20
1 Superacid derivatives in your pocket? Ivo Leito [email protected] University of Tartu Estonia University of Shanghai for Science and Technology, March 2011 C F F F F F F F F F F F F OH NO 2 NO 2 O 2 N 2 Overview Acidity, basicity, acids, bases In solutions In the gas phase Measurement of acid strength Superacids Measurement of their strength Design of superacids

Superacid derivatives NO in your pocket?ams.ut.ee/wp-content/uploads/2012/03/Superacids_Acidity_Leito...C F F F F F F F F F F F F OH NO 2 NO 2 O 2 N 2 ... (NaOH, one of the starting

  • Upload
    dothu

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

1

Superacid derivativesin your pocket?Ivo Leito

[email protected]

University of TartuEstonia

University of Shanghai for Science and Technology, March 2011

C

FFF

F

F F

FF F F

FF

OHNO2

NO2

O2N

2

Overview

• Acidity, basicity, acids, bases• In solutions• In the gas phase• Measurement of acid strength

• Superacids• Measurement of their strength• Design of superacids

2

3

“Acid is a sour substance”• Acids have been in use since long time

• Food preservation• Making paints and dyes• …

• Obtaining:• Sour fruits (citric acid)• Fermentation (acetic acid)• Heating minerals (sulfuric acid, …)

H O

O

H

HH

4

“Alkali is caustic substance”• Alkalies (inorganic bases) have also been

in use for a long time• Washing (NaOH, one of the starting materials of

soap)• Constrauction (Lime - CaO, Ca(OH)2 – lime

mortar)

• Obtained:• Ashes• Limestone

3

5

Ancient landmarks

Preparation of H2SO4 and HCl Jābir ibn Hayyān, 8. saj

Soap-making, Babylon, 2800 BC

Lime processing, Since antiquity

Vineager, Since antiquity

In 18. Century all common acids andalkalies were known and in use Images: Wikipedia

6

The essence of acidity?

But the origin of acidity was stilllargely unclear

18. century: The role of acids islarge

4

7

The Origin of Acidity?Antoine Lavoisier, 1776: acids are compounds that

contain oxygen (oxygen: producer of acid)

Humphrey Davy, 1810: HCl, HBr,H2S etc do not contain oxygen

Justus von Liebig, 1838: acids are compounds, inwhich H atom can be substituted by a metal atom

Images: Wikipedia

8

Modern Understanding• Acids dissociate in solution

giving H+ ion

• Different acids dissociate to a differentextent

• Acidity of a solution:pH = -log[H+]

• Acid: proton donor,conjugate acids and bases

Svante Arrhenius (1859-1927)Nobel prize 1903

Wilhelm Ostwald (1853-1932)Nobel prize 1909

Søren Sørensen (1868-1939)

Johannes Nicolaus Brønsted (1879-1947)Images: Wikipedia

5

9

Acidity of molecules and acidity of media

• Brønsted acidity of a molecule refers to itsability to donate proton to othermolecules• Usually defined in terms of equilibrium constants

(Ka, pKa) or deprotonation energies (GA or ΔGacid)

• Brønsted acidity of a medium refers to theability to donate proton to molecules inthe medium• In aqueous solution: pH• Strongly acidic solutions: H0

10

• Acidity (acid strength) of molecules insolution is usually defined in theframework of the Brønsted theory via thepKa values

HA + S A- + SH+

Acidity of molecules in solution

Ka

HA)()SH()A(loglogp aa a

aaKK+− ⋅

−=−=

Acid Base Conjugate baseof acid HA

Conjugate acidof base S

6

11

+ S + SH+

pKaH2O = 10

+ S + SH+

pKaH2O = ~ 0

Acidity and molecular structure

ONO2

NO2

O2N

-OHNO2

NO2

O2N

OH O

12

Acid-base reaction in a non-aqueoussolvent

K1 K2 K3

(AH)S + (:B)S (AH⋅⋅⋅:B)S (A¯:⋅⋅⋅HB+)S or (A¯: HB+)S

HB complex HB complex contact ion pair

K3 K4

(A¯: // HB+)S (A¯:)S + (HB+)S

solvent-separated ion pair free ions

7

13

• Acidity of molecules in the gas phase isexpressed via deprotnation Gibbs' freeenergy

