35
Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC, UMR-E CEA /UJF, CEA-Grenoble 38054, Grenoble, France [email protected] Radioelektronika 2011

Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Embed Size (px)

Citation preview

Page 1: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconducting RSFQ Logic: Towards 100GHz

Digital Electronics

Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER

IINAC, UMR-E CEA /UJF, CEA-Grenoble 38054, Grenoble, France

[email protected]

Radioelektronika 2011

Page 2: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 2/35

Outline

Superconductivity: introduction

Josephson effect, SQUID

Superconducting logic RSFQ

Application, examples

Fabrication, process

Page 3: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

I. I. Motivation: SuperconductivityMotivation: Superconductivity

Page 4: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 4/35

Brief historyBrief history 1908:1908: liquefaction of liquefaction of 44HeHe 1911:1911: Superconductivity in Superconductivity in

mercurymercury 1925:1925: Prediction of Bose- Prediction of Bose-

Einstein condensationEinstein condensation 1927:1927: Superfluidity Superfluidity 44HeHe 1933:1933: Meissner effect Meissner effect 1950:1950: Ginzburk-Landau theory Ginzburk-Landau theory 1957:1957: BCS theory BCS theory 196:196: Josepshon effect, SQUID Josepshon effect, SQUID 1986:1986: HTC HTC

19198585:: RSFQ RSFQ

Img: H. K. Onnes, Commun. Phys. Lab.12,120, (1911)

Page 5: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 5/35

SuperconductivitySuperconductivity Superconductivity is a fundamental Superconductivity is a fundamental

macroscopic state, occurring at macroscopic state, occurring at the transition temperature Tthe transition temperature TC C

(phase transition) (phase transition) New phenomena occurs in the New phenomena occurs in the

superconducting core. Amongst superconducting core. Amongst most important:most important:

Resistivity drop to zeroResistivity drop to zero

Magnetic field screening: Meissner effect (magnetic induction has to be a constant in time, i.e. dB/dt = 0

Magnetic flux quantization

Page 6: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 6/35

Curent conduction: Cooper pair Below TC, the electrons condense

into pairs called Copper pairs.Copper pairs.

the crystal lattice is deformed by electrons, causing local positive polarization, attracting another electron thorough an exchange of the virtual phonon, with the crystal lattice (atoms)

The bounded electrons (Cooper pairs) travel in the crystalline lattice without energy loss and keeps the phase coherence.

~.2nmLatice spacing:

Coherence length ξ

(Hundreds of nm)e- e-

Page 7: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 7/35

Macroscopic Coherence

The Cooper pairs are the particles with integer spin (boson), condensating in the single ground state, close to Fermi surface (do not obey the Pauli exclusion principle).

Due to the long distance coherence length ξ, wave function Ψi of Copper pairs overlap, and all electron gas can be described by the single wave function:

The phase coherence is maintained by the gap energy, exceeding the electrons coulomb repulsive force.

ie jY = Y

Page 8: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 8/35

Magnetic flux quantization The long-distance phase coherence

results in 2πn phase drop around an closes superconducting loop:

This make appear the shielding supercurrents, quantizating the flux inside the loop:

The value of Ф0 is the magnetic flux quanta:

2dl nj pG

Ñ =òr r

Ñ

20L sJ dl nl

G

F + = Fòr r

Ñ B

- -

CP

- -

-- --

n·Ф0

Superconducting ring

non-superconducting region

Js

Uniform field

Measured flux

150 2.07 10

2h

Wbe

-F = = ´

nФ0

Page 9: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 9/35

RF property of the superconductor

Page 10: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

II. II. Josephson effect, Josephson effect,

SQUIDSQUID

Page 11: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 11/35

Josephson junction

iji e jY = Y

Two isolated superconductors keeps the phase coherence across a normal-state (non-superconducting) barrier. Effect of the Cooper-pairs tunneling is referred to as

Josephson effectJosephson effect

- -- -

- -- -

- -- -Ψ1

- - - -

Ψ2

CP

superconductors

barrier

1 2( )

Wave function of the electrodes:

Josephson phase:

The current/voltage and the Josephson phase are related by the Josephson equations:

( ) ( )( )

( )

sin

2

s cI t I t

V tt e

f

f

=

¶=

¶h

1 2f j j= -

Page 12: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 12/35

Josephson junction: IV characteristics

Barrier type (or external Barrier type (or external shunt resistance):shunt resistance):

a)a) the I/V characteristic the I/V characteristic can be hysteretic, orcan be hysteretic, or

b)b) single-valued.single-valued.

