13
Geobiology. 2017;15:353–365. wileyonlinelibrary.com/journal/gbi | 353 Received: 25 June 2016 | Accepted: 16 December 2016 DOI: 10.1111/gbi.12227 ORIGINAL ARTICLE Sulphur cycling in a Neoarchaean microbial mat N. R. Meyer 1 | A. L. Zerkle 1 | D. A. Fike 2 1 School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK 2 Department of Earth and Planetary Sciences, Washington University, St. Louis, MO, USA Correspondence N. R. Meyer, Department of Earth System Science, Stanford University, Stanford, CA, USA. Email: [email protected] and A. L. Zerkle, School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK. Email: [email protected] Current address N. R. Meyer, Department of Earth System Science, Stanford University, Stanford, CA 94305, USA Funding informaon Geological Society of London’s Alan & Charloe Welch Fund; A Palaeontological Associaon Undergraduate Research, Grant/ Award Number: PA-UB201504; University of St Andrew’s Zannah Stephen Memorial Travel Scholarship; Natural Environment Research Council Fellowship, Grant/Award Number: NE/H016805/1; Natural Environment Research Council Standard, Grant/Award Number: NE/J023485/2; NSF/EAR, Grant/ Award Number: 1229370; Packard Fellowship Abstract Mulple sulphur (S) isotope raos are powerful proxies to understand the complexity of S biogeochemical cycling through Deep Time. The disappearance of a sulphur mass- independent fraconaon (S-MIF) signal in rocks <~2.4 Ga has been used to date a dramac rise in atmospheric oxygen levels. However, intricacies of the S-cycle before the Great Oxidaon Event remain poorly understood. For example, the isotope com- posion of coeval atmospherically derived sulphur species is sll debated. Furthermore, variaon in Archaean pyrite δ 34 S values has been widely aributed to microbial sul- phate reducon (MSR). While petrographic evidence for Archaean early-diagenec pyrite formaon is common, textural evidence for the presence and distribuon of MSR remains enigmac. We combined detailed petrographic and in situ, high- resoluon mulple S-isotope studies (δ 34 S and Δ 33 S) using secondary ion mass spec- trometry (SIMS) to document the S-isotope signatures of exceponally well-preserved, pyrised microbialites in shales from the ~2.65-Ga Lokammona Formaon, Ghaap Group, South Africa. The presence of MSR in this Neoarchaean microbial mat is sup- ported by typical biogenic textures including wavy crinkled laminae, and early- diagenec pyrite containing <26‰ μm-scale variaons in δ 34 S and Δ 33 S = −0.21 ± 0.65‰ (±1σ). These large variaons in δ 34 S values suggest Rayleigh disllaon of a limited sulphate pool during high rates of MSR. Furthermore, we iden- fied a second, morphologically disnct pyrite phase that precipitated aſter lithifica- on, with δ 34 S = 8.36 ± 1.16‰ and Δ 33 S = 5.54 ± 1.53‰ (±1σ). We propose that the S-MIF signature of this secondary pyrite does not reflect contemporaneous atmos- pheric processes at the me of deposion; instead, it formed by the influx of later- stage sulphur-bearing fluids containing an inherited atmospheric S-MIF signal and/or from magnec isotope effects during thermochemical sulphate reducon. These in- sights highlight the complementary nature of petrography and SIMS studies to resolve mulgeneraonal pyrite formaon pathways in the geological record. 1 | INTRODUCTION The sulphur isotope record has played an integral role in shaping our understanding of key events in Earth’s geological and biolog- ical history. Surficial S-cycling principally involves biological and abioc mass-dependent fraconaon (MDF) processes, which follow a thermodynamically determined, linear δ 33 S/δ 34 S relaonship (δ 33 S = 0.515 × δ 34 S). However, the geological S-isotope record also captures evidence of mass-independent fraconaon (MIF), where δ 33 S and δ 34 S deviate from the predicted terrestrial mass fraconaon line, quanfied by the capital-delta (Δ) notaon. Prior to the Great Oxidaon Event (GOE) at ~2.4 Ga, S-bearing minerals show large This is an open access arcle under the terms of the Creave Commons Aribuon License, which permits use, distribuon and reproducon in any medium, provided the original work is properly cited. © 2017 The Authors Geobiology Published by John Wiley & Sons Ltd.

Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

Geobiology. 2017;15:353–365. wileyonlinelibrary.com/journal/gbi | 353

Received:25June2016  |  Accepted:16December2016DOI:10.1111/gbi.12227

O R I G I N A L A R T I C L E

Sulphur cycling in a Neoarchaean microbial mat

N. R. Meyer1 | A. L. Zerkle1 | D. A. Fike2

1SchoolofEarthandEnvironmentalSciences,UniversityofStAndrews,StAndrews,UK2DepartmentofEarthandPlanetarySciences,WashingtonUniversity,St.Louis,MO,USA

CorrespondenceN.R.Meyer,DepartmentofEarthSystemScience,StanfordUniversity,Stanford,CA,USA.Email:[email protected],SchoolofEarthandEnvironmentalSciences,UniversityofStAndrews,StAndrews,UK.Email:[email protected]

Current addressN.R.Meyer,DepartmentofEarthSystemScience,StanfordUniversity,Stanford,CA94305,USA

Funding informationGeologicalSocietyofLondon’sAlan&CharlotteWelchFund;APalaeontologicalAssociationUndergraduateResearch,Grant/AwardNumber:PA-UB201504;UniversityofStAndrew’sZannahStephenMemorialTravelScholarship;NaturalEnvironmentResearchCouncilFellowship,Grant/AwardNumber:NE/H016805/1;NaturalEnvironmentResearchCouncilStandard,Grant/AwardNumber:NE/J023485/2;NSF/EAR,Grant/AwardNumber:1229370;PackardFellowship

AbstractMultiplesulphur(S)isotoperatiosarepowerfulproxiestounderstandthecomplexityofSbiogeochemicalcyclingthroughDeepTime.Thedisappearanceofasulphurmass-independentfractionation(S-MIF)signal inrocks<~2.4Gahasbeenusedtodateadramaticriseinatmosphericoxygenlevels.However,intricaciesoftheS-cyclebeforetheGreatOxidationEventremainpoorlyunderstood.Forexample,theisotopecom-positionofcoevalatmosphericallyderivedsulphurspeciesisstilldebated.Furthermore,variationinArchaeanpyriteδ34Svalueshasbeenwidelyattributedtomicrobialsul-phate reduction (MSR).While petrographic evidence forArchaean early-diageneticpyrite formation iscommon, texturalevidence for thepresenceanddistributionofMSR remains enigmatic. We combined detailed petrographic and in situ, high-resolutionmultipleS-isotopestudies(δ34S and Δ33S)usingsecondaryionmassspec-trometry(SIMS)todocumenttheS-isotopesignaturesofexceptionallywell-preserved,pyritisedmicrobialites in shales from the ~2.65-Ga Lokammona Formation, GhaapGroup,SouthAfrica.ThepresenceofMSRinthisNeoarchaeanmicrobialmatissup-ported by typical biogenic textures including wavy crinkled laminae, and early-diagenetic pyrite containing <26‰ μm-scale variations in δ34S and Δ33S=−0.21±0.65‰(±1σ).These largevariations inδ34Svalues suggestRayleighdistillationofalimitedsulphatepoolduringhighratesofMSR.Furthermore,weiden-tifiedasecond,morphologicallydistinctpyritephasethatprecipitatedafterlithifica-tion,withδ34S=8.36±1.16‰andΔ33S=5.54±1.53‰(±1σ).WeproposethattheS-MIFsignatureof thissecondarypyritedoesnot reflectcontemporaneousatmos-phericprocessesatthetimeofdeposition; instead, itformedbytheinfluxof later-stagesulphur-bearingfluidscontaininganinheritedatmosphericS-MIFsignaland/orfrommagnetic isotopeeffectsduringthermochemicalsulphatereduction.These in-sightshighlightthecomplementarynatureofpetrographyandSIMSstudiestoresolvemultigenerationalpyriteformationpathwaysinthegeologicalrecord.

1  | INTRODUCTION

The sulphur isotope record has played an integral role in shapingour understanding of key events in Earth’s geological and biolog-ical history. Surficial S-cycling principally involves biological andabiotic mass-dependent fractionation (MDF) processes, which

followathermodynamicallydetermined,linearδ33S/δ34Srelationship(δ33S = 0.515 × δ34S).However, the geological S-isotope record alsocaptures evidence of mass-independent fractionation (MIF), whereδ33S and δ34Sdeviatefromthepredictedterrestrialmassfractionationline, quantified by the capital-delta (Δ) notation. Prior to theGreatOxidation Event (GOE) at ~2.4Ga, S-bearing minerals show large

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2017TheAuthorsGeobiologyPublishedbyJohnWiley&SonsLtd.

