31
Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering and Applied Superconductivity DEI Dep. of Electrical, Electronic and Information Engineering University of Bologna, Italy International Workshop on Supercapacitors and Energy Storage Bologna, Thursday - June 27 2019

Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

Superconducting Magnetic Energy Storage

A. Morandi, M. Breschi, M. Fabbri,U. Melaccio, P. L. RibaniLIMSA Laboratory of Magnet Engineeringand Applied SuperconductivityDEI Dep. of Electrical, Electronic andInformation EngineeringUniversity of Bologna, Italy

International Workshop onSupercapacitorsand Energy Storage

Bologna, Thursday - June 27 2019

Page 2: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

2

(Super)Inductor

Store energy by flux accumulation

Science and Technological domain:Superconductors

(Super)Capacitor

Store energy by charge accumulation

Science and Technological domain:Electrochemistry

Electric Energy Storage

Page 3: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

3

• Superconductors

• SMES technology

Concepts and state of the art

Applications

• The DRYSMES4GRID Project

Outline

Page 4: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

4

• MetalsNb 9.25 KTc 7.80 KV 5.40 KNbTi 9.8 K

• Intemetallics (A15)Nb3Ge 23.2 KNb3Si 19 KNb3Sn 18.1 KNb3Al 18 KV3Si 17.1 KTa3Pb 17 KV3Ga 16.8 KNb3Ga 14.5 K

• “Unusual”Cs3C60 40 KMgB2 39 KBa0.6K0.4BiO3 30 KHoNi2B2C 7.5 KGdMo6Se8 5.6 KCoLa3 4.28 K

(Some) known superconducting materials

• Cuprates - Ln-SuperconductorsGdBa2Cu3O7 94 KYBa2Cu3O7-d 93 KY2Ba4Cu7O15 93 K

• Cuprates - Bi-SuperconductorsBi1.6Pb0.6Sr2Ca2Sb0.1Cu3Ox 115 KBi2Sr2Ca2Cu3O10 110 KBi2Sr2CaCu2O9 110 K

Low

Tc

High

Tc

Fusio

n an

d ac

cele

rato

rs, M

RI, S

MES

MRI

, SM

ES,C

able

s

Cabl

es, F

CL, r

otat

. mac

hine

s,SM

ES, M

RI

Page 5: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

YBCO coated conductors• Biaxial texturing is needed which can only be obtained by means of epitaxial growth

• AMSC (USA)

• D-Nano (D)

• Superpower (USA)

• Fujikura (J)

• SuperOx (Ru)

• Bruker (D)

• SuNam (Korea)

Less complex approach / less performing tapes

IBAD (Ion Beam Assisted Deposition)RABiTS (Rolling Assisted Bi-Axially Textured Substr.)

More complex approach / more performing tapes

• Complex technology & low yield - High cost, today (20-100 EUR/kAm)

Page 6: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

Performance of practical Superconductors

Copper, water cooling

Copper, Air cooling

SuperpowerYBCO CC at 20 K

SuperpowerYBCO CC at 65KColumbus

MgB2 at 20K

SFCL, cables &transformersSFCL, cables &transformers

Motors& GeneratorsMotors& Generators

SMESSMES AdvancedmagnetsAdvancedmagnets

3.78 kW/dm3

0.15 kW/dm3

All superconductors have negligible losses compared to copper

Page 7: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

7

Market relevant Coated Conductor producers

Source: Bernhard Holzapfel – IndustrialCoated Conductor Production andProperties – EUCAS 2017 Geneva

Overall worldwide ever deliveredCC volume (4 mm equivalent) 3000 km

Expected delivered volume 2500 km/year in 20185000 km/year in 2020

Page 8: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

Cost estimate of practical Superconductors

Power transm. &distribution

High field rotat.machines

Storage & extrahigh field rotat. machines

Costs assumption:• 20 €/kA/m for HTS

CC @ 77K-s.f.• 2 k€/km for 3×0.5

mm2 MgB2 tape• 5 k€/ton for Copper

• Today cost of HTS CC @ 77K-s.f. is 100 €/kA/m

• Short term projected cost is 20 €/kA/m

Near-term cost ofconductor,EUR/kA/m

Page 9: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

9

• SMES technology

Concepts and state of the art

Outline

Page 10: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

PCS

Control andprotectionsystem

Coolingsystem

Superconductingcoil

gridCurrent leads

vacuum +MLI

10

SMES – Superconducting Magnetic Energy Storage

2 22

0 0

1

2 2 2coil

B BE d d L I

Page 11: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

11

Advantages• High deliverable power• Virtually Infinite number of charge discharge cycles• High efficiency of the charge and discharge phase