HA A- + H+

• ΔGºacid is called gas-phase acidity of HA• "º" is often omitted

Acidity of molecules in the gas phase

Ka

a0acid lnGA KRTG −=Δ=

14

Example of acidity differences in differentmedia

• In water HBr is 1013 times stronger than 2,4-DNP

• In the gas phase HBr is 107 times weaker than2,4-DNP

16.7

5.5

pKa(MeCN)

226.2308.63.962,4-Dinitro-phenol

233.4318.3ca -9HBr

pKa (GP)

ΔGa (GP)kcal/mol

pKa(water)

Acid

8

15

HAS

S

S

S

S

S

SSHA

desolva-tion

ΔG°ds(HA) > 0

A-H+

Dissociation in the gas phase – Gas-phase acidiyΔG°a(HA) >>> 0

Solution

Gas phase

+

SH+

SH+S

S S

S

S

S

S

SDissociationin solution

ΔG°a(HA,s) A-S

S S

S

S

S

S

+

−ΔG°a(SH+) << 0

ΔG°s(SH+) << 0

ΔG°s(A-) << 0

S

16

Acidity of solutions: pH

• Simplified:pH = -log[H+]

• Expresses the abilityof te medium todonate proton

9

17

Unified acidty scale

–800 –900 –1000 –1200–1100 –1300 –1400 –1500

140 160 180 200 220 240 260

H2SO4 143.1 H2O

HF

MeCN

DMSO

Et2O

CH2Cl2

C6H6

SO2

12.6 34

39

86*

86*

120*

HSO3F 7

μabs(H+) in kJ mol–1

pHabs

superacidic medium acidic medium

1 bar 10–20 bar gaseous HCl (for comparison)

140 160 180 200 220 240 260*approximate value, calculated autoprotolysis

Himmel, Goll, Leito, Krossing Chem. Eur. J. 2011, 17, 5808

18

What is a superacid?• Superacidic medium:

A Brønsted superacid is a medium, in which the chemical potential of the proton

is higher than in pure sulfuric acid

Himmel, Goll, Leito, Krossing Chem. Eur. J. 2011, 17, 5808

10

19

What is a superacid?• Superacidic molecule:

Superacidic molecule in a given medium isone that is more acidic than H2SO4 in that

medium

20

Why do we need to measure acidity?

• Acidity is a core parameter of an acidicmolecule

• Rationalization and prediction of mechanisms of chemical and industrialprocesses

• Design of novel acids and bases• Development of theoretical calculation

methods

11

21

How to measure solution acidities of highly acidic molecules?

• H0 scale• The classical approach• Different H0 refer to different media• H0 is rather a characteristic of a medium than of a

molecule

• X-H vibrational frequencies• Indirect: characterizes

hydrogen bond rather than acidity

• Equilibrium measurement (pKa) in a lowbasicity solvent• Obvious, but almost unused appraoch!

Stoyanov, et al JACS, 2006, 128, 8500

22

Solvent• As low basicity as possible• As high ε as possible• As high pKauto as possible• Easy to purify, reasonably inert, electrochemically

stable, transparent in UV, readily available, widelyused

• There is no ideal solvent• Wth increasing ε as a rule basicity also increases

• Water cannot be used

12

23

Non-aqueous pKa values: not trivial

• Processes are often more complex thansimple ionic dissociation• Ion-pairing, homoconjugation, …

• Measurement of a(SH+) is not trivial• Traces of moisture can significantly affect

results

• Working in an inert gas atmosphere (glovebox) isnecessary

K. Kaupmees et al, J. Phys. Chem. A2010, 114, 11788

24

Approach: Relative measurement

• Measurement of pKa differences• ΔpKa values

• No need to measure a(SH+) in solution• Many of the error sources cancel out,

either partially or fully• Traces of moisture• Impurities in compounds• Baseline shifts and drifts

