  3.8E‐01  6.6E‐01  3.4E‐02 

miR‐1306‐3p  1.0E+00  7.4E‐01  9.8E‐01  1  522  71%  8.4E‐01  2.4E‐01  6.0E‐01 

 TargetMiner 

                 

miR‐185‐5p  6.8E‐03  8.7E‐05  1.6E‐04  604  4029  76%  7.8E‐04  2.5E‐06  7.5E‐06 

miR‐4761‐3p  6.4E‐02  2.2E‐04  2.7E‐04  326  3926  77%  8.4E‐03  1.4E‐05  2.1E‐05 

miR‐185‐3p  1.5E‐01  5.2E‐04  1.2E‐04  250  3353  76%  2.1E‐02  4.9E‐05  1.3E‐06 

miR‐3198  1.9E‐03  5.1E‐03  1.6E‐02  234  3021  75%  2.0E‐04  6.2E‐04  1.8E‐03 

miR‐4761‐5p  1.1E‐02  5.0E‐02  6.1E‐02  83  3877  76%  1.2E‐03  6.4E‐03  7.9E‐03 

miR‐922  7.3E‐01  3.6E‐01  6.6E‐03  16  2379  78%  2.1E‐01  6.4E‐02  7.3E‐04 

miR‐4509  1.7E‐01  9.6E‐02  6.3E‐01  13  3388  76%  2.7E‐02  1.3E‐02  1.6E‐01 

miR‐648  7.5E‐01  2.1E‐02  6.7E‐01  9  1233  78%  2.2E‐01  2.6E‐03  1.8E‐01 

miR‐1306‐3p  9.0E‐01  6.5E‐02  3.4E‐01  9  1148  77%  3.6E‐01  8.3E‐03  6.2E‐02 

miR‐3680‐3p  9.9E‐01  5.9E‐01  8.9E‐01  2  2652  76%  6.2E‐01  1.4E‐01  3.6E‐01 

miR‐3618  8.3E‐01  6.9E‐01  1.0E+00  2  87  75%  2.7E‐01  1.8E‐01  7.4E‐01 

miR‐3680‐5p  NA  NA  NA  1  11  55%  NA  NA  NA 

miR‐1306‐5p  NA  NA  NA  1  6  67%  NA  NA  NA 

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 08/25/2021