(round trip)• Fast response time from stand-by to full power• No safety hazard

Critical aspects• Low storage capacity• Need for auxiliary power (cooling)• Standby losses

Page 12: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

12

Total heat load (to be removed)• Radiation• Heat invasion and Joule

loss of current leads• Electromagnetic loss• Heat invasion of supports

Cooling

cold

coldhot

T

TTCOP

Carnot

removedheatofWatt

powerinputofWattCOP

3.01.0Carnot

Real

COPCOP

Tcold Thot

Pinput

Pcooling

TcCOP

(ideal)COP(real)

4.2 K 70.43 200 - 700020 K 14.00 40 - 14077 K 2.90 9 - 30

Th = 300 K

Cooling methods• Cryogen bath + vapor recondensation

[email protected] K, LH2@20 K, LNe @ 26 K, 2. LN2@63 K

• Conduction cooling“any” temperature

Page 13: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

13

…. but superconductors rely on cooling. Is cooling technology wellestablished, available and reliable enough?

10 kW cooling power at 77 K12 W input / W cold30000 hours maintenance

50 kW cooling power at 77 K12 W input / W cold30000 hours maintenance

Turbo-Brighton

Steffen Grohmann - ESAS Summer School 2016, Bologna, IT

Yes. It is!

Page 14: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

14

PCS - Power Conditioning System

L

C

Vdc

ISMES

• A controlled power is transferred from the DC bus to the grid bymeans of the inverter

• The voltage of the DC bus is kept constant by the SMES by means ofthe two quadrant chopper

Voltage source converter (VSC)

DC/AC –Bidirectional inverter

DC/DC –Two quandrant chopper

Page 15: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

15

L

C

Vdc

ISMES

P = 0

If no power is delivered/absorbed the SMES operates in short circuitCurrent free-wheels in the chopper

Von IGBT = 0.5 1.5 VVon DIODE = 0.5 1 V

Losses are producedduring the stand-by

PIGBT = ISMES Von IGBT

PDIODE = ISMES Von DIODE

Pstand-by = 1 10 kW / kA

Stand-by Loss

• Time constant of RL circuit of typical SMES (1-5 MJ) during the standbyphases in the order of hundreds of seconds

Page 16: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

16

Japan

Germany

EM LaucherJapan

USA

Japan

Italy

France

GermanyPower modulatorFlicker

Gridcompensation

The state of the art of SMES technology

The DRYSMES4GRID project:• 500 kJ / 200 kW SMES• MgB2 @ 20 K• Cryogen free cooling

[email protected]

[email protected]

[email protected]@4.2K

[email protected]

[email protected]@4.2K

1G HTS@20K

Page 17: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

17

The Kameyama SMES

10 MW – 1 s SMES system

Page 18: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

18

Applications

Outline

Page 19: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

1. Protection of sensitive customers and auxiliary services

• Harmonic compensation• Power factor correction

Auxiliary network services provided by the PCSduring normal operation (mitigated penalty due tocooling and idling)

Power interruption iscancelled by the SMES

Grid outage

Grid outage

1 MW – 5 s case

Page 20: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

20

2. Leveling of impulsive/fluctuating loads by SMESPl

oad

• Continuous management of high power makes cooling and idling loss negligible• No battery can be considered due to the prohibitive number of cycles• Advantages brought by SMES can be significant also for moderate size systems

• AC loss may be a limiting factor

Pgrid Pload

Sizing of the supply system based on average ratherthan peak power

Page 21: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

21

DTT - Divertor Tokamak Test Facility 150 MW × 80 s (1.2 GJ) – 1 per hour

Research facilities with pulsed power

Industry± 1-10 MW × 20 min – continuous

More cases with reduced size should be looked for in industry (press, rolling mills, punchers …)

0 5 10 15 20 25 30time, mimutes

0

10

20

30

40

50

Railway substation± 20 MW × 3 min – continuous

JapanSource 10.1109/TASC.2005.849333

Page 22: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

22

3. Hybrid SMES - Battery systems

Complementary characteristics exploited

• Battery provides long term basepower – hence energy

• SMES provides peak power andfast cycling

Advantages:

• Reduced power rating of batteries• Reduced energy rating of SMES• Reduced wear and tear of batteries

(no minor cycling)Qualitative (not a real case)

Page 23: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

23

• Stephentown,NY, since 2011

• HazleTownship, PE,since 2014

Flywheels perform between 3,000 and 5,000 full depth-of-discharge cycles a year.