• Technique: UV-Vis spectrometry

13

25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

190 240 290 340 390wavelength (nm)

Abs

orba

nce

(AU

)

anion

neutral0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

190 240 290 340 390wavelength (nm)

Abs

orba

nce

(AU

)

neutral

anion

UV-Vis ΔpKa measurementCompound 1 Compound 2

Mixture

87.0]A[]HA[]HA[]A[loglog

)HA(p)HA(pp

-21

2-1

1a2aa

=⋅

⋅=−=

−=Δ

K

KKK

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

190 240 290 340 390

wavelength (nm)

Abs

orba

nce

(AU

)

anion

neutral

CN

CN

NC

CF2SO2

SO2CF3

SO2CF3

OH

CN

CN

NC

CF2SO2

SO2CF3

SO2CF3

OH

26

1,2-Dichloroethane• Advantages of 1,2-DCE:

• Very low basicity (B' = 40), low anion-solvating ability→ strong superacids are measurable

• pKauto unmeasurably high• Reasonably inert and stable, readily available, widely

used, dissolves also many ionic compounds well• Transparent in UV down to 230 nm

• Limitations:• ~Low polarity (ε = 10)

• Ion-pair acidities

14

27

1,2-DCE acidityscale

A. Kütt et al J. Org. Chem.2011, 76, 391

• The most acidicequilibrium acidityscale in a constant-compositionmedium

• Relative acidities

• Acidity increasesdownwards

No Acid pK a(DCE) Directly measured ΔpK ip values in DCE a pK

1 Picric acid 0.0

2 HCl -0.4

3 2,3,4,6-(CF3)5-C6H-CH(CN)2 -0.7

4 4-NO2-C6H4SO2NHTos c -1.5

5 HNO3 -1.7

6 4-NO2-C6H4SO2NHSO2C6H4-4-Cl -2.4

7 H2SO4 -2.5

8 C6(CF3)5CH(CN)2 -2.6

9 (4-NO2-C6H4-SO2)2NH -3.7

10 3-NO2-4-Cl-C6H3SO2NHSO2C6H4-4-NO2 -4.1

11 (3-NO2-4-Cl-C6H3SO2)2NH -4.5

12 HBr -4.9

13 4-NO2-C6H4SO2CH(CN)2 -5.1

14 2,4,6-(SO2F)3-Phenol -5.9

15 2,4,6-Tf3-Phenol d -6.4

16 CH(CN)3 -6.5

17 4-Cl-C6H4SO(=NTf)NHTos -6.8

18 NH2-TCNP e -6.8

19 2,3,5-tricyanocyclopentadiene -7.0

20 Pentacyanophenol -7.6

21 4-Cl-C6H4SO(=NTf)NHSO2C6H4-4-Cl -7.6

22 HI -7.7

23 4-NO2-C6H4SO2NHTf -7.8

24 Me-TCNP -8.6

25 3,4-(MeO)2-C6H3-TCNP -8.7

26 4-MeO-C6H4-TCNP -8.7

27 C(CN)2=C(CN)OH -8.8

28 4-Cl-C6H4SO(=NTf)NHSO2C6H4-NO2 -8.9

29 2,4-(NO2)2-C6H3SO2OH -8.9

30 C6F5CH(Tf)2 -9.0

31 HB(CN)(CF3)3 -9.3

32 Ph-TCNP -9.4

33 HBF4 -10.3

34 FSO2OH -10.5

0.20 0.24

0.51

0.42 0.65

1.14 1.12 0.33

0.94

0.64

0.80 1.03

1.33

0.19 0.62

0.39 0.93 1.35

0.36 0.80

0.47 1.48

1.02 1.02 1.05

1.26 0.24

0.12

1.13 1.01

0.08

1.78 2.08

0.28 1.00

0.74 0.77 1.09

1.48 0.73 0.71

0.36

0.05

0.88

0 01

1.06 1.23

0.26 1.34

1.57 1.56 1.62

0.83

0.47 0.44 1.33 0.13

0.52 0.60

0.59 0.67

0.74

1.61 0.59 0.22

0.06

0.28 0.46 0.24

0.12 0.12

0.09

-0.02 0.13 1.42

0.96 1.04

1.13

1.01

1.64

1.10 0.98

0.93

0.90 0.81

