32
Superconductivity and Low Temperature Physics II Lecture Notes Summer Semester 2015 R. Gross © Walther-Meißner-Institute

Superconductivity and Low Temperature Physics II

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Superconductivity and Low Temperature Physics II

Superconductivityand

Low TemperaturePhysics II

Lecture NotesSummer Semester 2015

R. Gross© Walther-Meißner-Institute

Page 2: Superconductivity and Low Temperature Physics II

Intro - 2

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)General Remarks on the Courses to the Field

Superconductivity and Low Temperature Physics

The following lectures are offered on a regular basis:

1. Superconductivity and Low Temperature Physics I Foundations of Superconductivity

2. Superconductivity and Low Temperature Physics II (SS 2015: Thu., 12:30h, HS 3) Foundations of Low Temperature Physics and Techniques

3. Applied Superconductivity (SS 2015: Mon. & Wed., 14:15h, WMI) Josephson-Effects, Superconducting Electronics, Quantum Circuits

4. Several Seminars (see announcements)

Documents and Hints:http://www.wmi.badw.de Teaching (announcement of lectures) Lecture Notes (download of scripts, handouts, etc.) Seminars (announcement of seminars)

SS 2015:- Advances in Solid-State Physics

Tue. 10:15 – 11:30hSeminar room 143, WMI

- Superconducting Quantum CircuitsTue. 14:30 – 16:00hLibrary, WMI

Page 3: Superconductivity and Low Temperature Physics II

Intro - 3

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Applied SuperconductivitySuperconductivity andLow Temperature PhysicsII

Spin Electronics

Sum

mer

Sem

este

r 2

01

5VO,ÜB,

Skript

Seminar: Superconducting Quantum Circuits

Tue., 14.30 – 16.00 h, Seminar room, WMI

Seminar: Advances in Solid State Physics

Tue., 10.15 – 11.45 h, Seminar room, WMI

Seminar: Topical Issues in Magneto- and Spin Electronics

Wed., 10.15 – 11.45 hSeminar room, WMI

Mon. and Wed., 14.15 – 15.45 hSeminar room, WMI

Tue, 13.30 – 15.00 hSeminar room, WMI

VO,ÜB,

Skript

VO,ÜB,

Skript

Rudolf Gross Frank Deppe

Thu, 12.30 – 14.00 hPhysics Department, HS3

Hans Hübl

M. Althammer

Walther-Meißner-Institut (www.wmi.badw.de)

Page 4: Superconductivity and Low Temperature Physics II

Intro - 4

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

year name discovery

1913 Heike Kamerlingh Onnes "For his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium"

1972 John Bardeen, Leon Neil Cooper und Robert Schrieffer

"for their jointly developed theory of superconductivity, usually called the BCS-theory"

1973 Brian David Josephson "for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effect"

1978 Pjotr Kapiza "for his basic inventions and discoveries in the area of low-temperature physics"

1985 Klaus von Klitzing "for the discovery of the quantized Hall effect"

1987 Johannes Georg Bednorz undKarl Alex Müller

"for their important break-through in the discovery of superconductivity in ceramicmaterials"

1996 David M. Lee, Douglas D. Osheroff und Robert C. Richardson

"for their discovery of superfluidity in helium-3"

1997 Steven Chu, Claude Cohen-Tannoudjiund William D. Phillips

"for development of methods to cool and trap atoms with laser light" See Laser cooling.

1998 Robert B. Laughlin, Horst Ludwig Störmer und Daniel Chee Tsui

"for their discovery of a new form of quantum fluid with fractionally charged excitations". See Quantum Hall effect.

