42
Sub-mm/mm astrophysics: How to probe molecular gas Yasuo Fukui Nagoya University Summer School The Gaseous Universe Oxford, 21-23 July 2010 1

Sub-mm/mm astrophysics: How to probe molecular gas Yasuo Fukui Nagoya University Summer School The Gaseous Universe Oxford, 21-23 July 2010 1

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Sub-mm/mm astrophysics:How to probe molecular gas

 Yasuo Fukui

Nagoya University 

Summer School 

The Gaseous UniverseOxford, 21-23 July 2010

•  

1

Lecture 3Giant molecular clouds, 

GMCs

Sub-mm/mm astrophysics:How to probe molecular gas

Giant molecular clouds, GMCs• GMCs

– Size 100 pc– Mass 105-106 Mo– Linewidth 5-15 km/s– Density 100-1000 cm-3

– Temperature 10-20 K– The disk vs. the galactic centre

• Star formation–  OB associations, loose clusters – less than 10% of H is converted into stars, low SF efficiency

Previous observations of extragalactic GMCs;

• Poor resolution• Only global averaged properties • Spiral structures seen in GMCs• Global correlation with star formation        LIR vs. M(H2)

Resolved GMCs;• galaxies vs. Milky Way;  galaxies are too far and the MW is too much contaminated

• Need spatial resolutions of 40pc or better, as compared with 100pc

• Local group galaxies offer the laboratory• LMC (50kpc) in the south,     M33 (700kpc) in the north

  see review, Fukui and Kawamura, 2010, Ann.Rev.A.A.,                        “Molecular clouds in nearby galaxies”

Key issues;• Physical properties 

– mass spectrum, – size, line width, – X factor,  X = N(H2)/ W(12CO) uniform?

– star formation

• Formation and dissipation of GMCs,–  Timescales of evolution

• Dynamical state, –  gravitationally relaxed?

A survey for GMCs in the LMC;• LMC, Large Magellanic Cloud

– Irr, 1/10 of the MW in mass– no central dense part– lower metallicity, active star formation (30Dor)–  4kpc x 4kpc

• Low resolution 120pc observations with 1.2m telescope

• NANTEN 4m telescope, 40pc resolution for the LMC

NANTEN GMC survey in the LMC

• Fukui et al. 1999; 2008• 30000 points in 12CO J=1-0

• 273 GMCs discovered• first sample of GMCs complete for a single galaxy

9

HI by ATCA : Kim et al. (1998), CO by NANTEN: Fukui et al. (2001)Total molecular mass (10% of HI)~ 7×107 M

LMC HI & CO

M33 Correlation with HI

Deul & van der Hulst (1987)

11

Mass Distribution Very Similar

Mass normalized by an observed area

n(>M’) M^(S+1)

LMC -1.74 0.08IC10 -1.74 0.41M31 -1.55 0.20M33 -2.49 0.48Outer -1.71 0.06

Very SimilarVery Similar

Blitz et al. 2006

X-factor

13

Green contour:

GMCs by NANTEN

Fukui et al. (2008)

H by Kim et al. (1999)

LMC CO and H

14

~ 5 Myr

~ 10 Myr

~ 7 Myr

Only HII regions88 clouds (51 %)

Clusters and HII regions39 clouds (23 %)

Only clusters ~ 5 Myr

O-Starless44 clouds(32 %)

150 pc

Type I

Type II

Type III

3 Types of GMCs in the LMC

Type I

Type II

Type III

Physical properties among three GMC types

Formation of GMCs

• HII cooled down to H2? – Unlikely if see GMCs and HII regions on the LMC

• HI becomes denser to H2?

