57
KASPERKIEWICZ ( 1 )

STRUCTURE IDENTIFICATION BY MICROINDENTATION AND ACOUSTIC EMISSION

Embed Size (px)

DESCRIPTION

Institute of Fundamental Technological Research Polish Academy of Sciences (IPPT PAN) 00-049 Warszawa, Swietokrzyska 21. STRUCTURE IDENTIFICATION BY MICROINDENTATION AND ACOUSTIC EMISSION. Janusz Kasperkiewicz. 1. MICROINDENTATION TESTS. - techniques, measuring setup, etc. - PowerPoint PPT Presentation

Citation preview

Page 1: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 1 )

Page 2: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 2 )

Institute of Fundamental Technological ResearchPolish Academy of Sciences (IPPT PAN) 00-049 Warszawa, Swietokrzyska 21

Janusz Kasperkiewicz

STRUCTURE IDENTIFICATION BY MICROINDENTATION

AND ACOUSTIC EMISSION

Page 3: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 3 )

2. ACOUSTIC EMISSION IN MICROINDENTATION EXPERIMENTS

5. THE EXPERIMENT ON COMPONENTS IDENTIFICATION

6. CONCLUSIONS

3. AE SIGNALS AND THEIR ANALYSIS

4. MACHINE LEARNING DATA PROCESSING

- testing cement paste

1. MICROINDENTATION TESTS - techniques, measuring setup, etc. - testing concrete

Page 4: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 4 )

ACOUSTIC EMISSION and AE SIGNALS PROCESSING

IDENTIFICATION of the components

MACHINE LEARNING

( ~ a continuation of the Paisley 2003 paper - DSI setup, CP, concrete... )

Page 5: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 5 )

Vickers indenterLVDT sensor

tested area

Page 6: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 6 )

Page 7: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 7 )

D1 ≈ D2 ≈ 550μm

D1

D2

Cement Past – water-cement ratio: 0.60; loading level: 40 N

D.S.I.

Page 8: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 8 )

D1

D1 ≈ D2 ≈ 350μm

D2

aggregate

aggregate

air void

air void

Concrete; loading level: 45 N

Page 9: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 9 )

D

285437.1

DF HV=

Page 10: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 10 )

0

100

200

300

400

500

600

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

water-cement ratio, [ - ]

mic

roh

ard

en

ss

, [M

Pa

]

10N

20N

40N

cement paste

(each point an average of about 10 indentations)

Page 11: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 11 )

0

100

200

300

400

500

600

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

water-cement ratio, [ - ]

mic

roh

ard

nes

s, [

MP

a]

10N

20N

40N

cement paste with metakaolin

Page 12: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 12 )

0

100

200

300

400

500

600

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

water-cement ratio, [ - ]

mic

roh

ard

enss

, [M

Pa]

10N

20N

40N

10N (Met)

40N (Met)

40N (Met)

metakaolin effect

cement paste ...

Page 13: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 13 )

0

100

200

300

400

500

600

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

water-cement ratio, [ - ]

mic

roh

ard

enss

, [M

Pa]

10N20N40N10N (Met)40N (Met)40N (Met)FLW 20FAS 20FLK 20FAS 35FLW 35FLK 35

fly ash effect

cement paste ...

Page 14: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 14 )

0 1 2 ... ... 24 25

... 23pd 25pd

... 24pd

1pd ...

0pd 2pd ...a set of 52 indentation

imprints

for example: upper imprints No-s: 1, 6÷9, 11÷18 - aggregate

... 19 ...

Page 15: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 15 )

No.1

No-s: 1, 7 ... - aggregate

No.7

Page 16: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 16 )

No.3 – air void edge

No.3

Page 17: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 17 )

R2 = 0,9512

R2 = 0,8766

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60

iv-2003

vii-2002

Log. (iv-2003)

Log. (vii-2002)fc

28 [MPa]

HV [MPa]

P4P II

GB6 GB7 GB8

GB9GB10

(time effect observations)

concrete ...

Page 18: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 18 )

Load (N)

0

10

20

30

40

Extension (mm)0.0 0.1 0.2 0.3

E3

E2

E1

( test No.: 5sR9 )

δ

F

285437.1

DF HV=

00006.7D δ = .

0

5

10

15

20

25

30

35

40

45

50

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

165

170

171

172

173

175

176

177

178

179

180

181

182

165 (No.1)

170 (No.6)

5300

43002700

1700 MPaHV – approx.: ( rock )

Page 19: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 19 )

0

5

10

15

20

25

30

35

40

45

50

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

166

167

168

169

174

183

15001000

650470 MPa

HV – approx.: ( cement paste )

Page 20: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 20 )

0

5

10

15

20

25

30

35

40

45

50

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

166

167

168

169

174

183

164

164 (No.0)

14001000

700 600500 MPaHV – approx.:

( a sample under consideration )

Page 21: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 21 )

what about theidentification of its composition

?

it is possible to evaluatethe strength of the material;

Page 22: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 22 )

Acoustic Signal

Sensor

AcousticEmission

Wave

IndentationNoise

Source

SoundWave

SoundWave

AE Signaldetection,recording,

etc.