The JJ with a DC voltage below the superconducting gap behave as the oscillator with frequency f = 483 597.9GHz/V

Demonstration: Shapiro steps Shapiro steps

Page 13: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 13/35

SQUID: Superconducting Quantum Interference Device

( )1 20

22extLI n

pff p+ + +F =

F

I0

LiI0/2+iL I0/2-iL

B

a) B = 0: IJ1=IJ2

b) B > 0: IJ1<IJ2

B

I0

Li

I0/2+iLI0/2-iL

Page 14: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 14/35

Application: magnetometer

iL

Ib

Ic+iIc-i U(Q)

Measured object

Threshold for SQUID: 1 fT

Magnetic field of heart: 50,000 fT

Magnetic field of brain: a few fT

GAI

N

Most-sensitive magnetic detector:Most-sensitive magnetic detector:Linearization by magnetic feedbackLinearization by magnetic feedback

COMPARISON:COMPARISON:

Img: Gross, R. Applied Superconductivity (lectures)

Page 15: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

III. III. Superconducting Superconducting

logic RSFQlogic RSFQ

Page 16: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 16/35

Electrical model of Josephson junction

( ) 0( ) ( )22

t teV t

t tff

p¶ F ¶

= =¶ ¶h

Rj CjLj

Ij

( )( )

( )

0

0 00

( ) ( )12 cos ( )

,cos ( ) 2

J JJ

c

JJ J

c

dI t dI tV t L

I t dt dt

LL L

t I

p f

f p

é ùF ê ú= =ê úê úë û

F= =

( ) ( )( )

( )( )

( ) ( )

sin

/

J c

C J

R J

I t I t

dV tI t C

dtI t V t R

f=

=

=

2nd Josephson relation:

( ) ( ) ( ) ( )J R C LI t I t I t I t= + +

Josephson junction Josephson junction behaves as nonlinear behaves as nonlinear RLC circuit:RLC circuit:

MODEL RCMODEL RCSSJJ

Page 17: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 17/35

Junction Dynamics0 02p J J C J J RC J JL C L R R Ct p t t= = =

2 2

0 0

2RC J J J J cC

C J

R C R C IL

t pb

t= = =

F

1Cb =

Plasma period

of LC circuit Characteristic time of RL circuit:

Nb: 0.15ps, NbN: 0.07psCharacteristic time

of RC circuit

Mc Cumber parameter:

Switching time optimum:(modified by the shunt resistance)

Another parameters are important to optimize the JJ’s circuits:• product RNIc

• superconducting gap 2Δ/e• Current density JC (~kA/cm²)

• Critical temperature

Page 18: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 20/35

e

h

20

RSFQ logic physics

0 5 10 15 200.0

0.4

0.8

1.2

Vo

ltag

e (

mV

)

Time (ps)

0

1

2

3

4

5

Ph

ase

()

0

0

V

f J

JT

2

sin...

ci

2.07 µV/GHzQuantum Flux

Damped JJ

1c CI

Cur

rent

Voltage

0I

SFQ pulses generation:SFQ pulses generation: over dumped Josephson junction over dumped Josephson junction

Page 19: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 18/35

Likharev approach: SFQ pulses

SFQ à

Li

I0

Main idea:Main idea: the logical bits: presence or absence of the SFQ pulse

a) IJ < IC : Junction in superconducting state

b) IJ > I0 : phase increase linearly.

c) IJ > I0 : (short time): SFQ pulse generation:

2

0 2.07V t dt mV ps

Page 20: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 19/35

SFQ pulses flow is mediated by L, and JJ, biased close to Ic

Two cases: Two cases:

Meta-stable JTL TL Memory cell: SQUID

SFQ pulse flow: JTL and SQUID

00.5B ck T LI< < F

«1» «2»

Li

k1I0kI0

SFQ à

Li

I0

L≈Φ0/Ic

Li

L≈Φ0/Ic

I0

SFQ à

L L

Li

01.5CLI > F

Page 21: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 21/35

Example: D-type flip-flop

D

CLKJTL

QJ0

J1 J2

J3L1 L2

L3

I0

SFQ à

Li«1» «3»«2»

time (picoseconds)

« C

LK »

« D

»«

Q » delay

delay

Operating phases:Operating phases:

1) An SFQ pulse arrive to D: penetrate into the SQUID loop

2) Circulating current occurs, shifting IcJ1 and IcJ2 values

3) SFQ pulse at CLK commutate J2 liberating the SFQ pulse

Circuit transmitted logical 1

the overall time consumed by operation is one clock cycle

Page 22: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 22/35

Basic RSFQ cells:

Josephson Transmission Line (JTL): allowing the transfer of the SFQ pulses over long distances. In some circumstances, the JTL allows to shape and amplify the SFQ pulses.