Page 2: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

354  |     MEYER Et al.

positiveandnegativeΔ33Svalues.After~2.4Ga,Δ33S ratiosdimin-ishtowardsvaluesthattightlyclusteraroundzero(Δ33S=0±0.2‰).Archaean sulphur MIF has been widely attributed to atmosphericphotochemical reactions involving SO2; these reactionswould havebeenblockedinthePalaeoproterozoicduetotheUV-shieldingeffectscaused by increased atmospheric O2 and O3 concentrations (e.g.,Farquhar,Bao,&Thiemens,2000).Inaddition,thedeliveryofS-MIFtotheEarth’ssurfacerequiressulphurtoleavetheatmosphereviamul-tipleexitchannelsatdifferentredoxstates,whicharehomogenisedwhenatmosphericoxygenexceeds10−5ofpresentatmosphericlev-els (Pavlov&Kasting, 2002).Therefore,measuringmultiple sulphurisotopes(δ34S,Δ33S)inArchaeansedimentscanprovideinformationonbothatmosphericchemistryandbiogeochemicalsulphurcyclinginArchaeanpalaeoenvironments.

ThebiogeochemicalcyclingofsulphurintheArchaeanwasfunda-mentallydifferenttothepresent-daycycle.Thelargestfluxofsulphurintothemodernoceansisriverinesulphate,derivedfromtheoxidativeweatheringofpyrite.However,thisfluxwaslesssignificantbeforetheGOEduetolowatmosphericpO2;therefore,thetwomostsignificantSfluxesintotheArchaeanoceanswerelikelyhydrothermallysourcedand atmospherically derived sulphur species (e.g., Fike, Bradley, &Rose,2015).TheArchaeanS-MIFsignal isthoughttobedominatedbyphotochemicalreactionsinvolvingatmosphericSO2(e.g.,Farquharetal.,2000;Pavlov&Kasting,2002).Incontrast,theshieldingeffectofatmosphericoxygenandozonepreventsthecreationofanS-MIFsignalinthecontemporaryS-cycle,withtheexceptionofphotochem-icalreactionsgeneratingstratosphericsulphateaerosolsfromvolcaniceruptions(Baroni,Thiemens,Delmas,&Savarino,2007).Furthermore,with low atmospheric and marine pO2, homogenisation of discreteatmosphericsulphurspecies(e.g.,SO2−

4,Sn,SO2)waslimited,further

favouringpreservationoftheArchaeanS-MIFsignal.After formation, the photochemically derived sulphur species,

generally assumed to be sulphate (SO2−

4) and elemental sulphur (Sn),

weredepositedintheoceans.Sulphateissolubleinwaterandwouldhomogenise rapidly. It could form sulphate-bearing phases, such ascarbonate-associatedsulphate(CAS),gypsum(CaSO4.2H2O)orbarite(BaSO4);oritcouldbereducedtohydrogensulphide(H2S)viamicrobi-allymediatedMDFredoxreactionsorthermochemicalsulphatereduc-tion(TSR)beforecaptureintherockrecordaspyrite.TheseS-cyclingprocessescansignificantlychangetheisotopecompositionofδ34Swithsmall(<0.2‰)differentialeffectsonΔ33S(Johnstonetal.,2005).ThefateofSn islesscertain,butoncedepositedontheseafloor,itcouldreactwithH2Sproducedbymicrobialsulphatereduction(MSR)toformareactive,mobile,solubleformofpolysulphideS2−

n.Reactivepolysul-

phideandhydrogensulphidecanthenreacttoformsulphide-bearingminerals,suchaspyrite(Farquharetal.,2013).Therefore,theS-isotopecompositionofpyritegenerallyrecordsthebiogeochemicalMDFpro-cessesthatgeneratedS2−

n and H2Sfromatmosphericprecursors.

Despite the narrative outlined above, there remain several poorlyconstrained aspects of the Archaean sulphur cycle. Firstly, the Δ33S signatures of the atmospheric products (e.g., Sn and SO2−

4) produced

throughphotochemicalreactionsremainasubjectofdebate.ArchaeanrocksfromtheHamersleyBasin,WesternAustralia,containpyritewith

S-isotope ratios that largely follow a linear trend in δ34SversusΔ33S alonganArchaeanreferencearray.Combiningthesedatawithphoto-chemicalmodels,Ono etal. (2003) suggested that theΔ33S signwaspositiveforelementalsulphurandnegativeforsulphate.Furthermore,Palaeoarchaean barites (BaSO4) also show a 0 to −1.5‰Δ

33S signal(e.g.,Roerdink,Mason,Farquhar,&Reimer,2012;Ueno,Ono,Rumble,&Maruyama,2008),butthesecouldhaveformedinthemarinewatercolumn, inthesedimentsor inhydrothermalenvironmentsnotneces-sarilyreflectiveoftheseawatersulphatepool(Paytan,Mearon,Cobb,&Kastner,2002;VanKranendonk,2006).Additionalphotochemicalexper-imentsproduceS-isotopeslopesthatcontrasttoOnoetal.’s(2003)re-sults(e.g.,seereviewofParis,Adkins,Sessions,Webb,&Fischer,2014);moreover, recent photochemicalmodels demonstrate that the sign inΔ33SofexperimentallyproducedsulphurwillbehighlydependentonthewavelengthofUVlightusedtosimulatephotolysis(Claireetal.,2014).

Furtherpoorlyconstrainedcomponentsof theArchaeanS-cyclearetheconcentrationandδ34Sofseawatersulphate.Archaeanseawa-tersulphateconcentrationswereexpectedtobelowerthanmodernvaluesbecauseofthelowatmosphericpO2beforetheGOE.Habicht,Gade, Thamdrup, Berg, and Canfield (2002) used culturing experi-mentsofmodernsulphate reducers toobservedecreasing fraction-ationfactorswithdecreasingsulphateconcentrations.Assumingthisrelationship can be extrapolated into theArchaean, they estimatedseawater sulphate concentrations at <200μM. However,MSR frac-tionation factors aredependentonmicrobial species (Bradleyetal.,2016) and other factors including reduction rate, type of substrateandtemperature(e.g.,Fikeetal.,2009;andreferencestherein).Morerecent results have suggestedArchaean seawater sulphate concen-trations could have been even lower, <10μM (Crowe etal., 2014;Zhelezinskaia,Kaufman,Farquhar,&Cliff,2014).

Theδ34Sratioofseawatersulphatedependsontheisotopecompo-sitionofthesulphateinputintotheoceans,thesteadystateburialfluxofsulphidesandsulphateandthefractionationfactorbetweencoevalsulphate-andsulphide-bearingspecies(Fikeetal.,2015).Particularly,ifthesulphateconcentrations intheArchaeanoceanswere lowandbasinswererestricted,MSRcouldhavechangedtheresidualsulphatecomposition of seawater through Rayleigh distillative fractionation(Roerdinketal.,2012).Therefore,seawatersulphateS-isotopecompo-sitionsmayhavebeenheterogeneous,bothspatiallyandtemporally,asproposedfromthescatterofδ34SvaluespreservedinNeoarchaeancarbonates(e.g.,Parisetal.,2014;Zhelezinskaiaetal.,2014).

Inaddition,thedistributionandoccurrenceofmicrobialsulphatereductionintheArchaeanisdebated.Bulkδ34SdatafromAustralianPalaeoarchaeanbarites(Shen&Buick,2004;Shen,Buick,&Canfield,2001)alongwithphylogeneticstudies(Wagner,Roger,Flax,Brusseau,&Stahl,1998) suggest thatmicrobial sulphate reduction is likelyanancientmetabolism.However,thelinkbetweenMSRS-isotopefinger-printsandpyritetexturesremainsenigmatic.Ono,Beukes,andRumble(2009)sampledmultiplepyritephasesin~2.5-GaupperPrieskafaciesfrom the GKP01 Agouron drill core. They correlated different py-ritephaseswiththeArchaeanreferencearray(Onoetal.,2003)andsuggestednodularand layeredpyritehadS-isotopesignaturesmostconsistentwithMSR.Similarlymatchingpyritecrystalmorphologyto

Page 3: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

     |  355MEYER Et al.

the array, Kamber andWhitehouse (2007) proposed spheroidal py-riteconcretionscaptureanMSRS-isotopefingerprintinthe2.52-GaUpper Campbellrand Subgroup, Transvaal, South Africa. Moreover,Fischeretal.(2014)showedthatδ34Sinnodularpyritewerecharac-terisedbysystematicenrichment towards the rims (with the lowestδ34Ssignaturepresentinthecentreofthenodules).AdditionalstudiesintheGriqualandWestBasinarerequiredtotestwhetherthesetex-tural andgeochemical interpretations canbeapplied topyrite fromotherpalaeoenvironmentsanddepositionalages.

To address these gaps in our current understanding ofArchaeansulphur cycling,wemeasured in situ, μm-scale, multiple sulphur iso-tope ratios (δ34S and Δ33S) in exceptionally well-preserved pyritisedmicrobialites in shales (sample-3184) from the ~2.65-Ga LokammonaFormation,GhaapGroup,SouthAfrica.BycombiningpetrographywithS-isotopedatafromsecondaryionmassspectrometry(SIMS),weaimtoincreaseourunderstandingofsulphurcyclinginaNeoarchaeanmicro-bialmat,andthesecondary(late-diagenetic/post-lithification)processesthatmay impact the primary (depositional/early-diagenetic) S-isotopesignal.Bypetrographicallycorrelatingpyritephaseswithsulphurisotopefingerprints,wecandeterminetheMDFandMIFprocessesthatcontrib-utedtotheformationofmultiplepyritegenerationsinthesesediments.

