88
Supergravity as the square of Super Yang-Mills Silvia Nagy Outline Clues for an unexpected relationship The division algebras A (super)quick intro to Supergravity and Super Yang-Mills The Magic Square A Magic Square of Supergravities Magic pyramid Conformal Pyramid Conclusions and future work Supergravity as the square of Super Yang-Mills Silvia Nagy Imperial College London, based on work done in collaboration with: A.Anastasiou, L. Borsten, M. J. Duff and L. J. Hughes arXiv:1301.4176 SCGSC, November 7, 2013

Supergravity as the square of Super Yang-Millsunexpected relationship The division algebras A (super)quick intro to Supergravity and Super Yang-Mills The Magic Square A Magic Square

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Supergravity as the square of Super Yang-Mills

    Silvia Nagy

    Imperial College London,based on work done in collaboration with:

    A.Anastasiou, L. Borsten, M. J. Duff and L. J. HughesarXiv:1301.4176

    SCGSC, November 7, 2013

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    1 Clues for an unexpected relationshipKLT relations in String TheorySupergravity Multiplets from Yang-Mills Multiplets

    2 The division algebrasWhat is a Division Algebra?R,C,H,O from Cayley-Dickson Doubling

    3 A (super)quick intro to Supergravity and Super Yang-MillsThe Scalar cosets of SupergravityN=1,2,4,8 Super Yang Mills over the division algebras

    4 The Magic SquareProjective planesIsometries of the projective planesThe Magic Square

    5 A Magic Square of SupergravitiesTensoring the MultipletsMAGIC!

    6 Magic pyramid

    7 Conformal Pyramid

    8 Conclusions and future work

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    KLT relations inString Theory

    SupergravityMultiplets fromYang-MillsMultiplets

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Table of Contents1 Clues for an unexpected relationship

    KLT relations in String TheorySupergravity Multiplets from Yang-Mills Multiplets

    2 The division algebrasWhat is a Division Algebra?R,C,H,O from Cayley-Dickson Doubling

    3 A (super)quick intro to Supergravity and Super Yang-MillsThe Scalar cosets of SupergravityN=1,2,4,8 Super Yang Mills over the division algebras

    4 The Magic SquareProjective planesIsometries of the projective planesThe Magic Square

    5 A Magic Square of SupergravitiesTensoring the MultipletsMAGIC!

    6 Magic pyramid7 Conformal Pyramid8 Conclusions and future work

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    KLT relations inString Theory

    SupergravityMultiplets fromYang-MillsMultiplets

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Scattering Amplitudes

    • Simplest example: Parke-Taylor formula for MHVscattering of n gluons:

    AMHV (1, 2, ..., n) = 1< 12 >< 23 > ... < n1 >

    (1)

    • 3-graviton scattering amplitude

    MMHV (1, 2, 3) = 1(< 12 >< 13 >< 23 >)2

    (2)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    KLT relations inString Theory

    SupergravityMultiplets fromYang-MillsMultiplets

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Scattering Amplitudes

    • Simplest example: Parke-Taylor formula for MHVscattering of n gluons:

    AMHV (1, 2, ..., n) = 1< 12 >< 23 > ... < n1 >

    (1)

    • 3-graviton scattering amplitude

    MMHV (1, 2, 3) = 1(< 12 >< 13 >< 23 >)2

    (2)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    KLT relations inString Theory

    SupergravityMultiplets fromYang-MillsMultiplets

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    KLT relations in String Theory

    Any closed string vertex operator for the emission of a closedstring state (e.g. a graviton) is a product of open string states:

    Vclosed = Vopenleft × V̄

    openright (3)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    KLT relations inString Theory

    SupergravityMultiplets fromYang-MillsMultiplets

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Supergravity Multiplets fromYang-Mills Multiplets

    • Tensor 2 YM multiplets of opposite chirality to get TypeIIA SuGra:

    (8V + 8C)⊗ (8V + 8S) = (1 + 28 + 35V + 8V + 56V)B+ (8S + 8C + 56S + 56C)F (4)

    • Tensor 2 YM multiplets of the same chirality to get TypeIIB SuGra:

    (8V + 8C)⊗ (8V + 8C) = (1 + 28 + 35V + 1 + 28 + 35C)B+ (8S + 8S + 56S + 56S)F (5)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    KLT relations inString Theory

    SupergravityMultiplets fromYang-MillsMultiplets

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Supergravity Multiplets fromYang-Mills Multiplets

    • Tensor 2 YM multiplets of opposite chirality to get TypeIIA SuGra:

    (8V + 8C)⊗ (8V + 8S) = (1 + 28 + 35V + 8V + 56V)B+ (8S + 8C + 56S + 56C)F (4)

    • Tensor 2 YM multiplets of the same chirality to get TypeIIB SuGra:

    (8V + 8C)⊗ (8V + 8C) = (1 + 28 + 35V + 1 + 28 + 35C)B+ (8S + 8S + 56S + 56S)F (5)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Table of Contents1 Clues for an unexpected relationship

    KLT relations in String TheorySupergravity Multiplets from Yang-Mills Multiplets

    2 The division algebrasWhat is a Division Algebra?R,C,H,O from Cayley-Dickson Doubling

    3 A (super)quick intro to Supergravity and Super Yang-MillsThe Scalar cosets of SupergravityN=1,2,4,8 Super Yang Mills over the division algebras

    4 The Magic SquareProjective planesIsometries of the projective planesThe Magic Square

    5 A Magic Square of SupergravitiesTensoring the MultipletsMAGIC!

    6 Magic pyramid7 Conformal Pyramid8 Conclusions and future work

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What is a Division Algebra?

    • A division algebra is a ring in which every nonzero elementhas a multiplicative inverse, but multiplication is notnecessarily commutative.

    • A normed division algebra K comes equipped with a norm:

    |ab| = |a||b| (6)

    • Division algebras have no zero divisors.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What is a Division Algebra?

    • A division algebra is a ring in which every nonzero elementhas a multiplicative inverse, but multiplication is notnecessarily commutative.

    • A normed division algebra K comes equipped with a norm:

    |ab| = |a||b| (6)

    • Division algebras have no zero divisors.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What is a Division Algebra?

    • A division algebra is a ring in which every nonzero elementhas a multiplicative inverse, but multiplication is notnecessarily commutative.

    • A normed division algebra K comes equipped with a norm:

    |ab| = |a||b| (6)

    • Division algebras have no zero divisors.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Cayley-Dickson construction• Start with real numbers R. A complex number a + bi ,

    with a, b ∈ R can be thought of as a pair (a, b) with thefollowing rules:

    • multiplication:

    (a, b)(c , d) = (ac − db, ad + cb) (7)

    • conjugation:(a, b)∗ = (a,−b) (8)

    • Similarly, a quaternion can be defined as a pair ofcomplexes (x , y) with:

    • multiplication

    (x , y)(z ,w) = (xz − wy∗, x∗w + zy) (9)

    • conjugation(x , y)∗ = (x∗,−y) (10)

    • Octonions are constructed in exactly the same way from 2quaternions.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Cayley-Dickson construction• Start with real numbers R. A complex number a + bi ,

    with a, b ∈ R can be thought of as a pair (a, b) with thefollowing rules:

    • multiplication:

    (a, b)(c , d) = (ac − db, ad + cb) (7)

    • conjugation:(a, b)∗ = (a,−b) (8)

    • Similarly, a quaternion can be defined as a pair ofcomplexes (x , y) with:

    • multiplication

    (x , y)(z ,w) = (xz − wy∗, x∗w + zy) (9)

    • conjugation(x , y)∗ = (x∗,−y) (10)

    • Octonions are constructed in exactly the same way from 2quaternions.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Cayley-Dickson construction• Start with real numbers R. A complex number a + bi ,

    with a, b ∈ R can be thought of as a pair (a, b) with thefollowing rules:

    • multiplication:

    (a, b)(c , d) = (ac − db, ad + cb) (7)

    • conjugation:(a, b)∗ = (a,−b) (8)

    • Similarly, a quaternion can be defined as a pair ofcomplexes (x , y) with:

    • multiplication

    (x , y)(z ,w) = (xz − wy∗, x∗w + zy) (9)

    • conjugation(x , y)∗ = (x∗,−y) (10)

    • Octonions are constructed in exactly the same way from 2quaternions.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Cayley-Dickson construction• Start with real numbers R. A complex number a + bi ,

    with a, b ∈ R can be thought of as a pair (a, b) with thefollowing rules:

    • multiplication:

    (a, b)(c , d) = (ac − db, ad + cb) (7)

    • conjugation:(a, b)∗ = (a,−b) (8)

    • Similarly, a quaternion can be defined as a pair ofcomplexes (x , y) with:

    • multiplication

    (x , y)(z ,w) = (xz − wy∗, x∗w + zy) (9)

    • conjugation(x , y)∗ = (x∗,−y) (10)

    • Octonions are constructed in exactly the same way from 2quaternions.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    The four division algebras

    • R-real, commutative,associative normed division algebra

    • C-commutative, associative normed division algebra• H-associative normed division algebra• O-normed division algebra

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    The four division algebras

    • R-real, commutative,associative normed division algebra• C-commutative, associative normed division algebra

    • H-associative normed division algebra• O-normed division algebra

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    The four division algebras

    • R-real, commutative,associative normed division algebra• C-commutative, associative normed division algebra• H-associative normed division algebra

    • O-normed division algebra

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    What is aDivisionAlgebra?

