Subsonic Wings Pres

Embed Size (px)

Citation preview

  • 8/9/2019 Subsonic Wings Pres

    1/43

    Subsonic Wingsan introduction

    W.H. Mason 

    Configuration Aerodynamics Class 

  • 8/9/2019 Subsonic Wings Pres

    2/43

    VLM Methods – a way to get insight

    • 

    Linear, inviscid aerodynamics – strictly subsonic 

    •  Ignores thickness – bc’s applied on the mean plane 

     –  Finds !Cp, not the upper/lower surface pressures 

    •  Very handy and accurate as seen below 

    •  Really good for understanding interacting surface ideas 

    Choices: VLMpc, Tornado, AVL 

  • 8/9/2019 Subsonic Wings Pres

    3/43

    VLM Models and Tips 

  • 8/9/2019 Subsonic Wings Pres

    4/43

    Convergence with number of “panels” 

    F/A-18 

    0

    2

    4

    0 40 80 120 160 200 240

    Total number of panels

    Vortex Lattice Method

    (5) (9)

    ( ) Number of chordwise panels

    ! Neutralpoint,

    percent c

  • 8/9/2019 Subsonic Wings Pres

    5/43

    Panel Models 

  • 8/9/2019 Subsonic Wings Pres

    6/43

    F-15 3-Surface VLM Model 

  • 8/9/2019 Subsonic Wings Pres

    7/43

    Three-Surface F-15 Longitudinal Derivatives

  • 8/9/2019 Subsonic Wings Pres

    8/43

    Canard Height Effect 

  • 8/9/2019 Subsonic Wings Pres

    9/43

    F-15 horizontal tail effectiveness 

  • 8/9/2019 Subsonic Wings Pres

    10/43

    F-15 aileron effectiveness 

  • 8/9/2019 Subsonic Wings Pres

    11/43

    Warren-12 Test Case 

    Note: C  M   about wing apex, 

    Reference chord is 1.0 

  • 8/9/2019 Subsonic Wings Pres

    12/43

    The key: 

    Define it for

    others! 

    Thereference

    trap wing

    Source: Stinton, Design of the Airplane 

    Comment: Reference Area(s)

  • 8/9/2019 Subsonic Wings Pres

    13/43

    Aerodynamics of High Aspect Ratio Wings 

    • Planforms 

    • Spanloads 

    • Pitching moment and pitchup 

    • Aerodynamic Center 

    • Isobars/Twist 

    • Camber 

    • 2D-3D connection 

    • Canard and Ground Effects 

  • 8/9/2019 Subsonic Wings Pres

    14/43

    Typical Planform Characteristics of

    Transport Aircraft 

  • 8/9/2019 Subsonic Wings Pres

    15/43

    Clearly the A380 pays a price to satisfy the 80 meter gate box limit

    Way offthe trend

    line! 

  • 8/9/2019 Subsonic Wings Pres

    16/43

    Forward, Unswept and Aft Swept Planforms, AR = 2.8 

  • 8/9/2019 Subsonic Wings Pres

    17/43

    Related Spanloads and Section Lift Coefficients 

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    1.60

    0.0 0.2 0.4 0.6 0.8 1.0y/(b/2)

    Spanload,

    Warren 12 planform, sweep changed

    aft swept wing

    unswept wing

    forward swept wing

    ccl / c

    a

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    0.0 0.2 0.4 0.6 0.8 1.0

    y/(b/2)

    Section CL

    Warren 12 planform, sweep changed

    aft swept wing

    unswept wing

    forward swept wing

    For an untwistedplanar wing

     

  • 8/9/2019 Subsonic Wings Pres

    18/43

    Forward, Unswept and Aft Swept Planforms, AR = 8 

  • 8/9/2019 Subsonic Wings Pres

    19/43

    Related Spanloads and Section Lift Coefficients 

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    0.0 0.2 0.4 0.6 0.8 1.0

    Spanload,

    y/(b/2)

    Aspect ratio 8 wings

    aft swept wing

    unswept wing

    forward swept wing

    ccl / c

    a

    0.00

    0.50

    1.00

    1.50

    0.0 0.2 0.4 0.6 0.8 1.0

    Section CL

    Aspect ratio 8 planforms

    aft swept wing

    unswept wing

    forward swept wing

    y/(b/2)