2  | MATERIALS AND METHODS

2.1 | Geological setting and core material

Our sample (3184)was collected from theBH1-SACHA core, drilledthroughtheNeoarchaeanTransvaalSupergroupintheGriqualandWestBasin(Figure1).ThecorematerialwasobtainedfromtheNationalCoreLibraryatDonkerhoek(Pretoria,SouthAfrica).Thecorecontainscarbon-ates,siliciclasticsandironformationsaswellasseveraligneousintrusivebodies(Figure2).Sample-3184wasobtainedfromadepthof3184mfromtheLokammonaFormation,SchmidtsdrifSubgroup,Ghaapgroup,TransvaalSupergroup.TheLokammona(Clearwater)Formationisdomi-natedbyshale,tufflayersintercalatedwithblackshale,andminordo-lomites (Figure2). The high proportion of fine-grained sediments isconsistentwithdepositioninalow-energyenvironment;AltermannandSiegfried(1997)suggestedsedimentationoccurredinadeep,shelfen-vironmentwithshale-carbonate/shalecycles representingshallowing-upward cycles. They also noted the presence of microbial laminites,which suggested deposition in the photic zone. The interpretation issupportedbystudiessuggestingthatmodernmicrobialmatsthatpro-ducemicrobiallyinducedsedimentarystructures(MISS)aredominatedbybenthicphotoautotrophs(Noffke,2009).TheLokammonaFormationhasamodelageof2.650±0.008GafromSHRIMPU-Pbanalysesofzirconsfromtufflaminae(Knoll&Beukes,2009).

TheareasampledbytheBH1-SACHAcoreischaracterisedbylittlesubsequenttectonicdeformation(Beukes,1987),andithasbeensub-jectedtosub-greenschistfaciesmetamorphism(Button,1973;Miyano&Beukes, 1984).The core has been penetrated by dykes and sills;thelargestcontinuousigneousintrusionoccursatadepthof922.3–1201.27m.IntheLokammonaFormation,thereissomeevidenceofsecondarymineralisation,particularlyat~3,165mwheregalenahas

beenidentified(Altermann&Siegfried,1997).Wewillconsidertheseigneous andmetasomatic processeswhen interpreting geochemicaldatafromBH1-SACHA.

2.2 | Imaging and EPMA

WeusedtheVHX-2000super-resolutiondigitalmicroscopehousedintheSchoolofEarthandEnvironmentalSciencesattheUniversityof St Andrews (Scotland, UK) to image thick sections of sample-3184.ThisfacilitatedthedetailedmappingofstructuresandfabricswithinthesampleandselectionoftargetareasforSIMS.Backscatterelectron (BSE) imagingwas carried out using the School of Earthand Environmental Sciences’ Jeol JCXA-733 Superprobe electronmicroprobe analyser (EPMA). Prior to analysis, sample-3184 thicksectionswerecoatedwitha~40-nm-thickgraphitelayer.Theanaly-siswasperformedusingaprimaryioncurrentof~17–21nAandanaccelerationvoltageof15kV.

F IGURE  1 SimplifiedgeologicalmapofTransvaalandGriqualandWestsediments,theapproximatelocationofBH1-SACHA(star)andtheinferredfaulttraceoftheKheissolethrustfault.Insert:theredrectangleshowsthelocationofthemainmaprelativetootherTransvaalsedimentsandtheKaapvaalcraton(beige).AdaptedfromAltermannandWotherspoon(1995)[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 4: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

356  |     MEYER Et al.

2.3 | Multiple sulphur isotope analyses via SIMS

ThesulphurisotopedataarereportedrelativetotheViennaCanyonDiabloTroilite(V-CDT)internationalreferencestandard.Thedelta(δ)notationdenotesthedeviationofthesamplefromV-CDTinpermil(‰;Equations1–2).Thecapital-delta (Δ)reflectsmass-independentfraction,quantifyingthedeviationofasamplefromtheexpectedter-restrialmassfractionationline(Equation3).

Multiplesulphurisotopeanalyses(δ34S and δ33S)wereconductedusing the CAMECAIMS 7f-GEO secondary ion mass spectrome-ter housed in the Department of Earth and Planetary Sciences atWashingtonUniversity(StLouis,MO,USA).Secondaryionmassspec-trometry(SIMS)enablestheinsitumeasurementofS-isotoperatiosto

ahighspatialresolution,precisionandmassresolutionwhileminimis-ingdestructionto thesample.Epoxythicksectionsofsample-3184witha2.54cmdiameterweremade,polishedto<1μmsurfacerough-nessandcoveredwitha~50-nmgoldcoating.

Samples were outgassed in an ancillary chamber at <1×10−8 mB prior to analysis, and the pressure in the sample chamberwasallowed to equilibrate for >1hr after sample introduction, prior toanalysis.Thicksectionswereanalysedinavacuumwithapressureof3 × 10−9mB.Afocused~2μmCs+primaryionbeamof0.9–1.8nAwasrasteredovera10μm by 10 μmareaof interest.Eachmeasurementwas divided into 15 cycles and required 7–8min to complete. Thesecondaryionswerecollectedusingfaradaycups(FC).The7f-GEOisspecificallydesignedforpreciseisotoperatiomeasurementusingtwoFCsoptimisedformajor(FC1)andminor(FC2)isotopedataacquisitionin “chargemode” (Peres,deChambost,&Schuhmacher,2008).Eachisotope isselectedbymagnetswitching,andthecorrespondingsec-ondaryioncountswerecollectedinsequenceofascendingmass.ThedesiredFCisselectedusingadeflectorsituatedinthedetectorassem-bly.ThisconfigurationallowsfortheinitiationofdataacquisitionfromFC2priortocompletedissipationofthesignalfromFC1.Thisalternat-ing collectionarrangement results in improved signal-to-noise ratiosandtherebygreaterprecisionperunittime. Inthisstudy, twominor

(1)δ33S=

((33S∕32S)sample

(33S∕32S)V−CDT−1

)×1000

(2)δ34S=

((34S∕32S)sample

(34S∕32S)V−CDT−1

)×1000

(3)Δ33S=δ33SV−CDT−1000×

⎛⎜⎜⎝1−

�δ34SV−CDT

1000

�0.515⎞⎟⎟⎠

F IGURE  2 BH1-SACHAbulksulphurisotopedataplottedagainstcoredepth(m)withthecorrespondingsedimentarylog.Brecciatedzoneslargelyreflectpost-depositionaltectonicdeformation.Thepyritisedmicrobialitesanalysedinthisstudyweresampledatadepthof3,184m(greyband).Lokam.,representsLokammona.DatafromIzonetal.(2015)andstratigraphiclogadaptedfromAltermann&Siegfried,1997[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 5: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

     |  357MEYER Et al.

isotopeswere tobeanalysed.Asback-to-backdata collectionusingFC2woulddefeatthesignal-to-noiseadvantagedescribedabove;thus,apseudomeasurement,atmass33.5,wasmadeonFC1sothateachcycle became 32S(FC1),33S(FC2),33.5(FC1),34S(FC2).Thebackgroundlevel forFC1was~3×104 counts/sand forFC2~3×103 counts/s.Typically, secondary ion yields were: 32S~2×108 counts/s, 33S~106 counts/sand34S~106counts/s.

Backgroundandionyieldswererecalibratedonadailybasis.Masscalibration,aswellasautomaticpeakcentringofthefieldandcontrastapertures,wasperformedatthestartofeachmeasurement;thiscorrectsforanydriftinthesecondaryionbeamorthemagneticfield(Fikeetal.,2009).Toremovethe50-nmgoldcoating,eachmeasurementwaspre-sputteredfor2minpriortothestartofthe15cycles.Aminimummassresolvingpower(MRP)of3900isrequiredtoseparatethe33S and 32SH peaks,andtherefore,aMRPof~4300wasused.Analysiswaspreferen-tiallycarriedoutinregularspacedintervals inagrid-likepattern(Fike,Gammon,Ziebis,&Orphan,2008).Generally, theanalysisspotswereplacedat~50-μmintervals.However,deviationsfromtheidealgridwerenecessarytoconsistentlysamplepyriteinsteadofsiliciclasticmatrix.

Theinternalerror(standarderrorofn=15cycles)variedinverselywiththe32Scountrate(FigureS1),suggestingthatprecisionwaslim-ited by counting statistics (Fike etal., 2009).Anomalous datawereomitted from further analysis if any of the following applied to themeasurement:

1. The sputter area clearly targeted only matrix as subsequentlydetermined from BSE and super-resolution digital microscopeimages.