    R, C, H, O fromCayley-DicksonDoubling

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    The four division algebras

    • R-real, commutative,associative normed division algebra• C-commutative, associative normed division algebra• H-associative normed division algebra• O-normed division algebra

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Table of Contents1 Clues for an unexpected relationship

    KLT relations in String TheorySupergravity Multiplets from Yang-Mills Multiplets

    2 The division algebrasWhat is a Division Algebra?R,C,H,O from Cayley-Dickson Doubling

    3 A (super)quick intro to Supergravity and Super Yang-MillsThe Scalar cosets of SupergravityN=1,2,4,8 Super Yang Mills over the division algebras

    4 The Magic SquareProjective planesIsometries of the projective planesThe Magic Square

    5 A Magic Square of SupergravitiesTensoring the MultipletsMAGIC!

    6 Magic pyramid7 Conformal Pyramid8 Conclusions and future work

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Supergravity

    • Low energy limit of string theory• General relativity + supersymmetry (local susy parameter).• Field content- supergravity multiplets.• Characterised by scalar coset groups.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Supergravity

    • Low energy limit of string theory

    • General relativity + supersymmetry (local susy parameter).• Field content- supergravity multiplets.• Characterised by scalar coset groups.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Supergravity

    • Low energy limit of string theory• General relativity + supersymmetry (local susy parameter).

    • Field content- supergravity multiplets.• Characterised by scalar coset groups.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Supergravity

    • Low energy limit of string theory• General relativity + supersymmetry (local susy parameter).• Field content- supergravity multiplets.

    • Characterised by scalar coset groups.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Supergravity

    • Low energy limit of string theory• General relativity + supersymmetry (local susy parameter).• Field content- supergravity multiplets.• Characterised by scalar coset groups.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What are the scalar cosets?

    • Symmetries of theories obtained by reduction on variousmanifolds

    • Study symmetries of scalars• General form of transformation:

    V ′ = OVΛ (11)

    • V obtained by exponentiating scalars with CartanGenerator+positive root generators

    • Λ is the global symmetry transformation (G group)• O is the compensating transformation• Example: 2 torus reduction gives the scalar coset SL(2)SO(2)• Minimal variety corresponds to maximal ideal• Scalars determine symmetries of all fields!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What are the scalar cosets?

    • Symmetries of theories obtained by reduction on variousmanifolds

    • Study symmetries of scalars• General form of transformation:

    V ′ = OVΛ (11)

    • V obtained by exponentiating scalars with CartanGenerator+positive root generators

    • Λ is the global symmetry transformation (G group)• O is the compensating transformation• Example: 2 torus reduction gives the scalar coset SL(2)SO(2)• Minimal variety corresponds to maximal ideal• Scalars determine symmetries of all fields!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What are the scalar cosets?

    • Symmetries of theories obtained by reduction on variousmanifolds

    • Study symmetries of scalars

    • General form of transformation:

    V ′ = OVΛ (11)

    • V obtained by exponentiating scalars with CartanGenerator+positive root generators

    • Λ is the global symmetry transformation (G group)• O is the compensating transformation• Example: 2 torus reduction gives the scalar coset SL(2)SO(2)• Minimal variety corresponds to maximal ideal• Scalars determine symmetries of all fields!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What are the scalar cosets?

    • Symmetries of theories obtained by reduction on variousmanifolds

    • Study symmetries of scalars• General form of transformation:

    V ′ = OVΛ (11)

    • V obtained by exponentiating scalars with CartanGenerator+positive root generators

    • Λ is the global symmetry transformation (G group)• O is the compensating transformation

    • Example: 2 torus reduction gives the scalar coset SL(2)SO(2)• Minimal variety corresponds to maximal ideal• Scalars determine symmetries of all fields!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What are the scalar cosets?

    • Symmetries of theories obtained by reduction on variousmanifolds

    • Study symmetries of scalars• General form of transformation:

    V ′ = OVΛ (11)

    • V obtained by exponentiating scalars with CartanGenerator+positive root generators

    • Λ is the global symmetry transformation (G group)• O is the compensating transformation• Example: 2 torus reduction gives the scalar coset SL(2)SO(2)

    • Minimal variety corresponds to maximal ideal• Scalars determine symmetries of all fields!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What are the scalar cosets?