2001 Eric A. Cornell, Wolfgang Ketterle und Carl E. Wieman

"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates"

2003 Alexei Abrikosov, Witali Ginsburg und Anthony James Leggett

"for pioneering contributions to the theory of superconductors and superfluids"

Nobel Prizes in Physics related to low temperature physics

Page 5: Superconductivity and Low Temperature Physics II

Intro - 5

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Superconductivityand

Low TemperaturePhysics II

Contents of the Lecture

Page 6: Superconductivity and Low Temperature Physics II

Intro - 6

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

I.1 Foundations and General PropertiesI.1.1 Quantum FluidsI.1.2 HeliumI.1.3 Van der Waals BondingI.1.4 Zero-Point FluctuationsI.1.5 Helium under PressureI.1.6 pT-Phase Diagram of 4He and 3HeI.1.7 Characteristic Properties of 4He and 3HeI.1.8 Specific Heat of 4He and 3He

I.2 4He as an Ideal Bose GasI.2.1 Bose-Einstein CondensationI.2.2 Bose-Einstein Condensation of 4He

I.3 Superfluid 4HeI.3.1 Experimental ObservationsI.3.2 Two-Fluid ModelI.3.3 Excitation Spectrum of 4He

I.4 VorticesI.4.1 Quantization of CirculationI.4.2 Experimental Study of Vortices

Contents Part I: Quantum Fluids

I.5 3HeI.5.1 normal fluid 3HeI.5.2 solid 3He and Pomeranchuk

effectI.5.3 superfluid 3He

I.6 3He / 4He mixtures

Page 7: Superconductivity and Low Temperature Physics II

Intro - 7

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

II.1 Specific HeatII.1.1

II.2 Thermal ConductanceII.2.1

II.3 Phonons and ElectronsII.3.1

II.4 Magnetic Moments II.4.1

Contents Part II: Solids at Low Temperature

Page 8: Superconductivity and Low Temperature Physics II

Intro - 8

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

III.1 IntroductionIII.1.1 General RemarksIII.1.2 Mesoscopic SystemsIII.1.3 Characteristic Length ScalesIII.1.4 Characteristic Energy ScalesIII.1.5 Transport Regimes

III.2 Description of Electron Transport by Scattering of WavesIII.2.1 Electron Waves and WaveguidesIII.2.2 Landauer FormalismIII.2.3 Multi-terminal Conductors

III.3 Quantum Interference EffectsIII.3.1 Double Slit ExperimentIII.3.2 Two Barriers – Resonant TunnelingIII.3.3 Aharonov-Bohm EffectIII.3.4 Weak LocalizationIII.3.5 Universal Conductance Fluctuations

III.4 From Quantum Mechanics to Ohm‘s Law

III.5 Coulomb Blockade

Contents Part III: Quantum Transport in Nanostructures

Page 9: Superconductivity and Low Temperature Physics II

Intro - 9

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

IV.1 Generation of Low TemperaturesIV.1.1 IntroductionIV.1.2 Expansion MachineIV.1.3 Regenerative MachineIV.1.4 Joule-Thomson CoolingIV.1.5 SummaryIV.1.6 Evaporation CoolingIV.1.7 Dilution CoolingIV.1.8 Pomeranchuk CoolingIV.1.9 Adiabatic Demagnetization

IV.2 ThermometryIV.2.1 IntroductionIV.2.2 Primary ThermometersIV.2.3 Secondary Thermometers

Contents Part IV: Cryogenic Techniques:

Generation and Measurement of LT

Page 10: Superconductivity and Low Temperature Physics II

Intro - 10

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

• F. PobellMatter and Methods at Low Temperatures, Springer 1996

• D.R. Tilley and J. TilleySuperfluidity and Superconductivity, Adam Hilger 1990

• C. Enss and S. HunklingerLow-Temperature Physics, Springer 2005

• P.V.E. McClintock, D.J. Meredith, J.K. WigmoreMatter at Low Temperatures, Blackie 1984

• J. Wilks, D.S. BettsIntroduction to Liquid Helium, Oxford 1987

• A. KentExperimental Low Temperarure Physics, MacMillan, New York

• G.K. White, P.J. MeesonExperimental Techniques in Low Temperature PhysicsOxford University Press, 2002

• K.H. Bennemann, J.B. KettersonThe Physics of Liquid and Solid Helium I and II, Wiley 1978