2. Theuncorrectedrelativestandarderrorfor32Scountswas>1%.3. Theuncorrectedrelativestandarderrorfor34S/32Swas>0.1%.

After excluding the anomalous measurements, the internal errorwas typically <1‰ for δ34S and <0.5‰ for δ33S (1SE). An in-houseWashingtonUniversitypyritestandardwasmountedinapolishedandgold-coatedthinsectionandplacedinaseparateholder.ItscompositionwasdeterminedbymeasuringtheS-isotopecompositionoftheinternalstandard12timesandtheBalmatstandard20times.TheBalmatstan-dard(δ34S=15.1‰andδ33S=7.7‰)analysesbracketedthein-housestandard.The in-housestandardhasaknown isotopecompositionofδ34S=0.13±0.30‰andδ33S=0.13±0.20‰(1SE).Theexternalerrors(1standarddeviationofmultipleadjacentpointsonthein-housestan-dard)weretypically0.38‰and0.32‰forδ34S and δ33S,respectively(n=35).Withinsample-3184,therewere26‰variabilityinmeasuredδ34Svaluesand14‰variability inδ33S.Thisvariationfarexceedsthecalculatedinternalandexternalerrors.

On average, a session consisted of ~50 measurements of un-knownsandwasbracketedby≥4measurementsofthein-housestan-dardonboth sidesof theunknowns (FigureS2). Instrumentalmassfractionation(IMF)wascorrectedforbystandard-samplebracketing.Themean,uncorrectedisotopecompositionofrepeatedanalysesofthein-housepyritestandardontheSIMSwasδ34S=−0.05±0.38‰and δ33S=1.00±0.32‰ (1σ; n=35; relative toV-CDT).Therefore,theIMF(IMF=Rraw/Rknown)wastypically1.000and1.001for

34R and

33R, respectively.Although IMF can vary according to instrumentalconditions,theS-isotopeoffsetbetweenbracketingstandardsandun-knownsshouldnotvary.Furthermore,themeasuredS-isotoperatiosofasession’sbracketingstandardswereobservedtodeterminedrift.Thedriftvaluewasusually<1‰over24hr.Tocorrectforthis,alinearandconstantdriftwasassumedwithina session.Themagnitudeofthisdriftwasmuchsmallerthanthesignalsobservedandwasthere-foreunlikelytohaveimpactedtheresults.

3  | RESULTS

3.1 | Textural analysis

Sample-3184isablackshalecomposedof~1-mm-thicklaminaewithvaryingproportionsofpyriteandmatrix(Figure3).Thematrixiscom-posed of silt-sized particles (~40μm) of aluminosilicates (clay min-erals; 80%modal abundance) and quartz (20%).Uncommon<5-μm detritalgrainsofrutile(TiO2)andapatite(Ca10(PO4)6(F,Cl,OH)2)makeup<1%ofthematrixvolume.Laminaecontainvariableproportionsofpyrite-to-matrixratios,rangingfrom10%–70%pyriteto30%–90%matrix.Therearethreedistinguishablepyritephases:A)disseminatedpyritecrystals,<5μminsize;B)type 1 pyrite:irregularaggregatesofcoalescedpyritecrystals.Clusterscanrangefrom10μmto500μm across,andarecomposedofanhedraltosubhedral,1-to20-μmpyritecrystals.(Figure4);C)type 2 pyrite:euhedralcubicpyritewithacrystalsizerangingfrom10to100μm(Figure4).Someeuhedralpyritecrys-talsareisolatedwithinthematrix,whileothercrystalsovergrowandencrusttype1aggregates.Overgrowthsoccurontheedgesoftype1pyriteaggregatesandwithinclusterswherematrixlensesoccur.Type1 and type 2 pyrites are chemically distinct phases, as determinedfromBSEimages(Figures4andS6).

Laminae containing type 1 pyrite show sedimentary structuresthatsuggestitprecipitatedduringearlydiagenesis,priortosoftsed-imentdeformation.Theseincludewavycrinkledlaminaewithtypicalwavelengthsof~500μmandwaveheightsof~200μm,isoclinalfolds,1-mmrip-upstructuresandover-foldedlaminae.Particularly,<2-mmirregular,ellipsoidalconcretionsarecomposedofpolycrystallinetype1pyrite.Theycross-cutlaminationbutalsocausedrapingoflaminaeoneithersideoftheconcretion(Figures4andS4);thissuggeststype1pyriteprecipitatedafterdepositionbutbefore lithification,duringearlydiagenesis.

A normal microfault cross-cuts the entire core section of sam-ple-3184(Figure3).The~50-μm-widemicrofaulthasbeeninfilledbyaluminosilicatesandsilica.Themicrofaultcross-cutstype1pyrite;type2pyritecrystalscross-cutthemicrofaultitself(Figure4).Furthermore,type2pyriteovergrowsthesedimentarystructurescomposedoftype1pyrite.Accordingtothesecross-cuttingrelationships,type2pyriteprecipitatedpost-lithification.

3.2 | Multiple sulphur isotope data

All the SIMS data measured in sample-3184 are presented inFigure5. There is no obvious stratigraphic trend; however, there is

Page 6: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

358  |     MEYER Et al.

a relationshipbetweenpyrite crystal shapeandS-isotopecomposi-tions.Thefirstdatasetshowsameanofδ34S=12.54±4.98‰andΔ33S=−0.21±0.65‰(±1σ,n=177)andcorrespondstotype1py-rite(Figures6and7).Insample-3184,type1pyriteδ34Svaluesvaryby 26‰; within a ~500×500μm area, the range of δ34S is 15‰(Figure6).Wavycrinkledlaminaeshowδ34S and Δ33Svaluesconsist-entwithtypicaltype1pyrite(FigureS3).Theseconddatasethasamean of δ34S=8.36±1.16‰andΔ33S=5.54±1.53‰(±1σ,n=18)andwasmeasuredintype2pyrite(Figures7andS5).Toa95%confi-dencelevel,theS-isotopevaluesfortype1andtype2pyritearesignif-icantlydifferentintheirmediansandvariances(p = .000 for δ34S and Δ33Sintwo-sampleWilcoxonandLevene’stests).SomedatapointscorrespondtoanintermediaryS-isotopesignaturebetweenthetype1

andtype2pyriteendmembers.Whenthesemeasurementsweresub-sequentlyexaminedintheirpetrographiccontexts,photomicrographssuggesttheanalysisspotstargetedamixtureofbothpyritephases.

4  | DISCUSSION

4.1 | Early- diagenetic (type 1) pyrite

Laminae composed of type 1 pyrite are wavy and crinkled on asub-mm scale (Figures3 and 4) and are consistent with sedimen-tary structures thathavebeenmicrobially induced (Noffke,2009).Prokaryotes and eukaryotes in microbial mats produce a matrixof extracellular polymeric substances (EPS), which are composed

F IGURE  3  (a)Reflectedlightscannerimageofsample-3184fromtheLokammonaFormationshowingtheareasofSIMSanalyses(whitedots).Bluedot=Figure6analysisarea;greendot=Figure7analysisarea.Divisionsonthescalebarrepresent1mm.(b)Atraceoftheimagein(a)showinglaminaecompositions,typeexamplesofsedimentarystructuresdiscussedinthetextandthelocationofthenormalmicrofault.Modalpercentagesoflaminaecompositionsareshowninbrackets(pyrite/matrix)[Colourfigurecanbeviewedatwileyonlinelibrary.com]

(a) (b)

Page 7: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

     |  359MEYER Et al.

of polysaccharides, proteins, humic substances and nucleic acids(Nielsen, Jahn, & Palmgren, 1997). The matrix has several physi-cal functions, including adhesion to surfaces, aggregation of cells,stabilisationofmicrobialmat structure, sorptionof exogenousor-ganicmoleculesandretentionofwater(Laspidou&Rittmann,2002).Importantly,EPS is responsible for the formationofwavycrinkledlaminationduetoitsabilitytotrapdetritalgrainsanditshighcohe-siveproperties.Thiscohesion isalsoresponsiblefortheformationofover-foldedlayers(Figure3),whichoccurwhenthematsurface

iserodedand turnedoverat itsedges (Schieber,1999).However,wavycrinkled laminaecanalso form through thedifferential com-pactionofphyllosilicatesaround,forexample,microconcretions,siltlensesorsilicaspherules(Schieber,2007).ExamplesofcompactionaroundsuchstructureswereabsentinBSEimagesofsample-3184(Figure4).Thus, thesedimentarystructures indicatehighcohesionofthedepositionallayersandareconsistentwithtypicalmicrobialitetextures,supportingabiogeniccontrolontheformationof type1pyrite.

F IGURE  4 BSEimagesofdifferentsedimentarystructuresinsample-3184.(a)Wavycrinkledinternallaminationcomposedoftype1pyriteanddisseminatedpyrite.(b)Wavycrinkledinternallaminationcomposedoftype1pyritewithtype2pyriteovergrowths.(c)Pyriteconcretion.Notethattheconcretionbothcross-cutsandcausesdeformationofthelamination.(d)Thenormalmicrofaultthatisinfilledbyquartzandclayminerals.Notethemicrofaultandveincross-cuttype1pyrite;type2pyritecross-cutsthemicrofaultandvein.Therefore,therelativeorderofformationisasfollows:pyrite1precipitatedfirst,brittledeformationcausedmicrofaultformation,themicrofaultwasinfilled,andfinallytype2pyriteprecipitated.py,py1,py2andqtzrepresentpyrite,type1pyrite,type2pyriteandquartz,respectively[Colourfigurecanbeviewedatwileyonlinelibrary.com]

F IGURE  5 PlotofmultipleS-isotopedata(δ34S and Δ33S)measuredviaSIMS.SIMSerrorbarsare1SE for each measurement(n=15cycles).Greentrianglesrepresentamixedsignal,wheretheareaofanalysissampledbothtype1andtype2pyrite.TheorangelineistheArchaean reference arrayasdescribedbyOnoetal.(2003)[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 8: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

360  |     MEYER Et al.