Asynchronous components: e.g. merger or splitter, allow merging/reproducing the SFQ pulses.

Logical gates: such as the OR, AND etc.

Flip-flop: Logical block such as the previously presented D-type flip-flop, having two stable states (memory cells).

Special purpose circuit: as the mentioned SFQ/DC or DC/SFQ converters, allowing an easy to handle output for laboratory purposes.

« OR »

« D »Img: pavel.physics.sunysb.edu

Page 23: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 23/35

Performances

Operating frequency : Tens of GHz, 770GHz demonstrated

Gate delay ~ ps

Power consumption 10-18 J per bit.

Operating voltage ~3mV

DC bias current Ic × Junction count (Amperes)

Operating temperature

4.2K (Nb), 9k (NbN)

Process ~1µm²

Gross, R. Applied Superconductivity (lectures)

Page 24: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

IVIV. . Applications: Applications:

examplesexamples

Page 25: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 25/35

Applications: state of the art

Page 26: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 26/35

Demonstration 770GHz [*]

Toggle- Flip-Flop:Toggle- Flip-Flop: Relate the input and output voltage throughout the

Josephson relation.

Input part: DC/SFQ converter, output: low-pass filter.

IC = 0.5 and 2.5 mA/µm², TC = 1.8K and 4.2K

Simple JJ Nb/AlOx/Nb, 2Δ/e = 2mV (fc = 950GHz)

[*] W. Chen et al. IEEE TAS 1999

DC/SFQ generator

Josephson Transmission line

Toggle Flip-Flop

Page 27: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 27/35

FLUX-1 Microprocessor Chip

• 8-bit microprocessor design• 1-cm chip• 8 - 20 Gb/s TRX• FLUX-1 chip redesigned,

fabricated, partially tested• 1.75 μm, 4 kA/cm2 junction Nb

technology• 20 GHz internal clock • 5 GByte/sec inter-chip data

transferlimited by μP architecture

• 63 K junctions, 5 Kgate equivalent

• Power dissipation ~ 9 mW @ 4.5K • 40 GOPS peak computational

capability (8-bits @ 20-GHz clock)• Fabricated in TRW 4 kA/cm2

processin 2002

RCL

Dorojevets, M. IEEE TAS Vol. 13 2003

Page 28: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applicationns Fabrication 28/35

ΔΣ ADC converter

Page 29: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

VV. . FabricationFabrication

Page 30: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 30/35

Superconductor IC: Simpler Than CMOS

Page 31: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Objective: Self-shunted JJ

Superconductivity Josephson effect RSFQ Applications Fabrication 30/35

Img: IPHT Jena - resistivelly shunted JJ

Page 32: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 32/35

Circuit realization: CEA

Elaboration of texture controlled NbN SNS junction on Si-200mm Elaboration of texture controlled NbN SNS junction on Si-200mm wafers (350 wafers (350 ºCºC): ): compatible with C-MOS platform

Page 33: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 33/35

NbTiN Ground plane, NbN/TaN/NbN JJ

Page 34: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 34/35

Realization example Frequency divider: more compact on NbNmore compact on NbN

E. Baggetta, PhD Thesis CEA Grenoble (2008)

Page 35: Superconducting RSFQ Logic: Towards 100GHz Digital Electronics Vratislav MICHAL, Emanuele BAGGETTA, Mario AURINO, Sophie BOUAT, Jean-Claude VILLEGIER IINAC,

Superconductivity Josephson effect RSFQ Applications Fabrication 35/35

Fabrication: Outcome

NbN-TaN-NbN trilayer crossection: fabrication using UV-248 stepper

I-V-T characteristics 4×4μm, NbN-TaN-NbN, Jc = 4,3kA/cm2

Villegier J.C. et al. IEEE TAS (to be published)