    • Symmetries of theories obtained by reduction on variousmanifolds

    • Study symmetries of scalars• General form of transformation:

    V ′ = OVΛ (11)

    • V obtained by exponentiating scalars with CartanGenerator+positive root generators

    • Λ is the global symmetry transformation (G group)• O is the compensating transformation• Example: 2 torus reduction gives the scalar coset SL(2)SO(2)• Minimal variety corresponds to maximal ideal

    • Scalars determine symmetries of all fields!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What are the scalar cosets?

    • Symmetries of theories obtained by reduction on variousmanifolds

    • Study symmetries of scalars• General form of transformation:

    V ′ = OVΛ (11)

    • V obtained by exponentiating scalars with CartanGenerator+positive root generators

    • Λ is the global symmetry transformation (G group)• O is the compensating transformation• Example: 2 torus reduction gives the scalar coset SL(2)SO(2)• Minimal variety corresponds to maximal ideal• Scalars determine symmetries of all fields!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Super Yang-Mills

    • N = 1 Super YM Lagrangian:

    L = −14Tr(Fµν ,F

    µν)− i2Tr(λ̄, γµDµλ) (12)

    • SYM multiplets• SYM theories are characterised by the R-symmetry, which

    describes transformations of different supercharges intoeach other.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Super Yang-Mills

    • N = 1 Super YM Lagrangian:

    L = −14Tr(Fµν ,F

    µν)− i2Tr(λ̄, γµDµλ) (12)

    • SYM multiplets

    • SYM theories are characterised by the R-symmetry, whichdescribes transformations of different supercharges intoeach other.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Super Yang-Mills

    • N = 1 Super YM Lagrangian:

    L = −14Tr(Fµν ,F

    µν)− i2Tr(λ̄, γµDµλ) (12)

    • SYM multiplets• SYM theories are characterised by the R-symmetry, which

    describes transformations of different supercharges intoeach other.

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    N = 1, 2, 4, 8 Super Yang Millsover the division algebras

    In 3 dimensions, we can write the Lagrangian:

    L =− 14FAµνF

    Aµν − 12Dµφ

    ∗ADµφA + i λ̄AγµDµλA

    − 14g2fBC

    AfDEA〈φB |φD〉〈φC |φE 〉

    +i

    2gfBC

    A(

    (λ̄AφB)λC − λ̄A(φ∗BλC ))

    (13)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The Scalarcosets ofSupergravity

    N=1,2,4,8 SuperYang Mills overthe divisionalgebras

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    N = 1, 2, 4, 8 Super Yang Millsover the division algebras

    In 3 dimensions, we can write the Lagrangian:

    L =− 14FAµνF

    Aµν − 12Dµφ

    ∗ADµφA + i λ̄AγµDµλA

    − 14g2fBC

    AfDEA〈φB |φD〉〈φC |φE 〉

    +i

    2gfBC

    A(

    (λ̄AφB)λC − λ̄A(φ∗BλC ))

    (13)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Table of Contents1 Clues for an unexpected relationship

    KLT relations in String TheorySupergravity Multiplets from Yang-Mills Multiplets

    2 The division algebrasWhat is a Division Algebra?R,C,H,O from Cayley-Dickson Doubling

    3 A (super)quick intro to Supergravity and Super Yang-MillsThe Scalar cosets of SupergravityN=1,2,4,8 Super Yang Mills over the division algebras

    4 The Magic SquareProjective planesIsometries of the projective planesThe Magic Square

    5 A Magic Square of SupergravitiesTensoring the MultipletsMAGIC!

    6 Magic pyramid7 Conformal Pyramid8 Conclusions and future work

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    The projective plane

    • A set of points and lines together with a relation betweenthem, satisfying the following axioms:

    • For any two distinct points, there is a unique line on whichthey both lie.

    • For any two distinct lines, there is a unique point whichlies on both of them.

    • There exist four points, no three of which lie on the sameline.

    • The terms point and line are interchangeable in the abovedefinition.