TheS-isotopecompositionof type1pyrite isdistinguishablebya Δ33Svalueof−0.21±0.65‰(±1σ)anda26‰rangeinδ34Swithinsample-3184.TheΔ33Serrorbarsfortype1pyritewithinanareaofanalysisoverlap(Figure6);therefore,theΔ33Svariationwithinalaminaisstatisticallyinsignificant.Theconsiderablevariationinδ34SvaluesisconsistentwithMSR—modernmicrobialmatswithsulphatereducersshow~15–53‰variationsinδ34Sona1-mmscale(Fikeetal.,2009;Wilbanks etal., 2014), similar towhatweobservehere.Thus, bothtexturalevidenceandtheS-isotopecompositionareconsistentwiththe expected biosignatures of an ancient microbial mat containingsulphatereducers.The26‰rangeinδ34Swithinsample-3184couldbeexplainedbynon-uniformity inMSR fractionation factors,whichdependonthemicrobestrain,typeofelectrondonors,reductionrate,temperatureandthepresenceofadditionalSmetabolismssuchasox-idationanddisproportionation(e.g.,Fikeetal.,2009).

Alternatively,thescatterandenrichmentinδ34SsulphiderelativetocoevalsulphatecouldbeproducedbyfractionationduringMSRina (partially)closedsystem,analogoustoamatenvironmentperiodi-callyflushedwithseawatersulphate.WeusedaRayleighdistillationmodeltoexplorethisscenario,usingasuiteofrealisticfractionationfactors for MSR (αMSR=1,000×[

34Rsulphate/34Rsulphide − 1], where

34R = 34S/32S)andvariableseawaterδ34Ssulphatevalues.Figure5showsthat few data occur above 18‰, and thus, the curve showing theδ34Ssulphideoftheinstantaneousproductmustbeinthedistillativetailwhen δ34Ssulphide>18‰.Valuesof6‰–12‰forαMSR,4‰–16‰forδ34Ssulphate and fvalues from~0.5 to0.9 are all consistentwith thedata(Figure8).

This 6‰–12‰ estimate of αMSR is at the lower end of thespectrum for themodernMSRcell-specific fractionation factorsofαMSR=2‰–66‰(Fikeetal.,2015).SmallMSRisotopefractionationcanoccurwhensulphateconcentrationsarelow,whensulphatere-ductionratesorsulphideoxidationratesarehigh,whenH2 isusedasanelectrondonorinsteadoforganiccarbon,and/orwhensulphurdisproportionationlevelsarelow(e.g.,Fikeetal.,2009andreferencestherein).Although the relationshipbetweensulphateconcentrationandMSR fractionation factor is complex (seeBradley etal., 2016),ourestimatesofαMSRareconsistentwithotherstudiesthatsuggestlowseawatersulphateconcentrationsandhighratesofMSRintheArchaean(e.g.,Croweetal.,2014;Habichtetal.,2002;Zhelezinskaiaetal.,2014).Furthermore,theseawaterδ34Scompositionsweesti-matefromclosed-systemmodellingoftheSIMSdataareconsistentwith estimates of seawater sulphate δ34S from Neoarchaean CAS

F IGURE  6 CombinedpetrographywithSIMSS-isotopedatashowsthetypicaltextural,δ34S and Δ33Scharacteristicsoftype1pyrite.(a)Reflectedlightphotomicrographoftheanalyticalgridlocation.(b)BSEimageoftheanalysisareaoverlainbyaSIMSδ34Simageconstructedbysplineinterpolationoftheanalyticalgrid(n=31).Notethattheanalysisareaiscomposedofa~500-μmaggregateofanhedraltosubhedral,1-to20-μmpyritecrystals.(c)PlottoshowSIMSδ34SagainstΔ33Sdata(‰).Notethevariationinδ34S dataissignificant;thevariationinΔ33S dataisnotsignificant.Errorbarsrepresent1SEforeachmeasurement(n=15cycles)(d)BSEimageoftheanalysisareaoverlainbyaSIMSΔ33Simageconstructedbysplineinterpolationoftheanalyticalgrid(n=31)[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 9: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

     |  361MEYER Et al.

(e.g.,Domagal-Goldman,Kasting,Johnston,&Farquhar,2008;Guoetal.,2009;Parisetal.,2014).However,thesmallMSRfractionationfactorsandvariationinΔ33SvaluesintheliteratureimplyArchaeanseawatersulphatehadashort residencetimeduetoasmall reser-voirsizerelativetothefluxesintoandoutofthereservoir;thus,theS-isotopecompositionofseawatersulphatewas likelyspatiallyandtemporallyheterogeneous (Fischeretal.,2014;Zhelezinskaiaetal.,2014).

Wethereforeconcludethattype1pyritereflectsthemorphologi-calandgeochemicalsignaturesofsulphatereducersinaNeoarchaeanmicrobial mat, as inferred from (i) the biogenicity of sedimentarystructureslikewavycrinkledlamination,(ii)texturalevidenceofearly-diagenetic precipitation of type 1 pyrite, and (iii) models of type 1pyriteδ34SvaluessupportingplausibleMSRfractionationfactorsex-pressedwithinarestrictedseawatersulphatepool.

4.2 | Secondary (type 2) pyrite

Asdiscussedabove,simplecross-cuttingrelationssuggesttype2py-riteprecipitatedafter type1pyrite formationandpost-lithification,because it overgrows deformed aggregates of type 1 pyrite, and itcross-cuts a normal microfault with vein infill (Figure4). The lowstandard deviationof type 2 pyrite S-isotope ratios suggests these

crystals have all been formed from the same, uniform S-isotopesource.Theδ34S and Δ33Ssignatureoftype2pyritefallswithinOnoetal.’s (2003)estimatesof thecompositionofatmosphericelemen-talsulphurasinferredfromArchaeanpyritedataandphotochemicalexperiments(Figure5),andParisetal.’s(2014)NeoarchaeanCASval-ues.Similarδ34S and Δ33SratiosineuhedralgrainssampledfromGKF-01 (a core sampling deeperwater equivalents of the BH1-SACHA;Schröder, Lacassie,&Beukes, 2006)were interpreted as having anatmosphericelementalsulphurorigin(Farquharetal.,2013).Farquharetal.(2013)hypothesisedthatsolidatmosphericallyderivedSnparti-clescouldremaininanunreactiveformastheyfellthroughthewatercolumn.Afterdeposition,theycouldthenreactwithH2Sinthesedi-ment,producingreactivepolysulphide.Finally,thepolysulphidecouldreactwithFeStoformpyrite.Farquharetal.(2013)predictedthatthepyritewould closely reflect the S-isotope signature of atmosphericelementalsulphurifthemasscontributionofH2Swassmallrelativetopolysulphideinthepyriteproduct.

Asimilarinterpretationoftype2pyriteformationinsample-3184is less likely, due to its inferred later timing of formation based onthe petrographic relationshipswe describe above.As type 1 pyritelikely formed from sulphidegeneratedviamicrobial sulphate reduc-tion,H2Swasabundantduringearlydiagenesis.Therefore,anyatmo-spheric,unreactiveelementalsulphurparticlesthatdepositedintothe

F IGURE  7 ThecontrastingtexturalandS-isotopesignaturesoftype1andtype2pyrite.(a)Reflectedlightphotomicrographoftheareaofanalysis.(b)BSEimageoftheanalysisareaoverlainbyaSIMSδ34S image constructedbysplineinterpolationoftheanalyticalgrid(n=15).Notethe~300-μm cubictype2pyritegrain,overgrowingtype1pyriteaggregates.(c)PlottoshowSIMSδ34SagainstΔ33Sdata(‰).NotethesignificantdifferenceinΔ33Sfortype1and2pyrite.Errorbarsrepresent1SE for eachmeasurement(n=15cycles).Bluecircles=type1pyrite;greencircles=type2pyrite.(d)BSEimageoftheanalysisareaoverlainbyaSIMSΔ33Simageconstructedbysplineinterpolationoftheanalyticalgrid(n=15)[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 10: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

362  |     MEYER Et al.

NeoarchaeanmicrobialmatwouldhavesimultaneouslyreactedwithH2Stoformasoluble,reactiveformofpolysulphide.Duringearlydia-genesis,themobilepolysulphide,aprecursortopyritesynthesis,wouldhavereactedwithanironmonosulphidetoformFeS2.However,petro-graphic relationshipssuggest type2pyrite formedpost-lithification,notcoevallywithtype1pyriteduringdiagenesis(Figure4).Therefore,type2pyriteinsample-3184unlikelyformedfromanelementalsul-phur source by themechanism proposed by Farquhar etal. (2013).Hence,wesuggesttheΔ33S=5.5‰signatureoftype2pyritewasnotproducedfromcontemporaneousatmosphericSnproductsatthetimesample-3184wasformed.Instead,weproposelater-stagealterationprocessescouldexplaintheΔ33Svaluesmeasuredintype2pyrite.