1.00 1.56

1.77

0.67 0.84

28

1,2-DCE acidityscale

• Aqueous pKa (H0)values down to-10 .. -15

29 2,4-(NO2)2-C6H3SO2OH -8.9

30 C6F5CH(Tf)2 -9.0

31 HB(CN)(CF3)3 -9.3

32 Ph-TCNP -9.4

33 HBF4 -10.3

34 FSO2OH -10.5

35 3-CF3-C6H4-TCNP -10.5

36 H-TCNP -10.7

37 [C6H5SO(=NTf)]2NH -11.1

38 [(C2F5)2PO]2NH -11.3

39 2,4,6-(NO2)3-C6H2SO2OH -11.3

40 [C(CN)2=C(CN)]2CH2 -11.4

41 TfOH -11.4

42 C6H5SO(=NTf)NHTf -11.5

43 TfCH(CN)2 -11.6

44 Br-TCNP -11.8

45 [C(CN)2=C(CN)]2NH -11.8

46 3,5-(CF3)5-C6H3-TCNP -11.8

47 Tf2NH -11.9

48 4-Cl-C6H4SO(=NTf)NHTf -12.1

49 Cl-TCNP -12.1

50 (C3F7SO2)2NH -12.2

51 (C4F9SO2)2NH -12.2

52 CN-CH2-TCNP -12.3

53 (C2F5SO2)2NH -12.3

54 CF3-TCNP -12.7

55 HClO4 -13.0

56 CF2(CF2SO2)2NH -13.1

57 4-NO2-C6H4SO(=NTf)NHTf -13.1

58 HB(CN)4 -13.3

59 (FSO2)3CH -13.6

60 Tf2CH(CN) -14.9

61 2,3,4,5-tetracyanocyclopentadiene -15.1

62 CN-TCNP -15.3

63 Tf3CH f -16.4

64 CF3SO(=NTf)NHTf f -18

0.23 0.21 0.40

1.73

2.16

0.22 1.46

1.76 1.92

0.44 0.19

0.89 0.86

0.36

0.19

0.12

1.06

1.29

1.05

0.01

0.31

0.21

0.73 0.75 0.06

0.40

0.45

0.10

0.36 0.46

0.96

0.07 0.11

0.80

0.56

0.80

0.40

0.19 0.10

0.02

0.77

0.15

0.13 0.10

1.04

0.27

0.21

1.04

0.69

0.72

0.93

0.30

0.44

0.42

1.06

0.40

0.47

0.29

0.43

0.19

0.20 0.25

0.32

0.10

0.09 0.07 0.04

0.63 0.67

0.44 0.21

0.49 0.47

0.47

0.84 0.73 0.78

0.58 0.60

0.01

0.22

0.46

0.21

1.06 1.23

0.26 1.34

1.57 1.56 1.62

0.83

0.47 0.44 1.33 0.13

0.52 0.60

0.59 0.67 0.06

0.29

0.84 0.89 0.91

0.93 0.28

15

29

Important aspects for superacids• Brønsted acidity

• As strong as possible• "Clean" protonation desirable• Lewis acidity is usually not desirable

• Stability under superacidic conditions• Weak coordinating properties of the

anions

30

Superacid derivatives in your pocket!

Li-ion battery containsultrapure lithium salt(LiBF4, LiClO4, etc)and ultrapure solvent.

Purity must be analysed!

These are salts ofsuperacids!

16

31

POO

O

H SO

OOHF3C

Design of superacidic molecules• "Acid-based" approach:

• Pick a parent acid• Introduce substituents

• electronegative, strong electronacceptors, highly polarizable

ΔGacid = 303 kcal/mol(DFT B3LYP/6-311+G**)

ΔGacid = 299.5 kcal/mol(DFT B3LYP/6-311+G**)

Leito et al J. Mol. Stru.Theochem, 2007, 815, 43

P

CN

CN

CNCN

NC

NC

H

Koppel, Yagupolskii et alto be submitted

SN

NOHF3C

S

S

CF3

CF3

OO

OO

ΔGacid = 260 kcal/mol(DFT B3LYP/6-311+G**)

ΔGacid = 256 kcal/mol(DFT B3LYP/6-311+G**)

ΔΔGacid =47 kcal/mol

ΔΔGacid =40 kcal/mol

32

S OHN

NF3C

S

S

OOCF3

CF3OO

:

:

:

:

:

:

. .

