29
Super Super - - Kamiokande Kamiokande s s Solar Neutrino results Solar Neutrino results Super-Kamiokande(SK) detector Day/night and energy spectrum in SK-I Oscillation analysis Preliminary results from SK-II Future prospects M. Nakahata Kamioka observatory, ICRR, Univ. of Tokyo

Super-Kamiokande’s Solar Neutrino resultslss.fnal.gov/conf/C0406141/nakahata.pdf · 2009. 9. 10. · Super-Kamiokande’s Solar Neutrino results Super-Kamiokande(SK) detector Day/night

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • SuperSuper--KamiokandeKamiokande’’ss Solar Neutrino resultsSolar Neutrino results

    Super-Kamiokande(SK) detectorDay/night and energy spectrum in SK-IOscillation analysisPreliminary results from SK-IIFuture prospects

    M. NakahataKamioka observatory,ICRR, Univ. of Tokyo

  • SuperSuper--Kamiokande detectorKamiokande detector2006 20072005200420032002200120001999199819971996

    accident

    SK full reconstruction (plan)

    SK-I SK-II SK-III

    11,146 Number of ID(*) PMTs 5,18240% Photocathod coverage 19%

    ~6 p.e./MeV Cherenkov light yield ~2.8 p.e./MeVAcrylic+FRP cases

    50kton total,

    22kton fiducialvolume

    1000m underground

    Water Cherenkov detector

    (*) Inner DetectorNumber of ID PMTs will be back to 11,146 in SK-III.

  • Solar neutrino measurement in SK8B neutrino measurement by ν + e-→ ν + e-Sensitive to νe, νµ, ντ σ(νµ(τ)+e-) =~0.15×σ(νe+e-)High statistics ~15ev./day with Ee > 5MeVReal time measurement. Studies on time variations.Studies on energy spectrum.Precise energy calibration by LINAC and 16N.

    Expected day/night asymmetry

    Expected spectrum distortion(at LMA region) tan2(θ)

    0.550.380.380.380.28

    ∆m2 (eV2)6.3 x 10-54.8 x 10-57.2 x 10-510.0 x 10-57.2 x 10-5

    Recoil electron energy (MeV)

    Dat

    a/SS

    M

    ~10%

  • SuperSuper--KamiokandeKamiokande--I solar neutrino data I solar neutrino data

    8B flux : 2.35 ± 0.02 ± 0.08 [x 106 /cm2/sec]

    = 0.406 +0.014-0.013±0.004Data

    SSM(BP2004)

    ν + e- ν + e-

    ( Data/SSM(BP2000) = 0.465 ±0.005 +0.016/-0.015 )

    May 31, 1996 – July 13, 2001 (1496 days )

    22400±230 solar ν events(14.5 events/day)

  • SK-I day/night difference

    ADN=(Day-Night)

    (Day+Night)/2

  • UnUn--binned day/night analysisbinned day/night analysisZ

    mantle

    core

    SK Day

    θz

    Energy and zenith angle dependence of event rate variation.

    Example for ∆m2=6.3x10-5eV2, tan2θ=0.55

  • ( ) ( )∏∏= 1=

    +−×⋅+⋅∑=

    bin ii i

    N

    i

    n

    iiiiSB tzEcpSmcuBe

    1

    )(),()(ν

    ννννL

    ∑=

    j j

    iim MC

    MC

    Solar Signal ShapeSolar Signal Shape

    Solar Solar ν ν FluxFluxTimeTime--VariatioVariationn

    Background ShapeBackground Shape

    EventEnergy

    Event“Time”

    # Signal# SignalEventsEvents

    # Backgrounds# Backgroundsin each energy binsin each energy bins

    21 Energy bins21 Energy bins

    Un-binned time variation methodLikelihood for solar neutrino extraction

  • +1.3ADN=-1.8±1.6 %-1.2expected

    SK data(±1σ)

    Day/night asymmetrytan2θ=0.55

    SK data(±1σ)