The BH1-SACHA core has been altered by several post-depositional hydrothermal events that could have caused multi-generational pyrite genesis. Stratigraphic logs indicate evidence ofsecondary mineralisation of galena, ~20m stratigraphically higherthan sample-3184. Furthermore, intrusion of the igneous body at922.3–1201.27mformedacontactmetamorphicaureole(Altermann&Siegfried,1997).To thebestofourknowledge, thisdykehasnotbeendated;however, itmaybeco-genetictoothermaficintrusionsrelatedtotheemplacementoftheBushveldcomplex,2.06–2.05Ga(Hartzer,1995).Associated igneousandmetamorphicfluidscanca-talysemetasomaticreactions,causingthe lossandgainofelementsincirculatingfluids.TheoccurrenceofmetasomatisminBH1-SACHAis supported by regional geological evidence; a platform-wide fluidfloweventat~2.0GacouldhavecausedthePb-Zn-Cu-mineralisationin the Campbellrand Subgroup, Ghaap Group. Huizenga, Gutzmer,Greyling,andSchaefer(2006)sampledMississippiValley-type(MVT)deposits in the Griqualand West area, ~100–120km straight-linedistancefromKathu.Theyestimatedaregionalfluidtemperatureof200–240°Candpressureof0.8–1.5kbarduringmineralisationoftheMVT deposits. It is possible that BH1-SACHA experienced similarmetamorphic conditions. However, Altermann and Siegfried (1997)

notedevidenceofthrustfaultsinBH1-SACHAatdepths>2,800mintheMontevilleFormation.Theysuggestedthis isthe intersectionofBH1-SACHAwiththeKheissolethrustfault(Figure1).Allochthonoussections of Archaean Transvaal Supergroup rocks (including rocksthatwere sampledby theBH1-SACHAcore) aswell asProterozoicWaterbergandOlifantshoekGroupswerehorizontallydisplacedandnow lie unconformablyon the autochthonousArchaeanpackageofrocks(Altermann&Wotherspoon,1995;Martini,Eriksson,&Snyman,1995). The age assigned to thrusting ranges from 2.20 to 1.75Ga(Grobbelaar, Burger, Pretorius,Marais, &VanNiekerk, 1995). If thethrust isolder than~2.0Ga, itsuggests that thehangingwall rockswereexhumedbeforethekeyigneousandmetasomaticeventsasso-ciatedwiththeBushveldComplex.Hence,themetamorphicgradeofBH1-SACHAinthehangingwallmaybelowerthanthefootwallMVTdeposits examined by Huizenga etal. (2006). In addition, De Kocketal.(2009)showedthatsimilarstratapreservedwithintheGKP-01drillcorethroughtheGhaapGroupshowpervasiveremagnetisationby2.5-to1.8-Gananoscalepyrrhotite.Furthermore,high-resolutionpalaeomagneticandgeochemicalevidencefromGKF-01NeoarchaeannodularpyritesuggeststhatsomeoftheTransvaalSupergrouppyriteshavebeenpost-depositionallyaltered,~0.5Gaaftertheirdeposition(Fischeretal.,2014).Thus,evenundeformedGhaapGroupstratacanshowacomplexhistoryofironsulphidemineralprecipitation.

The geological evidence therefore suggests sulphur could havecirculated influids as soluble sulphur species andparticipated inhy-drothermalreactionsintheGriqualandWestBasin.TherearemultiplesourcesofsubsurfaceS-richfluids (Figure9): Inmodernsettings,sul-phatecanbeacquiredfrom(buried)seawater(Ohmoto,1972).Ifthehy-drothermalalterationsoccurredaftertheGOE,seawaterwasapotentialsource(A,Figure9).Furthermore,porewatersexpelledfromsedimen-tary rocks during compaction, fluids formed by magmatic/metamor-phicprocessesormeteoric-orseawater-derivedfluidscancausethedissolutionofS-bearingminerals.Dissolutionofsulphate,suchasCAS

F IGURE  8 Graphsshowingthecalculatedδ34Svaluesofthehydrogensulphideinstantaneousproductrelativetotheproportionofsulphateconsumed(f),theinitialδ34SsulphatecompositionandtheMSRfractionationfactor(αsource-product).Thegreyrectanglescorrespondtotherangeofδ34Ssulphidecompositionsmeasuredintype1pyriteinsample-3184.(a)α=6‰,(b)α=12‰[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 11: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

     |  363MEYER Et al.

orsulphate-bearingminerals(e.g.,gypsum,anhydriteorbarite),occursreadily,whilepyritedissolutioncanalsooccurinthepresenceofanoxi-dant,forexample,O2orFe

3+(Descostes,Vitorge,&Beaucaire,2004;B,Figure9).Moreover,bothsulphateandsulphidecanbeproducedfromthedisproportionationofmagmaticSO2.Forexample,duringthecon-densationofamagmaticplume,H2SO4 and H2Sformfromthedispro-portionationofmagmaticSO2attemperatures200–400°CandpH<3.Sulphatecanbeleachedbyfluids,causingtheproductionofanacidic,sulphate-bearinghydrothermalfluidthatcaninfiltratesurroundingwallrock (C,Figure9;Rye,2005).The intrusionof theBushveldComplexat~2.06Gacouldhaveproducedmagmaticsulphurspecies (Hartzer,1995).Finally,thesesubsurfaceS-richfluidscouldhaveinfiltratedsur-roundingrocksviafracturefloworporousflow,andprecipitatedpyrite.

WesuggesttwoscenarioswherebythecirculationofS-richfluidsfromtheabovesourcescouldhavecontributed to the formationoftype2pyriteand itsassociatedS-MIFsignal:oneviathermochemi-calsulphatereductionofS-bearingfluidsfromamorerecentsulphursource, and oneviamigration of S-rich fluids from stratigraphicallyoldersedimentscarryinganinheritedArchaeanS-MIFsignal.

Ifthesubsurfacesulphur-richfluidweresourcedfrommodernorpost-GOEseawater,thedissolutionofpost-GOEsulphurmineralsormagmaticsulphate,itwouldnotcarryaprimaryMIFsignal.Therefore,toprecipitatetype2pyritewithaΔ33Sfingerprintof+5.5‰fromoneof thesesources,apost-depositionalprocesswouldbenecessary tocause S-MIF. Experimental investigations have shown that thermo-chemicalsulphatereduction(TSR)canproducea<13‰enrichmentinΔ33Srelativetothesulphatesource(Oduroetal.,2011).Ananomalousenrichmentof33Srelativeto34SduringTSRoccursduetomagneticisotopeeffects (MIE). In the sulphur isotope system, the 33S-isotopecontainsmagneticnuclei;duringTSR,33Sundergoesthespin-selectivereactionfasterthan34S and 32S.Thisresultsinananomalousenrichment

of 33S relative to34S in thepolysulphideproduct,and therefore, theTSRproductcarriesapositiveΔ33Ssignal(Oduroetal.,2011).

Thermochemical sulphate reduction occurs at 100–300°C(Johnston, 2011); these temperatures are equivalent to sub-greenschisttogreenschistfacies,whichcorrespondtothemaximummetamorphic grade that the lower Transvaal Supergroup, includingBH1-SACHA,experiencedduringintrusionoftheBushveldComplexin the Palaeoproterozoic (Sumner & Beukes, 2006). Therefore, thetemperature regime during contact metamorphism of BH1-SACHAandthesurroundingrockswassufficientlyhightosupportTSR.Thepetrographicevidenceand isotopefingerprintof type2pyrite,cou-pled with the history of hydrothermal alteration described above,couldbeconsistentwithMIEduringTSRcausingananomalousen-richmentin33Srelativeto34S.However,thereiscurrentlynoevidenceofanomalousΔ33SsignalsassociatedwithTSRinbulkrockanalysesfromthegeologicalrecord.Furthermore,TSRcausesaMIFeffect in33S,butnot36S(Oduroetal.,2011);therefore,thishypothesiscannotbeconclusivelydemonstratedwithouttheinclusionofΔ36Sdata.

Morelikely,theMIFsignalmeasuredintype2pyritecouldhaveformedfromthedissolutionandreprecipitationofArchaeanS-bearingmineralsoriginallydepositedwithapositiveΔ33Ssignature(Figure9).Notably,bulkpyriteshowsaΔ33Scompositionwithinerrorofthetype2 pyrite S-isotope fingerprint, 20–30m stratigraphically lower thansample-3184(Figure2).Therefore,dissolutionofthesepyritephasesandmigrationofΔ33S=+5.5‰sulphur-richfluidsupwardsarealikelysourceofthetype2pyriteMIFsignal.Therefore,grain-scaleArchaeanMIFsignaturesmayreflectsecondarypyriteformationmechanismsaswellasatmosphericprocessesatthetimeofdeposition.Thesemul-tiplepyritephasescanreflectaprotractedhistoryofpyriteprecipita-tion,whichcanberecognisedusinghigh-resolution,insituS-isotopegeochemistry.