• H. Frey, R.A. HaeferTieftemperaturtechnologie, VDI-Verlag, Düsseldorf 1981

• Yoseph ImryIntroduction to Mesoscopic PhysicsOxford University Press, Oxford (1997)

• Supriyoto DattaElectronic Transport in Mesoscopic SystemsCambridge University Press, Cambridge (1995)

• Thomas HeinzelMesoscopic Electronic in Solid State NanostructuresWiley VCH, Weinheim (2003)

Literature

Page 11: Superconductivity and Low Temperature Physics II

Intro - 11

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

) •superconductivity and superfluidity

•magnetism

•mesoscopic physics

•nanoscale superconducting and spintronic devices

•superconducting quantum bits

•………

an appetizer

Low Temperature Physics at WMI

Page 12: Superconductivity and Low Temperature Physics II

R. G

ross

an

dA

. Mar

x, ©

Wal

the

r-M

eiß

ne

r-In

stit

ute

(2

00

4-2

01

0)

25 nm

Nb Au

Flux Qubit WMI

Page 13: Superconductivity and Low Temperature Physics II

Intro - 13

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Pr1.85Ce0.15CuO4

Crystal Growth Lab

YBa2Cu3O7-d

Bi2Sr2CaCu2O8+d Image Furnace

Page 14: Superconductivity and Low Temperature Physics II

Intro - 14

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

fiber for IR laser heating

substrate manipulators

excimer laser optics

target manipulators

pyrometer

casing of RHEED screen and camera

operator tool

AFM/STM system

atomic oxygen source

Laser-Molecular Beam Epitaxy

Page 15: Superconductivity and Low Temperature Physics II

R. G

ross

an

dA

. Mar

x, ©

Wal

the

r-M

eiß

ne

r-In

stit

ute

(2

00

4-2

01

0)

[1] R. Gross et al., SPIE Conf. Proc. Vol. 4058 (2000), pp. 278-294

[2] J. Klein, C. Höfener, L. Alff, and R.Gross, Supercond. Sci. Technol. 12, 1023 (1999).

[3] J. Klein, C. Höfener, L. Alff, and R.Gross, J. Magn. and Magn. Mat. 211, 9 (2000).

Page 16: Superconductivity and Low Temperature Physics II

Intro - 16

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

SrTiO3

La2/3Ba1/3MnO3

Oxide Heterostructures for Oxide Electronics

Example: Magnetic Tunnel Junction for

Magnetic Random Access Memories (MRAM)

SrTiO3

La2/3Ba1/3MnO3

La2/3Ba1/3MnO3

Page 17: Superconductivity and Low Temperature Physics II

Intro - 17

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Clean Room: 50m², class 100

Page 18: Superconductivity and Low Temperature Physics II

Intro - 18

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Electron Beam Lithography

Philips XL30 SFEG

Lithography System:

Raith ELPHY plus

Al

Page 19: Superconductivity and Low Temperature Physics II

Intro - 19

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Intel dual-core 45 nm

(2007)

first transistor (1947)

Bardeen, Brattain, & Shockley

vacuum tubes

ENIAC (1946)

Enigma (1940)

physics

technology

superconducting Qubit

20 µm

WMI

From mechanical to quantum mechanical IP

Page 20: Superconductivity and Low Temperature Physics II

Intro - 20

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Collaborative Research Center 631 Cluster of Excellence NIM

CeNS

F

WSI

F

SemiconductorQuantum Dots

MPQ

Trapped Atoms and Ions

2 µm

Al

WMI

Superconducting Qubits

Development of Hardware Platform for QIP Systems

Page 21: Superconductivity and Low Temperature Physics II

Intro - 27

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

mK Technology for Circuit QED Experiments

Page 22: Superconductivity and Low Temperature Physics II

Intro - 28

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

mK Technology for Circuit QED Experiments

Page 23: Superconductivity and Low Temperature Physics II

Intro - 29

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

„Dry“ dilution refrigerator (~ 20 mK)

commercial exploitation by Vericold GmbH, Ismaning

Page 24: Superconductivity and Low Temperature Physics II

Intro - 30

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

30

innovative cryoengineering

…..WMI develops first dry dilution fridge

K. Uhlig, Cryogenics 42, 73 – 77 (2002)

Oxford Instruments Triton family

market share of dry dilution fridges: > 90%

„Dry“ dilution refrigerator (~ 20 mK)