    LMA best fit∆m2=6.3x10-5eV2tan2θ=0.55

    ∆m2=6.3x10-5eV2

    (Assuming BP2000 flux and error)

  • Energy spectrum of SK-I

    Energy correlated systematic error

    (tan2θ, ∆m2)

    Best fit solar+KamLAND(as of before ν2004)

  • ∆m2=6.3x10-5eV2, tan2θ=0.55

    ∆m2=7.2x10-5eV2, tan2θ=0.38Best fit solar+KamLAND (before ν2004)

    SK only with BP2000 flux and error constraintBest fit 8B flux: 4.84 x 106 /cm2/sec

    Energy spectrum of SK-I

    Energy correlated systematic error

    Best fit 8B flux: 5.21 x 106 /cm2/sec

  • ( ) ( )SSMSSM8

    22osc

    SSMSSM8

    22osc8

    Btan, ,

    Btan,B

    ii

    ii

    ii

    ii hep

    mhephhep

    mb+

    ∆=

    +∆

    =θθ

    i

    iii

    ii

    i

    fhb

    hepηβρ +=

    += ,

    BDatad SSMSSM8i

    ( )timevar2

    2

    2

    2

    2

    2

    12

    22 log2 L∆−+++−= ∑

    = R

    R

    S

    S

    B

    BN

    i i

    iibin d

    σδ

    σδ

    σδ

    σρχ

    Oscillation analysis

    Spectrum

    ( ) ( ) ( ) ( )RRiSSiBiRSi ffff δδδδδδ ××= ΒΒ ,,

    Energy correlated systematic error Time variation

    Function for energy correlated systematic errors

    8B spec. shape

    energy scale

    energy resolution

  • Flux independent excluded region

  • BP2000total 8B Flux:5.05x106/cm2s

    Allowed region assuming fixed 8B flux

  • BP2000total 8B Flux:5.05x106/cm2s

    BP2004total 8B Flux:5.79x106/cm2s

  • Michael Smy, UC Irvine

    BP2000total 8B Flux:5.05x106/cm2s

    BP2004total 8B Flux:5.79x106/cm2s

    BP2000total 8B Flux:5.05x106/cm2s

    BP2004total 8B Flux:5.79x106/cm2s

  • Analysis of lower energy region in SK-IVertex position distribution of background (4.5 – 5.0 MeV)

    Wall

    Center

    R²(cm²)

    Z

    R

    Eve

    nts

    Z(cm)

    Rn

    TopBottom

    Even

    ts

    Water is suppliedfrom bottom

    before cuts

    after previous cuts

    (same method as above 5.0MeV)

    after previous cuts

    Apply tighter cuts to reduce external background.Use improved vertex reconstruction program.Remove high radon periods.Select period when trigger eff. for 4.5-5.0MeV is >95%. (466days, Sep.1999-July 2001)

  • Analysis of lower energy region in SK-I

    629 +128 -126(sta.) signals68016+-262 bg events4.5 – 5.0 MeV dataFlux: 3.13±0.63(sta.)±0.16(sys.)

    /cm2/sec

    Direction to the sun

    1496 days

    466 days

    Solar neutrino energy spectrum

    4.5-5.0 MeV data is consistent with previous results.

  • SK-II data

  • Detector calibration in SKDetector calibration in SK--IIII

    LINAC calibration data were taken at 6 positions.

    • PMT relative gain calibration by using Ni(n,γ)Ni source and an uniform light source (Xe-scintillation ball).

    • Timing calibration by N2-DYE laser ball.

    Energy distributions

    Tail due to 2 electrons

  • SKSK--II detector performance II detector performance ((LINAC calibrationLINAC calibration))

    Energy resolution

    ~20% at 10 MeV

    Vertex resolution

    ~100cm at 10 MeV

    Angular resolution

    ~28deg. at 10 MeV

    Absolute energy calibration

    ±2%

    MC tuning is in progress.