. .

. .

. .S ON

NF3C

S

S

OOCF3

CF3OO

H

:

:

:

:

:

. .

. .

. .

. .

. .

. .P

CN

CN

CNCN

NC

NC

H

::

:

: :

:P

CN

CNCN

NC

NCN H

::

:

: :

. .

Basicity Centers on Substituents

It is not only about the acceptorpower but also about basicity!

17

33

Design: Anion-based approach• Design an anion, which

• Has delocalized charge• Is as stable as possible• Has as few as possible protonation sites and

those are of low basicity

Not looking at any particular aciditycenter

34

Superacids: breaking the “limits of growth”• We have designed superacidic molecules that are

more acidic than H2SO4 by up to 100 orders of magnitude (!)

C

FFF

F

F F

FF F F

FF

H+

-

C

F3CCF3F3C

CF3

F3C CF3

F3CF3C CF3CF3

CF3

CF3

H+

- B CN

CNNC

NC

NC CN

H+-

- Leito et al, J Mol Stru Theochem.2007, 815, 41

- Kütt et al Chem Phys Chem,2009, 10, 499

- Kütt et al, J. Org. Chem. 2008, 73, 2607

- Kütt et al, J. Org. Chem. 2006, 71, 2829

- Kütt et al, J. Org. Chem. 2011, 76, 391

- Lipping et al, J. Phys. Chem. A, 2009, 113,12972

CH(CN)2F3C

F3C CF3

F3C CF3

18

35

ΔGacid all values in kcal/mol

302

286.5

260

300 299.5

CF3SO2

NHCF3SO2

266.5

CF3SO2OH

267.2

H

NC

NC

CNCN

CN

276.6HPF6

C

HHH

H

H H

HH H H

HH

H+

-

280

H2SO4

288HBF4

SN

NOHF3C

SO2CF3

SO2CF3

260

284.0

Superacidity in thegas phase

C2F5SO2

NHC2F5SO2

36

250

200

225

C

FFF

F

F F

FF F F

FF

H+

-

C

F3CCF3F3C

CF3

F3C CF3

F3CF3C CF3CF3

CF3

CF3

H+

-

C

ClClCl

Cl

Cl Cl

HH H H

HH

H+

-243

213

< 175

240HB(CF3)4

225CCN

CNCN

CN

CNNC

NC NC

NCNC CN

CN

H+

-

255.5 HSbF6

250.8 HAuF6250 B CN

CNNC

NC

NC CN

H+-

- Kütt et al Chem Phys Chem,2008

- Kütt et al, JOC, 2008, 73, 2607

- Leito et al, J Mol Stru Theochem.2007, 815, 41

- Leito et al, JPC A, 2009, 113, 8421

- Koppel et al, JACS, 2000,122, 5114

P

CN

CN

CNCN

NC

NC

H+-

256

Acidity in thegas phase

C

ClClCl

Cl

Cl Cl

ClCl Cl Cl

ClCl

H+

GA = 241 ± 29 kcal/mol

19

37

ThanksThankstoto all all thesethese

peoplepeople!!

38

Collaboration

• Y.L. Yagupolskii(IOC, Ukrainian Academy of Sciences, Kiev)

• I. Krossing, D. Himmel(Freiburg University)

• A.A. Kolomeitsev, G.-V. Röschenthaler(IIPC, University of Bremen)

• M. Rueping (Aachen University)

• V.M. Vlasov (IOC, Russian Academy o Sciences, Novosibirsk)

• M. Mishima (IMCE, Kyushu University)

20

39Overview: http://tera.chem.ut.ee/~ivo/HA_UT/

40

Thank you!