Beacon power FW ±20 MW frequency regulation plant

~7’ tall, 3’ in diameter2,500 pound rotor massSpins up to 15,500 rpm100 kW, 25 KWh(charge and discharge)

130 m

20 × 10 × 0.1 kW fly-wheel units

No loss data available

110 m

8 T

Operating field 8 TToroidal diameter (outer) 70 mPoloidal diameter 2 m

±20 MW frequency regulation plantfeasible based on SMES

4. Frequency regulation – grid level

Page 24: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

24

5. Combined use with synergistic technologies

A 350kW/2.5MWh Liquid Air Energy Storage (LAES)pilot plant was completed and tied to grid during2011-2014 in England.

Fundraising for further development is in progress

• LAES is used as energy intensive storage• Large cooling power (not all) is available for SMES

due to the presence of Liquid air at 70 K• SMES is used as power intensive storage

Effective hybrid (Energy intensive +Power intensive) storage can beconceived based on combined useof SMES and LAES

A 1-2 MW – 5 min ratingmay be of interest

Page 25: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

25

• The DRYSMES4GRID Project

Outline

Page 26: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

26

• Transmission and distribution• Dispersed generation, active networks and storage• Renewables (PV and Biomass )• Energy efficiency in the civil, industry and tertiary sectors• Exploitation of Solar and ambient heat for air conditioning

MISE - Italian Ministry of Economic DevelopmentCompetitive call: research project for electric power grid

The DRYSMES4GRID Project

Partners• University of Bologna• ICAS - The Italian Consortium for ASC, Frascati (Rome)• RSE S.p.A - Ricerca sul Sistema Energetico, Milan• CNR – SPIN, Genoa

Project DRYSMES4GRID funded

• Budget: 2.7 M€• Time: June 2017 – June 2020

+1 Year

Project Coordinator:• Columbus Superconductors SpA, Genova, Italy

• developm. of dry-cooled SMES based on MgB2• 500 kJ – 200 kW / full system

Page 27: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

27

Grid LoadSW

vlil

DC/ACinverter

DC/DCchopper

viii

ig

iSMES

vg

vDC

Control hardware (and algorithms)+ Quench detector

The DRYSMES4GRID system

operator inputsP*, Q*, v*, ….

coolingsystem

chop

per

dum

pre

sisto

r

inve

rter

switc

h

dry-cooled MgB2 coil

• Electromagnetic & Mechanical design of the coil completed• Thermal design (connection to cryocooler/s) in progress• Control algorithms (logic, schemes, parameters) defined• Manufacturing of the coil & cooling system• Design and Manufacturing of Power Hardware

Page 28: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

Inner radius, mm 300Height, mm 1200.6Number of layers 10Number of turns per layer 522Length of cable, km 10.1Voltage of the dc bus, V 750Current at SOC min, A 266.6Current at SOC max, A 467Field on conductor (at Imax), T 1.63I/Ic ratio (at Imax) 0.6Inductance, H 6.80Total eneregy (at Imax), kJ 741Deliverable energy, kJ 500.4Dump resistance, 2,14Max adiabatic hot spot temp., K 95.6

tape with 500 m Cu strip+ 250 m insulation(G10 Fiber Glass + epoxy )

Main characteristics of the designed 500 kJ / 200 kW SMES coil

• The SMES cannot be discharged belowImin = 267 A if the power of 200 kW is tobe supplied/ absorbed (Imin = P/Vdc)

• The designed coil fullfills the specifics(200 kW – 2,5 s) with an operaingtemperature T ≤ 16 K and a max. currentImax = 467 A

0

1.20

9 m

0.3 m

18,5 mm

1 m

m co

pper

pla

te–

to cr

yooc

oler

s

3 m

m st

eel f

orm

er

Page 29: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

29

Test Site: RSE Distributed Energy Resources Test FacilityA real low voltage microgrid that interconnects different generators, storage systemsand loads to develop studies and experimentations on DERs and Smart Grid solutions.

20000 m2 areaSupplied by MV Grid800 kVA - 23 kV/400 V transf.

Page 30: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

30

• SMES is an established power intensive storage technology.

• Improvements on SMES technology can be obtained bymeans of new generations superconductors compatible withcryogen free cooling (MgB2 and HTS).

• Cooling and standby losses needs to be carefully consideredwhen evaluating the viability of SMES systems.

• SMES and Supercapacitors have very similar characteristics.Careful investigation needs to be done in order to choosethe most suitable solution.

Conclusion

Page 31: Superconducting Magnetic Energy Storage€¦ · Superconducting Magnetic Energy Storage A. Morandi, M. Breschi, M. Fabbri, U. Melaccio, P. L. Ribani LIMSA Laboratory of Magnet Engineering

Thank you for yourkind attention …

[email protected]