    • Important: compactness, any two lines intersect

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    A more intuitive definition

    For any field F , the projective plane FP2 is the set ofequivalence classes of non-zero points in F 3, where theequivalence relation is given by:

    (x , y , z) ≡ (rx , ry , rz) (14)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    The real projective plane

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Some simple Lie Algebras

    • so(n) = {x ∈ R[n] : x† = −x , tr(x) = 0}

    • su(n) = {x ∈ C[n] : x† = −x , tr(x) = 0}• sp(n) = {x ∈ H[n] : x† = −x}• Describe collectively by sa(n,A)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Some simple Lie Algebras

    • so(n) = {x ∈ R[n] : x† = −x , tr(x) = 0}• su(n) = {x ∈ C[n] : x† = −x , tr(x) = 0}

    • sp(n) = {x ∈ H[n] : x† = −x}• Describe collectively by sa(n,A)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Some simple Lie Algebras

    • so(n) = {x ∈ R[n] : x† = −x , tr(x) = 0}• su(n) = {x ∈ C[n] : x† = −x , tr(x) = 0}• sp(n) = {x ∈ H[n] : x† = −x}

    • Describe collectively by sa(n,A)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Some simple Lie Algebras

    • so(n) = {x ∈ R[n] : x† = −x , tr(x) = 0}• su(n) = {x ∈ C[n] : x† = −x , tr(x) = 0}• sp(n) = {x ∈ H[n] : x† = −x}• Describe collectively by sa(n,A)

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Isometries of projective planes

    • isom(RP2) ∼= so(3)• isom(CP2) ∼= su(3)• isom(HP2) ∼= sp(3)• isom(OP2) ∼= f4

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Isometries of projective planes

    • isom(RP2) ∼= so(3)

    • isom(CP2) ∼= su(3)• isom(HP2) ∼= sp(3)• isom(OP2) ∼= f4

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Isometries of projective planes

    • isom(RP2) ∼= so(3)• isom(CP2) ∼= su(3)

    • isom(HP2) ∼= sp(3)• isom(OP2) ∼= f4

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Isometries of projective planes

    • isom(RP2) ∼= so(3)• isom(CP2) ∼= su(3)• isom(HP2) ∼= sp(3)

    • isom(OP2) ∼= f4

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Isometries of projective planes

    • isom(RP2) ∼= so(3)• isom(CP2) ∼= su(3)• isom(HP2) ∼= sp(3)• isom(OP2) ∼= f4

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What about the exceptionalgroups?

    • isom((C⊗O)P2) ∼= e6• isom((H⊗O)P2) ∼= e7• isom((O⊗O)P2) ∼= e8

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What about the exceptionalgroups?

    • isom((C⊗O)P2) ∼= e6

    • isom((H⊗O)P2) ∼= e7• isom((O⊗O)P2) ∼= e8

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What about the exceptionalgroups?

    • isom((C⊗O)P2) ∼= e6• isom((H⊗O)P2) ∼= e7

    • isom((O⊗O)P2) ∼= e8

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What about the exceptionalgroups?

    • isom((C⊗O)P2) ∼= e6• isom((H⊗O)P2) ∼= e7• isom((O⊗O)P2) ∼= e8

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    The magic square

    • Define the magic square by:

    M(AL,AR) = isom((AL ⊗ AR)P2) (15)

    •AL/AR R C H OR SL(2,R) SU(2, 1) USp(4, 2) F4(−20)C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)O F4(−20) E6(−14) E7(−5) E8(8)

    Table : Magic square

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    Projective planes

    Isometries of theprojective planes

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    The magic square

    • Define the magic square by:

    M(AL,AR) = isom((AL ⊗ AR)P2) (15)

    •AL/AR R C H OR SL(2,R) SU(2, 1) USp(4, 2) F4(−20)C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)O F4(−20) E6(−14) E7(−5) E8(8)

    Table : Magic square

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Tensoring theMultiplets

    MAGIC!

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Table of Contents1 Clues for an unexpected relationship

    KLT relations in String TheorySupergravity Multiplets from Yang-Mills Multiplets

    2 The division algebrasWhat is a Division Algebra?R,C,H,O from Cayley-Dickson Doubling

    3 A (super)quick intro to Supergravity and Super Yang-MillsThe Scalar cosets of SupergravityN=1,2,4,8 Super Yang Mills over the division algebras

    4 The Magic SquareProjective planesIsometries of the projective planesThe Magic Square

    5 A Magic Square of SupergravitiesTensoring the MultipletsMAGIC!

    6 Magic pyramid7 Conformal Pyramid8 Conclusions and future work

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Tensoring theMultiplets

    MAGIC!

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Tensoring the Multiplets• In 3 dimensions, we tensor together left and right

    multiplets of Super YM, for N = 1, 2, 4, 8

    •NL(SYM) +NR(SYM) = NSuGra (16)

    • Equivalently:|AL|+ |AR | = NSuGra (17)

    • Remenber the fields are: ψA and φA, with A = 1, ...|AL,R |• The scalars of supergravity will be:

    φSuGra =

    (ψA ⊗ ψB

    φA ⊗ φB

    )(18)

    • They are points in (AL ⊗ AR)2• This is affine space, need to take projective closure − >

    (AL ⊗ AR)P2 !