    For an untwistedplanar wing 

  • 8/9/2019 Subsonic Wings Pres

    20/43

    Example: VLM Pitching Moment agrees well

    with data until wing pitchup 

    -0.06

    -0.04

    -0.02

    0.00

    0.02

    0.04

    0.06

    0.08

    -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

    C m

    C  L

     AR = 10, !c/4 = 35°, "  = 0.5

    data from NACA RM A50K27

     Re = 10 million

     x ref = c/4

    VLMpc calculation

  • 8/9/2019 Subsonic Wings Pres

    21/43

    Aerodynamic Center on Finite Wings

     - is it actually at the quarter chord? -

    From Shevelle, Fundamentals of Flight , 2

    nd

     Ed. 

  • 8/9/2019 Subsonic Wings Pres

    22/43

    Low Aspect Ratio Wing Neutral Point (ac )For a rectangular wing it moves forward!

    From Schlichting and Truckenbrodt, 

     Aerodynamics of the Airplane 

     AR 

    Discovered while making

    pre-test estimates 

    Inboard Wing built/tested at VT 

    0.25 

    0.05 

    5  7

     

  • 8/9/2019 Subsonic Wings Pres

    23/43

    Isobars 

    Note: this is actually a transonic case, M  = 0.93, !  = 2°from AFFDL-TR-77-122, February 1978. 

    These funny NACA report numbers

    denote series classified at the time,

    “L” stands for Langley, reportsstarting with “A” denote Ames

     

    Without twist and camber: don’t get full effect of sweep 

  • 8/9/2019 Subsonic Wings Pres

    24/43

    Typical Twist Distributions 

    -1.0

    0.0

    1.0

    2.0

    3.0

    4.0

    5.06.0

    7.0

    0 0.2 0.4 0.6 0.8 1

    ! ,

    deg.

     y/(b/2)

    -1.0

    0.0

    1.0

    2.0

    3.0

    4.05.0

    6.0

    0 0.2 0.4 0.6 0.8 1

    ! ,

    deg.

     y/(b/2)

    Aft Swept Wing  Forward Swept Wing 

    from LAMDES on the software website

    A LAMDES artifact 

  • 8/9/2019 Subsonic Wings Pres

    25/43

    Typical Camber Variation 

    -0.01

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    -0.2 0 0.2 0.4 0.6 0.8 1 1.2

    (z-zle)/c

     x/c

    ! = 0.925

    ! = 0.475

    ! = 0.075

    Cambers from the LAMDES code on the software website 

  • 8/9/2019 Subsonic Wings Pres

    26/43

    Relating 2D and 3D 

    The airfoil problem is converted to 2D (normal),

    solved (designed), and put in the wing 3D 

  • 8/9/2019 Subsonic Wings Pres

    27/43

    Canard-Wing Interaction 

    canard wake extends to indinitywing wake not shown

    A   A

    Canard wakestreams overwing

    -2.0-1.5-1.0-0.50.0

    0.51.01.5

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    w

    Downwash from canard across wingat Section A-A

    Upwash outboardof canard tips

  • 8/9/2019 Subsonic Wings Pres

    28/43

    Example for Minimum Induced Drag

    Calculations 

    Sample case in John Lamar’s NASA TN with LAMDES 

  • 8/9/2019 Subsonic Wings Pres

    29/43

    Canard Wing Induced Drag 

    0.0200

    0.0250

    0.0300

    0.0350

    0.0400

    -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

    C  Di

    !x/cForward Aft

    Canard lift must benegative to trim

     M = 0.3, C  L

     = 0.5

    Canard heightabove wing ,

    0.1

    0.2

     z/b

    0.3

    Computations from LamDes

    Advantage of verticalseparation clearly evident

    Static Margin

    Stable Unstable

    Advantage of relaxedstatic stability evident

    Note: The sample case may not be a gooddesign, the canard is too big.

  • 8/9/2019 Subsonic Wings Pres

    30/43

    Typical Required Twist Distribution 

    -1.0

    0.01.0

    2.0

    3.0

    4.0

    5.0

    6.0

    0.0 0.2 0.4 0.6 0.8 1.0

    ! ,

     y/(b/2)

    in presenceof canard

    without

    canard canard tipvortex effect

    deg.