17

““3-D” comparison of CO and HI in the LMC3-D” comparison of CO and HI in the LMCFukui et al. 2009Fukui et al. 2009

• Previous studies: 2D projection and larger spatial averaging, 100pc ~1kpc,

       e.g., Schmidt law

• Present study: local property of star forming GMC and HI at ~50pc scales

• X-Y and Velocity: 3-D datacube of CO NANTEN and HI ATCA (Kim et al.2003)

• Resolution:  40pc x 1.7 km/s

HIHI

COCO

18

3-D analysis

HI associated with CO

HI all

19

20イメージ: HI コントア: 12CO ( コントアレベル 12 K から 3.6K ごと )

Type I Type II Type III

21

22

HI and GMC relation (3-D)L

og[<

Ico>

] [

K k

m/s

]

2.0 2.4 2.8-1

1

0

Log[<IHI >] [K km/s]

+ Type I

+ Type II Type III

y x0.8

23

3-D Results of CO-HI correlation

• GMCs have “HI envelopes”  of 100-200pc• HI envelope” grows from Type I to Type III GMCs                   Ico  IHI                  (HI intensity = Ts x)     By assuming spin temperature Ts = constant,     the HI mass increases from Type I to III• HI filaments of ~ 500pc, birth site of GMC    formed by bubbles/spiral density waves• Conversion of HI into H2 on dust grains: 

    timescale ~10^9yrs/n(cm-3)~10Myrs  for 100 cm-3

24

CO

HI

GMC grows by collecting HI[106 Mo per 10 Myr]

Mass flow rate;

dM/dt~0.1 solar mass/yr

dM/dt=4R2 n(HI) V R~70pc n(HI)~10 cm-3

V~7 km/s

25

SMC                  LMC

M33 Correlation with HI

Deul & van der Hulst (1987)

27

HI by ATCA : Kim et al. (1998), CO by NANTEN: Fukui et al. (2001)Total molecular mass (10% of HI)~ 7×107 M

LMC HI & CO

28

LMC4

29

The Galactic centre 1

• GMCs in the disk forms and evolves• Under extreme high pressure, the Galactic center, the evolution is significantly different 

• High velocity dispersion, High temperature, Low active star formation in the MW

The Galactic centre 2

• Driven by stellar bar potential (Binney et al. 1991) 

• and/or molecular loops (Fukui et al. 2006)

Binney et al. 1991

-  Stellar gravitational energy is converted into gas motion by he bar or by the Parker instability

• No reasonable definition of a GMC is possible.– GMCs are far from dynamical equilibrium, different regime from disk

• Extragalactic GMCs with ALMA will resolve these clouds in galaxies, significantly different size-linewidth relation  – e.g., M64, NGC253

34

Galactic centre magnetic field

Parker instability in the nuclear disk(Machida et al. 2009)

left )  Blue surface :  volume rendered image of the gas density

Curves :  Floating magnetic loops. Color depicts vertical velocity from minus to plus: blue – white –red.

right )  Enlarged figure of the left panel. Curves are same on the left panel.35

Tajima and Shibata 1997

Galactic magnetic flotation loops

Solar loops (TRACE : 191Å)

Discovery in 200640yrs since Parker (1966)

36

12CO(J=3-2) observations

NANTEN CO J= 1-0

ASTE CO(J=3-2) -180 - -40 km/s

Torii et al. 2010b

12CO(J=3-2)/12CO(J=1-0) ratio :  R3-2/1-0

High R3-2/1-0 inside the U shape

 Color : R3-2/1-0, Contours : ASTE CO(J=3-2) P-V diagram

B

C

カラー: R3-2/1-0,  コントア: ASTE CO(J=3-2) 空間分布図

LVG analysisBroad emission Spectra

• 12CO(J=1-0, 3-2, 4-3, 7-6), 13CO(J=1-0), C18O(J=1-0)

• Take 10 km/s average intensities

• [12CO]/[13CO] 〜 53 (Riquelme 2010)

• [12CO]/[C18O] 〜 250 (i.e. Wilson & Matteucci 1992)

• [12CO]/[H2] = 1×10-4

• dv/dr= 9.0 km/s/pc

• Chi-square minimization

LVG analysis – Results – 

• Typically T 〜 30-50 K, n 〜 103 /cm3

• Broad emission : > 100 K

• Magnetic reconnection may offers a possible candidate for the hot and broad gas component.

Molecular Loops in Galaxies?

・ NGC253 Sakamoto et al. (2006) Jy/beam km/s

A

B

Same size and resolution with Sakamoto et al.(2006)

41

42

ALMA from 2012