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Tensoring theMultiplets

    MAGIC!

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Tensoring the Multiplets• In 3 dimensions, we tensor together left and right

    multiplets of Super YM, for N = 1, 2, 4, 8•

    NL(SYM) +NR(SYM) = NSuGra (16)

    • Equivalently:|AL|+ |AR | = NSuGra (17)

    • Remenber the fields are: ψA and φA, with A = 1, ...|AL,R |• The scalars of supergravity will be:

    φSuGra =

    (ψA ⊗ ψB

    φA ⊗ φB

    )(18)

    • They are points in (AL ⊗ AR)2• This is affine space, need to take projective closure − >

    (AL ⊗ AR)P2 !

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Tensoring theMultiplets

    MAGIC!

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Tensoring the Multiplets• In 3 dimensions, we tensor together left and right

    multiplets of Super YM, for N = 1, 2, 4, 8•

    NL(SYM) +NR(SYM) = NSuGra (16)

    • Equivalently:|AL|+ |AR | = NSuGra (17)

    • Remenber the fields are: ψA and φA, with A = 1, ...|AL,R |• The scalars of supergravity will be:

    φSuGra =

    (ψA ⊗ ψB

    φA ⊗ φB

    )(18)

    • They are points in (AL ⊗ AR)2• This is affine space, need to take projective closure − >

    (AL ⊗ AR)P2 !

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Tensoring theMultiplets

    MAGIC!

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Tensoring the Multiplets• In 3 dimensions, we tensor together left and right

    multiplets of Super YM, for N = 1, 2, 4, 8•

    NL(SYM) +NR(SYM) = NSuGra (16)

    • Equivalently:|AL|+ |AR | = NSuGra (17)

    • Remenber the fields are: ψA and φA, with A = 1, ...|AL,R |

    • The scalars of supergravity will be:

    φSuGra =

    (ψA ⊗ ψB

    φA ⊗ φB

    )(18)

    • They are points in (AL ⊗ AR)2• This is affine space, need to take projective closure − >

    (AL ⊗ AR)P2 !

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Tensoring theMultiplets

    MAGIC!

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Tensoring the Multiplets• In 3 dimensions, we tensor together left and right

    multiplets of Super YM, for N = 1, 2, 4, 8•

    NL(SYM) +NR(SYM) = NSuGra (16)

    • Equivalently:|AL|+ |AR | = NSuGra (17)

    • Remenber the fields are: ψA and φA, with A = 1, ...|AL,R |• The scalars of supergravity will be:

    φSuGra =

    (ψA ⊗ ψB

    φA ⊗ φB

    )(18)

    • They are points in (AL ⊗ AR)2• This is affine space, need to take projective closure − >

    (AL ⊗ AR)P2 !

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Tensoring theMultiplets

    MAGIC!

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Tensoring the Multiplets• In 3 dimensions, we tensor together left and right

    multiplets of Super YM, for N = 1, 2, 4, 8•

    NL(SYM) +NR(SYM) = NSuGra (16)

    • Equivalently:|AL|+ |AR | = NSuGra (17)

    • Remenber the fields are: ψA and φA, with A = 1, ...|AL,R |• The scalars of supergravity will be:

    φSuGra =

    (ψA ⊗ ψB

    φA ⊗ φB

    )(18)

    • They are points in (AL ⊗ AR)2

    • This is affine space, need to take projective closure − >(AL ⊗ AR)P2 !

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Tensoring theMultiplets

    MAGIC!

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Tensoring the Multiplets• In 3 dimensions, we tensor together left and right

    multiplets of Super YM, for N = 1, 2, 4, 8•

    NL(SYM) +NR(SYM) = NSuGra (16)

    • Equivalently:|AL|+ |AR | = NSuGra (17)

    • Remenber the fields are: ψA and φA, with A = 1, ...|AL,R |• The scalars of supergravity will be:

    φSuGra =

    (ψA ⊗ ψB

    φA ⊗ φB

    )(18)

    • They are points in (AL ⊗ AR)2• This is affine space, need to take projective closure − >

    (AL ⊗ AR)P2 !

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Tensoring theMultiplets

    MAGIC!