F IGURE  9 Hypothesisedformationofpost-lithificationpyritewithananomalousΔ33Ssignal.Sulphurcanbesourcedviathreepathways:(A)seawater,(B)dissolutionofsulphate-orsulphide-bearingmineralsor(C)thedisproportionationofSO2inmagmatic-hydrothermalormagmaticsteamenvironments[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 12: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

364  |     MEYER Et al.

5  | CONCLUSIONS

Sulphate reduction in Neoarchaean microbial mats:Ourtexturalandsul-phur isotopedataechootherstudiesthatsuggestMSRinfluencedS-cyclingintheNeoarchaean(e.g.,Habichtetal.,2002;Uenoetal.,2008;Zerkle,Claire,Domagal-Goldman,Farquhar,&Poulton,2012).Astypi-calmicrobialitetexturesaregenerallyassociatedwithphotoautotrophs(Noffke,2009),thisstudyproposesthatmicrobialsulphatereducersmayhavecommonlyoccurredinthesamecommunityasphotosynthesisers,formingamicrobialmatecosystemsimilartothoseofthemodern.

Neoarchaean seawater sulphate concentrations and S- isotope compo-sition:SIMSS-isotopedataandclosed-systemmodellingsuggestthelocalsulphurreservoirhadaΔ33S=−0.21±0.65‰(±1σ,n=177)andδ34S=4‰–12‰duringformationoftype1pyritesinsample-3184(Figure8). These values are consistent with previous estimates ofthe δ34S-isotope composition of Archaean sulphate (e.g., Domagal-Goldmanetal.,2008;Guoetal.,2009;Parisetal.,2014).However,theS-isotopecompositionofseawatersulphatemayhavebeenspa-tiallyandtemporallyvariable,particularlyat the lowsulphate levelsestimated for theNeoarchaean (Zhelezinskaia etal., 2014). Closed-systemmodellingofsample-3184indicatessmallMSRfractionationfactors (αMSR=6‰–12‰),consistentwithhighreductionratesandlowsulphateconcentrations.ThesmallMSRfractionationfactorsandscatterinΔ33Svaluesintheliteratureimplysulphatehadashortresi-dencetimeinArchaeanoceansduetoasmallreservoirsizeandcom-parativelylargefluxesintoandoutofthereservoir.Additionalstudiesassessing the S-isotope compositionofCASwill help constrain theevolutionofseawatersulphateδ34S and Δ33SduringtheArchaean.

The utility of combining petrography and SIMS: This study demon-stratesthatgrain-scaleMIFsignalscouldrecordsecondaryprocessesinadditiontocontemporaneousatmosphericprocessesatthetimeofdeposition.MIFsignalscanbegeneratedbyMIEduring laterTSRor,moreprobably,leachedfromsurroundingArchaeansedimentaryrocksandreprecipitatedfollowinglithification.Furthermore,itdemonstratesthatArchaeanrockscanpreserveacomplex,protractedhistoryofpyriteformation.Pyritegenesiscanoccuroverseveralgenerations;precipita-tioncanrangefrompre-softsedimentdeformationtopost-lithification.Thisstudyhighlightstheeffectivenessofpairingpetrographywithhigh-resolutionSIMSsulphurisotopestudies,tounravelthediageneticpro-cessesthathavecontributedtomultigenerationalpyritegenesis.

ACKNOWLEDGMENTS

WethankDr.CliveJonesforhelpingwithSIMSanalysis,Mr.DonaldHerd forassistancewith imagingandthestaffat theSouthAfricanNational Core Library in Donkerhoek for facilitating access to thecorematerials.TheauthorsthankTonyPrave,TimRaub,GarethIzon,MarkClaireandJamesFarquharfortheir inputanddiscussion.ThisstudywasfinanciallysupportedbytheGeologicalSocietyofLondon’sAlan & Charlotte Welch Fund, A Palaeontological AssociationUndergraduate Research Grant (PA-UB201504) and the Universityof St Andrew’s Zannah Stephen Memorial Travel Scholarship(all to N.M.), Natural Environment Research Council Fellowship

NE/H016805/1andNaturalEnvironmentResearchCouncilStandardGrantNE/J023485/2 (to A.Z.) and anNSF/EARGrant (#1229370)andaPackardFellowship(toD.F.)

REFERENCES

Altermann,W.,&Siegfried,H.P.(1997).Sedimentologyandfaciesdevel-opment of an Archaean shelf: Carbonate platform transition in theKaapvaalCraton, asdeduced fromadeepborehole atKathu, SouthAfrica.Journal of African Earth Sciences,24,IN1–IN4.

Altermann, W., & Wotherspoon, J. M. (1995). The carbonates of theTransvaal and Griqualand West Sequences of the Kaapvaal craton,withspecialreferencetotheLimeAcreslimestonedeposit.Mineralium Deposita,30,124–134.

Baroni,M.,Thiemens,M.H.,Delmas, R. J., & Savarino, J. (2007).Mass-independent sulfur isotopic compositions in stratospheric volcaniceruptions.Science,315,84–87.

Beukes,N.J.(1987).Faciesrelations,depositionalenvironmentsanddia-genesis inamajorearlyProterozoicstromatoliticcarbonateplatformto basinal sequence, Campbellrand Subgroup,Transvaal Supergroup,SouthernAfrica.Sedimentary Geology,54,1–46.

Bradley,A. S., Leavitt,W.D., Schmidt,M., Knoll,A. H., Girguis, P. R., &Johnston,D.T.(2016).PatternsofsulfurisotopefractionationduringMicrobialSulfateReduction.Geobiology,14,91–101.

Button, A. (1973). Algal stromatolites of the early Proterozoic WolkbergGroup,Transvaalsequence.Journal of Sedimentary Research,43,160–167.

Claire,M.W.,Kasting,J.F.,Domagal-Goldman,S.D.,Stüeken,E.E.,Buick,R.,&Meadows,V.S. (2014).Modeling the signatureof sulfurmass-independent fractionation produced in the Archean atmosphere.Geochimica et Cosmochimica Acta,141,365–380.

Crowe, S. A., Paris, G., Katsev, S., Jones, C., Kim, S. T., Zerkle, A. L., …Farquhar,J.(2014).SulfatewasatraceconstituentofArcheanseawa-ter.Science,346,735–739.

DeKock,M.O.,Evans,D.A.D.,Kirschvink,J.L.,Beukes,N.J.,Rose,E.,&Hilburn,I.(2009).PaleomagnetismofaNeoarchean-Paleoproterozoiccarbonate ramp and carbonate platform succession (TransvaalSupergroup)fromsurfaceoutcropanddrillcore,GriqualandWestre-gion,SouthAfrica.Precambrian Research,169,80–99.

Descostes, M., Vitorge, P., & Beaucaire, C. (2004). Pyrite dissolution inacidic media. Geochimica et Cosmochimica Acta,68,4559–4569.

Domagal-Goldman, S. D., Kasting, J. F., Johnston, D. T., & Farquhar, J.(2008).Organic haze, glaciations andmultiple sulfur isotopes in theMid-ArcheanEra.Earth and Planetary Science Letters,269,29–40.

Farquhar, J., Bao, H., & Thiemens, M. (2000). Atmospheric influence ofEarth’searliestsulfurcycle.Science,289,756–758.

Farquhar, J., Cliff, J., Zerkle, A. L., Kamyshny, A., Poulton, S.W., Claire,M., …Harms, B. (2013). Pathways for Neoarchean pyrite formationconstrained bymass-independent sulfur isotopes.Proceedings of the National Academy of Sciences,110,17638–17643.

Fike,D.A.,Bradley,A.S.,&Rose,C.V.(2015).Rethinkingtheancientsulfurcycle. Annual Review of Earth and Planetary Sciences,43,593–622.

Fike,D.A.,Finke,N.,Zha,J.,Blake,G.,Hoehler,T.M.,&Orphan,V.J.(2009).HighresolutionSIMS-basedsulfideδ34S:Anewtoolforcharacterizingmicrobialactivityinavarietyofdepositionalenvironments.Geochimica et Cosmochimica Acta,73,6187–6204.

Fike,D.A.,Gammon,C.L.,Ziebis,W.,&Orphan,V.J.(2008).Micron-scalemappingofsulfurcyclingacrosstheoxyclineofacyanobacterialmat:ApairednanoSIMSandCARD-FISHapproach.ISME Journal,2,749–759.

Fischer,W.W.,Fike,D.A.,Johnson,J.E.,Raub,T.D.,Guan,Y.,Kirschvink,J.L.,&Eiler,J.M.(2014).SQUID–SIMSisausefulapproachtouncoverprimarysignalsintheArcheansulfurcycle.Proceedings of the National Academy of Sciences,111,5468–5473.

Grobbelaar,W.S.,Burger,M.A.,Pretorius,A.I.,Marais,W.,&VanNiekerk,I.J.M. (1995). Stratigraphic and structural settingof theGriqualand

Page 13: Sulphur cycling in a Neoarchaean microbial matbiogeochem.wustl.edu/wp-content/uploads/2013/05/...4) and elemental sulphur (S n), were deposited in the oceans. Sulphate is soluble in

     |  365MEYER Et al.