  • 16

    n

    nnn

    nn N16

    2 m

    (a) (b) (c)

    E =14.2 MeVn

    O(n,p) N16

    1616N calibrationN calibration

    DT generatorD+T→He+n

    n+16O→p+16N

    (14.2 MeV)

    w/o trigger

    with trigger correction

    Energy spectrum

    Zenith angle dependence of energy scale

    ±0.5%

  • SKSK--II TriggerII TriggerLE trigger: Number of hit PMTs within 200nsec: N200ns > 14SLE trigger: N200ns > 10 (added after July 15, 2003)

    100% efficient for E > 6.5 MeV for SLE trigger

    E > 8.0 MeV for LE trigger

    Online vertex reconstruction and fiducial volume cut are applied to SLE events.

    Trigger rate:

    LE: ~70 Hz

    SLE: ~1100 Hz

    SLE LE

  • SKSK--II preliminary resultsII preliminary results

    Flux= 2.38 ± 0.09 (stat.)

    8 – 20 MeV

    (x106/cm2/s)

    Dec.24,2002 – March 25, 2004

    Solar ν signal = 2161 (stat.) events

    Direction to the sun

    +82-80

    325 days

    (Systematic error under study)

    (cf. SK-I result: 2.35 ± 0.02(stat.) ± 0.08(sys.))

  • SKSK--II: DayII: Day--Night differenceNight difference

    Flux= 2.34 ± 0.13 (stat.) Flux= 2.40 ± 0.12 (stat.)

    (D-N)

    325 days (Dec.24,2002 – March 25, 2004)E

    vent

    s/da

    y/kt

    on/b

    in

    Eve

    nts/

    day/

    kton

    /binDay Night

    = - 0.025± 0.075 (stat.)(D+N)/2ADN =(Systematic error under study)

    cosθsun cosθsun

  • SKSK--II energy spectrumII energy spectrum

    SK-I average

    Consistent with SK-I

  • Time variationTime variation

  • Eν (MeV)

    P(ν e→

    ν e)

    Future prospects towards SK-IIIPossibility of detecting spectrum distortion

    sys. error

    reduce sys. errorreduce stat. error

    Lower threshold

    tan2(θ)0.550.380.380.380.28

    ∆m2 (eV2)6.3 x 10-54.8 x 10-57.2 x 10-510.0 x 10-57.2 x 10-5

    νe survival probability Recoil electron spectrum

    ~10% upturn should be seen

    0.35

    0.4

    0.45

    0.5

    0.55

    5 7.5 10 12.5 20Energy(MeV)

    Da

    ta/S

    SM

    (BP

    20

    04

    )

  • Future prospects towards SK-IIISignificance of spectrum distortion

    Live time (years)

    Sign

    ifica

    nce

    ( σ )

    3σ level

    tan2(θ)0.280.380.380.380.55

    ∆m2 (eV2)7.2 x 10-510 x 10-57.2 x 10-54.8 x 10-56.3 x 10-5

    Assumptions:Correlated systematic error: x 0.54.0-5.5MeV background: x 0.3(same BG as SK-I above 5.5MeV)

    Solar+KamLAND best fit

    Current breakdown of correlated systematic errors

    Better Energy scale calibration (~±0.4%) is needed.Better 8B spectrum shape from nuclear physics is needed.

  • ConclusionConclusionHigh statistics solar neutrino data has been taken at Super-Kamiokade.Day/night asymmetry is obtained by unbinned method :ADN= -1.8±1.6 +1.3/-1.2 %.Energy spectrum: SK prefers smaller ∆m2 and larger tan2θcompared with global best fit parameters. Assuming 8B total flux of the SSM predictions, LMA solution is preferred.Solar neutrino signal in 4.5 – 5.0 MeV (total energy) bin was newly obtained. Preliminary results from SK-II are consistent with SK-I.Hope to see definite energy spectrum distortion in SK-III, if it should be there.