    -2.0

    0.0

    2.0

    4.0

    6.0

    8.0

    0.0 0.2 0.4 0.6 0.8 1.0

     y/(b/2)

    withoutcanard

    in presenceof canard

    canard tip

    vortex effect

    Aft Swept Wing 

    Forward Swept Wing 

    Actual twist values are heavily

    dependent on the canard load! 

  • 8/9/2019 Subsonic Wings Pres

    31/43

    Some Variations: Tip treatment

    from Feifel, in NASA SP-405, 1976 

     A Whitcomb “winglet” 

    The “Raked Wingtip” used 

    on the Boeing 767-400 

    from Kroo, Ann. Rev. of Fluid Mech., 2001 

    Rounding the intersection

    leads to a “blended winglet” 

    Note “Yehudi” 

  • 8/9/2019 Subsonic Wings Pres

    32/43

    Ground Effects from VLM 

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    8.0

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    C  L! 

    h/c

     AR

    4

    2

    1

    Solid lines: computed using JKayVLMDashed lines: from Kalman, Rodden and GiesingSymbols: Experimental data

     h

    U !

     c

     c/4

    -0.40

    -0.30

    -0.20

    -0.10

    0.00

    0.10

    0.20

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    C  M ! 

    h/c

    Solid lines: computed using JKayVLMDashed lines: from Kalman, Rodden and Giesing

     AR1

    2

    4

  • 8/9/2019 Subsonic Wings Pres

    33/43

    A completely new category  

    Slender Wings 

  • 8/9/2019 Subsonic Wings Pres

    34/43

    Laser Light Sheet Leading Edge Vortex Flow

     Aviation Week & Space Technology, July 29, 1985 

    Light Sheet is a

    great way to see

    the LE vortex 

    Northrop IR & D

    example of flow

    over a delta wing

    configuration. 

    Exhibited at the

    36th Paris airshow. 

  • 8/9/2019 Subsonic Wings Pres

    35/43

    Vortex Lift 

    Drawback? 

    It’s “draggy” lift 

  • 8/9/2019 Subsonic Wings Pres

    36/43

    The Polhamus LE Suction Analogy 

  • 8/9/2019 Subsonic Wings Pres

    37/43

    Another View of the Suction Analogy 

    R.M. Kulfan, Wing Geometry Effects on Leading Edge Vortices, AIAA 79-1872 

  • 8/9/2019 Subsonic Wings Pres

    38/43

    Results of the Polhamus Suction Analogy 

    0.00

    0.500

    1.00

    1.50

    2.00

    0.0° 10.0° 20.0° 30.0° 40.0°

    CL

    !

    AR = 1.5 (" 

    = 69.4°)

    VortexLift

    PotentialLift

    Experimental data fromBartlett and Vidal

    Prediction from PolhamusLeading Edge Suction Analogy

  • 8/9/2019 Subsonic Wings Pres

    39/43

    Reduce Drag with a Vortex Flap ? 

    The Concept 

    The reality? 

    Flight International, 16 March 1985 

    This concept was briefly popular,

    but it proved too hard to achieve. 

  • 8/9/2019 Subsonic Wings Pres

    40/43

    Strakes are also low aspect ratio wings. Because they

    don#t stall, even low tail designs can have

    a nose-down moment problem 

    F-16 

    Forebody 

    Strakes 

  • 8/9/2019 Subsonic Wings Pres

    41/43

    The Concorde Exploited Both Ground Effects

    and Vortex Lift to be Even Somewhat Practical 

    From Poisson-Quinton, Sustained Supersonic Cruise Aircraft Experience 

    Vortex 

    Burst 

  • 8/9/2019 Subsonic Wings Pres

    42/43

    And VLM works for Hypersonic Class Concepts

    Jimmy Pittman and James Dillon, “Vortex Lattice Prediction of Subsonic

    Aerodynamics of Hypersonic Vehicle Concepts,” Journal of Aircraft ,

    October 1977, pp. 1017-1018.

  • 8/9/2019 Subsonic Wings Pres

    43/43

    To Conclude 

    This just gives you the very basics 

    - no end to planform concepts, invent one yourself!