West and theOlifantshoekSequences atBlackRock,Beeshoek andRooinekkeMines,GriqualandWest,SouthAfrica.Mineralium Deposita,30,152–161.

Guo,Q.,Strauss,H.,Kaufman,A.J.,Schröder,S.,Gutzmer,J.,Wing,B.,…Farquhar,J.(2009).ReconstructingEarth’ssurfaceoxidationacrosstheArchean-Proterozoictransition.Geology,37,399–402.

Habicht, K. S., Gade,M., Thamdrup, B., Berg, P., & Canfield, D. E. (2002).CalibrationofsulfatelevelsintheArcheanocean.Science,298,2372–2374.

Hartzer, F. J. (1995).Transvaal Supergroup inliers:Geology, tectonic de-velopmentandrelationshipwiththeBushveldComplex,SouthAfrica.Journal of African Earth Sciences,21,521–547.

Huizenga,J.M.,Gutzmer,J.,Greyling,L.N.,&Schaefer,M.(2006).Carbonicfluid inclusions inPaleoproterozoiccarbonate-hostedZn-PbdepositsinGriqualandWest,SouthAfrica.South African Journal of Geology,109,55–62.

Izon,G.,Zerkle,A.L.,Zhelezinskaia,I.,Farquhar,J.,Newton,R.J.,Poulton,S.W.,…Claire,M.W.(2015).MultipleoscillationsinNeoarchaeanatmo-sphericchemistry.Earth and Planetary Science Letters,431,264–273.

Johnston,D.T.(2011).MultiplesulfurisotopesandtheevolutionofEarth’ssurfacesulfurcycle.Earth- Science Reviews,106,161–183.

Johnston,D.T.,Farquhar,J.,Wing,B.A.,Kaufman,A.J.,Canfield,D.E.,&Habicht,K.S.(2005).Multiplesulfurisotopefractionationsinbiologicalsystems:Acasestudywithsulfatereducersandsulfurdisproportion-ators.American Journal of Science,305,645–660.

Kamber,B.S.,&Whitehouse,M.J.(2007).Micro-scalesulphurisotopeevi-denceforsulphurcyclinginthelateArcheanshallowocean.Geobiology,5,5–17.

Knoll,A.H.,&Beukes,N.J.(2009).Introduction:InitialinvestigationsofaNeoarcheanshelfmargin-basintransition(TransvaalSupergroup,SouthAfrica).Precambrian Research,169,1–14.

Laspidou,C.S.,&Rittmann,B.E.(2002).Aunifiedtheoryforextracellularpolymericsubstances,solublemicrobialproducts,andactiveandinertbiomass.Water Research,36,2711–2720.

Martini,J.E.J.,Eriksson,P.G.,&Snyman,C.P.(1995).Theearlyprotero-zoicMississippiValley-typePb-Zn-FdepositsoftheCampbellrandandMalmanisubgroups,SouthAfrica.Mineralium Deposita,30,135–145.

Miyano, T., & Beukes, N. J. (1984). Phase relations of stilpnomelane,ferri-annite, and riebeckite in very low-grade metamorphosed iron-formations.South African Journal of Geology,87,111–124.

Nielsen,P.H.,Jahn,A.,&Palmgren,R.(1997).Conceptualmodelforpro-ductionandcompositionofexopolymersinbiofilms.Water Science and Technology,36,11–19.

Noffke,N.(2009).Thecriteriaforthebiogeneicityofmicrobiallyinducedsedimentarystructures(MISS)inArcheanandyounger,sandydeposits.Earth- Science Reviews,96,173–180.

Oduro,H.,Harms,B.,Sintim,H.O.,Kaufman,A.J.,Cody,G.,&Farquhar,J.(2011).Evidenceofmagneticisotopeeffectsduringthermochemicalsulfatereduction.Proceedings of the National Academy of Sciences,108,17635–17638.

Ohmoto,H.(1972).Systematicsofsulfurandcarbonisotopesinhydrother-maloredeposits.Economic Geology,67,551–578.

Ono,S.,Beukes,N.J.,&Rumble,D.(2009).Originoftwodistinctmultiple-sulfurisotopecompositionsofpyriteinthe2.5GaKleinNauteFormation,GriqualandWestBasin,SouthAfrica.Precambrian Research,169,48–57.

Ono,S.,Eigenbrode,J.L.,Pavlov,A.A.,Kharecha,P.,Rumble,D.,Kasting,J.F.,&Freeman,K.H.(2003).NewinsightsintoArcheansulfurcyclefrommass-independent sulfur isotope records from theHamersley Basin,Australia.Earth and Planetary Science Letters,213,15–30.

Paris,G.,Adkins,J.F.,Sessions,A.L.,Webb,S.M.,&Fischer,W.W.(2014).Neoarchean carbonate–associated sulfate records positive Δ33S anomalies.Science,346,739–741.

Pavlov,A.A.,&Kasting, J. F. (2002).Mass-independent fractionationofsulfur isotopes inArchean sediments: Strongevidence for an anoxicArcheanatmosphere.Astrobiology,2,27–41.

Paytan,A.,Mearon,S.,Cobb,K.,&Kastner,M.(2002).Originofmarinebar-itedeposits:SrandSisotopecharacterization.Geology,30,747–750.

Peres,P.,deChambost,E.,&Schuhmacher,M.(2008).CAMECAIMS7f-Geo: Specialized SIMS tool for geosciences.Applied Surface Science,255,1472–1475.

Roerdink,D. L.,Mason, P. R., Farquhar, J., & Reimer,T. (2012).Multiplesulfur isotopes inPaleoarcheanbarites identifyan importantroleformicrobialsulfatereductionintheearlymarineenvironment.Earth and Planetary Science Letters,331,177–186.

Rye,R.O.(2005).Areviewofthestable-isotopegeochemistryofsulfateminerals in selected igneousenvironmentsand relatedhydrothermalsystems.Chemical Geology,215,5–36.

Schieber,J.(1999).Microbialmatsinterrigenousclastics;thechallengeofidentificationintherockrecord.Palaios,14,3–12.

Schieber,J.(2007).Microbialmatsonmuddysubstrates—examplesofpos-siblesedimentaryfeaturesandunderlyingprocesses.Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record Atlases in Geoscience,2,117–133.

Schröder,S.,Lacassie,J.P.,&Beukes,N.J.(2006).Stratigraphicandgeo-chemicalframeworkoftheAgourondrillcores,TransvaalSupergroup(Neoarchean–Paleoproterozoic,SouthAfrica).South African Journal of Geology,109,23–54.

Shen,Y.,&Buick,R. (2004).Theantiquityofmicrobialsulfatereduction.Earth- Science Reviews,64,243–272.

Shen,Y.,Buick,R.,&Canfield,D.E.(2001).IsotopicevidenceformicrobialsulphatereductionintheearlyArchaeanera.Nature,410,77–81.

Sumner,D.Y.,&Beukes,N.J.(2006).Sequencestratigraphicdevelopmentof the Neoarchean Transvaal carbonate platform, Kaapvaal Craton,SouthAfrica.South African Journal of Geology,109,11–22.

Ueno,Y.,Ono,S.,Rumble,D.,&Maruyama,S.(2008).Quadruplesulfuriso-topeanalysisofca.3.5GaDresserFormation:Newevidenceformicro-bialsulfatereductionintheearlyArchean.Geochimica et Cosmochimica Acta,72,5675–5691.

VanKranendonk,M.J. (2006).Volcanicdegassing,hydrothermal circula-tionandtheflourishingofearlylifeonEarth:Areviewoftheevidencefromc.3490–3240MarocksofthePilbaraSupergroup,PilbaraCraton,WesternAustralia.Earth- Science Reviews,74,197–240.

Wagner,M.,Roger,A.J.,Flax,J.L.,Brusseau,G.A.,&Stahl,D.A.(1998).Phylogenyofdissimilatorysulfitereductasessupportsanearlyoriginofsulfaterespiration.Journal of Bacteriology,180,2975–2982.

Wilbanks,E.G.,Jaekel,U.,Salman,V.,Humphrey,P.T.,Eisen,J.A.,Facciotti,M.T.,…Orphan,V.J.(2014).Microscalesulfurcyclinginthephototro-phicpinkberryconsortiaoftheSippewissettSaltMarsh.Environmental Microbiology,16,3398–3415.

Zerkle,A.L.,Claire,M.W.,Domagal-Goldman,S.D.,Farquhar,J.,&Poulton,S.W.(2012).Abistableorganic-richatmosphereontheNeoarchaeanEarth.Nature Geoscience,5,359–363.

Zhelezinskaia,I.,Kaufman,A.J.,Farquhar,J.,&Cliff,J.(2014).Largesulfurisotope fractionations associatedwith Neoarcheanmicrobial sulfatereduction.Science,346,742–744.

SUPPORTING INFORMATION

AdditionalSupportingInformationmaybefoundonlineinthesupport-inginformationtabforthisarticle.

How to cite this article:MeyerNR,ZerkleAL,FikeDA.SulphurcyclinginaNeoarchaeanmicrobialmat.Geobiology. 2017;15:353–365.https://doi.org/10.1111/gbi.12227