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Magic Square of Supergravities

    AL/AR R C H O

    R SL(2,R) SU(2, 1) USp(4, 2) F4(−20)C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)O F4(−20) E6(−14) E7(−5) E8(8)

    Table : Magic square

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Table of Contents1 Clues for an unexpected relationship

    KLT relations in String TheorySupergravity Multiplets from Yang-Mills Multiplets

    2 The division algebrasWhat is a Division Algebra?R,C,H,O from Cayley-Dickson Doubling

    3 A (super)quick intro to Supergravity and Super Yang-MillsThe Scalar cosets of SupergravityN=1,2,4,8 Super Yang Mills over the division algebras

    4 The Magic SquareProjective planesIsometries of the projective planesThe Magic Square

    5 A Magic Square of SupergravitiesTensoring the MultipletsMAGIC!

    6 Magic pyramid7 Conformal Pyramid8 Conclusions and future work

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    SYM in various dimensions

    • Remember the lagragian:

    L = −14Tr(Fµν ,F

    µν)− i2Tr(λ̄, γµDµλ) (19)

    • We want its SUSY variation to vanish• We get a term of the form:

    Tr(λ, γµ[(�γµλ), λ]) (20)

    • Only vanishes in 3,4,6 and 10 dimensions!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    SYM in various dimensions

    • Remember the lagragian:

    L = −14Tr(Fµν ,F

    µν)− i2Tr(λ̄, γµDµλ) (19)

    • We want its SUSY variation to vanish

    • We get a term of the form:

    Tr(λ, γµ[(�γµλ), λ]) (20)

    • Only vanishes in 3,4,6 and 10 dimensions!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    SYM in various dimensions

    • Remember the lagragian:

    L = −14Tr(Fµν ,F

    µν)− i2Tr(λ̄, γµDµλ) (19)

    • We want its SUSY variation to vanish• We get a term of the form:

    Tr(λ, γµ[(�γµλ), λ]) (20)

    • Only vanishes in 3,4,6 and 10 dimensions!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    SYM in various dimensions

    • Remember the lagragian:

    L = −14Tr(Fµν ,F

    µν)− i2Tr(λ̄, γµDµλ) (19)

    • We want its SUSY variation to vanish• We get a term of the form:

    Tr(λ, γµ[(�γµλ), λ]) (20)

    • Only vanishes in 3,4,6 and 10 dimensions!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What have we learnt so far?

    • Extended Super YM theories characterised by divisionalgebras in 3D.

    • Tensor them to get supergravities, whose global symmetrygroups are given by the magic square construction.

    • Pure super- Yang-Mills theories only exist in 3,4,6 and 10dimensions!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What have we learnt so far?

    • Extended Super YM theories characterised by divisionalgebras in 3D.

    • Tensor them to get supergravities, whose global symmetrygroups are given by the magic square construction.

    • Pure super- Yang-Mills theories only exist in 3,4,6 and 10dimensions!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What have we learnt so far?

    • Extended Super YM theories characterised by divisionalgebras in 3D.

    • Tensor them to get supergravities, whose global symmetrygroups are given by the magic square construction.

    • Pure super- Yang-Mills theories only exist in 3,4,6 and 10dimensions!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    What have we learnt so far?

    • Extended Super YM theories characterised by divisionalgebras in 3D.

    • Tensor them to get supergravities, whose global symmetrygroups are given by the magic square construction.

    • Pure super- Yang-Mills theories only exist in 3,4,6 and 10dimensions!

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    The Magic Pyramid

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    4 dimensions

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Table of Contents1 Clues for an unexpected relationship

    KLT relations in String TheorySupergravity Multiplets from Yang-Mills Multiplets

    2 The division algebrasWhat is a Division Algebra?R,C,H,O from Cayley-Dickson Doubling

    3 A (super)quick intro to Supergravity and Super Yang-MillsThe Scalar cosets of SupergravityN=1,2,4,8 Super Yang Mills over the division algebras

    4 The Magic SquareProjective planesIsometries of the projective planesThe Magic Square

    5 A Magic Square of SupergravitiesTensoring the MultipletsMAGIC!

    6 Magic pyramid7 Conformal Pyramid8 Conclusions and future work

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Conformal Pyramid

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Conformal Pyramid formula

    • The U-duality groups given by the formula:

    H(AL,AR ,A) = R(AL,A)⊕ R(AR ,A) + |A| · AL × AR+ St(AP2) (21)

    • WhereR(AL,R ,A) ∼ sa(|AL,R |,A) (22)

    • Prediction for D=10

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Conformal Pyramid formula

    • The U-duality groups given by the formula:

    H(AL,AR ,A) = R(AL,A)⊕ R(AR ,A) + |A| · AL × AR+ St(AP2) (21)

    • WhereR(AL,R ,A) ∼ sa(|AL,R |,A) (22)

    • Prediction for D=10

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Conformal Pyramid formula

    • The U-duality groups given by the formula:

    H(AL,AR ,A) = R(AL,A)⊕ R(AR ,A) + |A| · AL × AR+ St(AP2) (21)

    • WhereR(AL,R ,A) ∼ sa(|AL,R |,A) (22)

    • Prediction for D=10

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Table of Contents1 Clues for an unexpected relationship

    KLT relations in String TheorySupergravity Multiplets from Yang-Mills Multiplets

    2 The division algebrasWhat is a Division Algebra?R,C,H,O from Cayley-Dickson Doubling

    3 A (super)quick intro to Supergravity and Super Yang-MillsThe Scalar cosets of SupergravityN=1,2,4,8 Super Yang Mills over the division algebras

    4 The Magic SquareProjective planesIsometries of the projective planesThe Magic Square

    5 A Magic Square of SupergravitiesTensoring the MultipletsMAGIC!

    6 Magic pyramid7 Conformal Pyramid8 Conclusions and future work

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Conclusions and future work

    • Division algebras provide further evidence for the idea thatSupergravity is, in a sense, the square of a gauge theory.

    • Supergravity pyramid, Lagrangian.• Local symmetries of SuGra (diffeomorphisms, gauge +

    local SUSY) from gauge symmetries of SYM.

    • L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy, “Amagic square from Yang-Mills squared,” arXiv:1301.4176[hep-th].

    • A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes andS. Nagy, “Super Yang-Mills, division algebras and triality,”arXiv:1309.0546 [hep-th].

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Conclusions and future work

    • Division algebras provide further evidence for the idea thatSupergravity is, in a sense, the square of a gauge theory.

    • Supergravity pyramid, Lagrangian.

    • Local symmetries of SuGra (diffeomorphisms, gauge +local SUSY) from gauge symmetries of SYM.

    • L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy, “Amagic square from Yang-Mills squared,” arXiv:1301.4176[hep-th].

    • A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes andS. Nagy, “Super Yang-Mills, division algebras and triality,”arXiv:1309.0546 [hep-th].

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Conclusions and future work

    • Division algebras provide further evidence for the idea thatSupergravity is, in a sense, the square of a gauge theory.

    • Supergravity pyramid, Lagrangian.• Local symmetries of SuGra (diffeomorphisms, gauge +

    local SUSY) from gauge symmetries of SYM.

    • L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy, “Amagic square from Yang-Mills squared,” arXiv:1301.4176[hep-th].

    • A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes andS. Nagy, “Super Yang-Mills, division algebras and triality,”arXiv:1309.0546 [hep-th].

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Conclusions and future work

    • Division algebras provide further evidence for the idea thatSupergravity is, in a sense, the square of a gauge theory.

    • Supergravity pyramid, Lagrangian.• Local symmetries of SuGra (diffeomorphisms, gauge +

    local SUSY) from gauge symmetries of SYM.

    • L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy, “Amagic square from Yang-Mills squared,” arXiv:1301.4176[hep-th].

    • A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes andS. Nagy, “Super Yang-Mills, division algebras and triality,”arXiv:1309.0546 [hep-th].

  • Supergravityas the square

    of SuperYang-Mills

    Silvia Nagy

    Outline

    Clues for anunexpectedrelationship

    The divisionalgebras

    A(super)quickintro toSupergravityand SuperYang-Mills

    The MagicSquare

    A MagicSquare ofSupergravities

    Magic pyramid

    ConformalPyramid

    Conclusionsand futurework

    Conclusions and future work

    • Division algebras provide further evidence for the idea thatSupergravity is, in a sense, the square of a gauge theory.

    • Supergravity pyramid, Lagrangian.• Local symmetries of SuGra (diffeomorphisms, gauge +

    local SUSY) from gauge symmetries of SYM.

    • L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy, “Amagic square from Yang-Mills squared,” arXiv:1301.4176[hep-th].

    • A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes andS. Nagy, “Super Yang-Mills, division algebras and triality,”arXiv:1309.0546 [hep-th].

    Clues for an unexpected relationshipKLT relations in String TheorySupergravity Multiplets from Yang-Mills Multiplets

    The division algebrasWhat is a Division Algebra?R,C,H,O from Cayley-Dickson Doubling

    A (super)quick intro to Supergravity and Super Yang-MillsThe Scalar cosets of SupergravityN=1,2,4,8 Super Yang Mills over the division algebras

    The Magic SquareProjective planesIsometries of the projective planesThe Magic Square

    A Magic Square of SupergravitiesTensoring the MultipletsMAGIC!

    Magic pyramidConformal PyramidConclusions and future work