Page 25: Superconductivity and Low Temperature Physics II

Intro - 31

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

WMI Quantum Science Laboratory

Dezember 2011

Page 26: Superconductivity and Low Temperature Physics II

Intro - 32

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Helium-Liquefaction

• Helium liquefier at WMI:Linde TCF 20

• supply of LHe to both MunichUniversities

• liquefaction power: > 150 000 l/year

• market price:about 1 Mio. €

Page 27: Superconductivity and Low Temperature Physics II

R. G

ross

an

dA

. Mar

x, ©

Wal

the

r-M

eiß

ne

r-In

stit

ute

(2

00

4-2

01

0)

SomeIntroductory

Remarks

Page 28: Superconductivity and Low Temperature Physics II

Intro - 35

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Temperature Scale

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

tem

per

atu

re (

K)

same amount of new physicson every decade of log T scale

center of hottest stars

center of the sun, nuclear energies

electronic energies, chemical bonding

surface of sun, highest boiling temperatures

organic life

liquid air

liquid 4Heuniverse

superfluid 3He

lowest temperatures of condensed matter

elec

tro

nic

m

ag

net

ism

nu

clea

r-m

ag

net

ism

sup

erco

nd

uct

ivit

y

low

te

mp

era

ture

re

se

arc

h

lowest temperature in nuclear spin system achieved by adiabatic demagnetizationof Rhodium nuclei: ≈ 100 pK

Page 29: Superconductivity and Low Temperature Physics II

Intro - 37

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Year

low

tem

per

atu

res

ult

ra-l

ow

tem

per

atu

res

paramagnetic refrigeration

nuclear demagnetization

Generation of Low Temperatures - History

Page 30: Superconductivity and Low Temperature Physics II

Intro - 38

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Carl Paul Gottfried von Linde* 11. Juni 1842 in Berndorf, Oberfranken

† 16. November 1934 in Munich

Low Temperature Technology in Germany

1868 offer of chair at thePolytechnische Schule München (now TUM)

1873 development of cooling machine allowingthe temperature stabilization in beer brewing

21. 6. 1879 foundation of „Gesellschaft für Linde’sEismaschinen AG“ together with twobeer brewers and three other co-founders

1892 - 1910 re-establishment of professorship

12.5.1903 patent application: „Lindesches Gegenstrom-verfahren“liquefaction of oxygen(-182°C = 90 K)

Page 31: Superconductivity and Low Temperature Physics II

Intro - 40

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

Walther Meißner* 16. Dezember 1882 in Berlin

† 15. November 1974 in Munich

1913 – 1934 building and heading of low temperaturelaboratory at the Physikalisch-Technischen-Reichsanstalt, liquefaction of H2 (20K)

7.3.1925 first liquefaction of He in Germany (4.2 K, 200 ml), 3rd system world-widebesides Leiden and Toronto

1933 discovery of perfect diamagnetism ofsuperconductors together with OchsenfeldMeißner-Ochsenfeld Effect

1934 offer of chair at theTechnische Hochschule München (now TUM)

1946 – 1950 president of the Bayerischen Akademie der Wissenschaften

1946 foundation of the commission for Low Temperature Research Walther-Meißner-Institut

Walther Meißner - der Mann, mit dem die Kälte kamW. Buck, D. Einzel, R. Gross, Physik Journal, Mai 2013

Low Temperature Technology in Germany

Page 32: Superconductivity and Low Temperature Physics II

Intro - 41

R. G

ross

and

A. M

arx

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

4 -

20

15

)

@ 1 bar

Cryogenic Liquids