AEMonitoring

System

Page 23: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 23 )

( signal from the Test No.: 5sR9 05 )

time: 0 to 5 s

am

plitu

de:

-1.5

to +

1.5

V

Page 24: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 24 )

time: 5 s

Page 25: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 25 )

time: 2 s

Page 26: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 26 )

time: 2 s

Page 27: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 27 )

time: 0.5 s

Page 28: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 28 )

time: 0.3 s

Page 29: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 29 )

time: 0.14 s

Page 30: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 30 )

time: 0.003 s

Page 31: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 31 )

time: 0.4 ms

Page 32: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 32 )

time: 0.1 ms ( about 100 μs )

Page 33: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 33 )

( silica CP )

( no silica CP )

( stone aggregate )

Page 34: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 34 )

Page 35: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 35 )

( signal transformation )

Page 36: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 36 )

Different possibilities of AE signal representations

Natural representation Fourier, (FT, FFT)

Windowed Fourier Wavelet analysis

Page 37: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 37 )

initial 440 ms

Page 38: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 38 )

time [ms]

time: 0.4 ms

Page 39: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 39 )

Page 40: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 40 )

t[ms]

H (375kHz÷39kHz)M (46kHz÷18kHz)

L (6kHz÷4kHz)

NOISE

( Test No.: 5sR9 05 )

Page 41: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 41 )

lzdH - No. of events in range HlzdM - No. of events in range MlzdL – No. ... etc.senHsenMsenLsazHsazMsazL - ... amplitude in range L

serial No.indent class (e.g. "a", "cp1", ...)material composition... etc.

Page 42: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 42 )

aggregate

ITZcement paste

tests results database ( in Excel )

Page 43: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 43 )

( Machine Learning )

Page 44: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 44 )

Rec. No. 219

air content 7.3%fc28 45 MPaair voids spacing 0.21 mmaggregate ?...silica No

Rec. No. 219

air content 7.3%fc28 45 MPaair voids spacing 0.21 mmaggregate ?...silica No

Rec. No. 116

air content 4.5%fc28 26 MPaair voids spacing 0.25 mmaggregate granite...silica No

Rec. No. 116

air content 4.5%fc28 26 MPaair voids spacing 0.25 mmaggregate granite...silica No

Rec. No. 115

air content 4.5%fc28 26 MPaair voids spacing 0.25 mmaggregate granite...silica No

Rec. No. 115

air content 4.5%fc28 26 MPaair voids spacing 0.25 mmaggregate granite...silica No

Rec. No. 114

air content 4.5%fc28 26 MPaair voids spacing 0.25 mmaggregate gravel...silica Yes

Rec. No. 114

air content 4.5%fc28 26 MPaair voids spacing 0.25 mmaggregate gravel...silica Yes

Rec. No. 113

air content 2.4%fc28 27 MPaair voids spacing 0.23 mmaggregate ?...silica No

Rec. No. 113

air content 2.4%fc28 27 MPaair voids spacing 0.23 mmaggregate ?...silica No

Rec. No. 2

air content 6%fc28 ?air voids spacing 0.25 mmaggregate granite...silica Yes

Rec. No. 2

air content 6%fc28 ?air voids spacing 0.25 mmaggregate granite...silica Yes

Rec. No. 1

air content 2.4%fc28 37 MPaair voids spacing 0.35 mmaggregate basalt...silica No

Rec. No. 1

air content 2.4%fc28 37 MPaair voids spacing 0.35 mmaggregate basalt...silica No

positive examples

positive examples

negative examples

negative examples

Page 45: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 45 )

Machine Learning solutions:

See 5 (Quinlan)

WinMine (Microsoft)

?...

AQ algorithms (Michalski)

Page 46: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 46 )

WinMine

Page 47: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 47 )

┌ 23.00 ≤ lzdM ≤ 233.50 ┐

AND

┌ sazM < 28.00 ┐

Page 48: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 48 )

mix symbol

No of EA readings recognized as Silica; (cases Not recognized!)

errors / unrecognized/ errors in 493 rec-s

comments

1 101103 37 0 / 13 all correct

2 221103 32 0 /16 as above

3 B20_6_1 (4) 4 / 0 / 4 no silica{1×a, 1×cp, 1×cp1, 1×v}

4 B20K_6_1

19 0 / 31 all correct

5 B40_1348

no silica

6 B50_6_1 (13) 13 / 0 / 13 no silica{6×a, 4×cp, 2×cp1, 1×v}

7 850AD (3) 3 / 0 / 3 no silica {1×a, 0×cp, 1×cp1, 1×v}

8 B50K_8_1

28 0 / 24

9 R1_61103

20 0 / 32

10 S5_1 13 0 / 37

11 B20_810 not analysed mix with PFA

total 169 (including erroneous 20)

error of identification: 20 rec-s

summary of the tests

here there was no silica

Page 49: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 49 )

Microindentation and AE (Acoustic Emission) observations make possible identification of structural characteristics of concrete materials.

In particular possible was an indirect identification of a silica additive presence in hardened concrete.

It is expected that the same approach could be used to discriminate signals in aggregate grains (stone) from those and in cement paste or mortar.

The procedure involves AE signal transformation followed by machine learning rules detection processing, resulting in hypotheses formulated in everyday language.

Page 50: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 50 )

The experiments should be continued, aimed - e.g. – to establishing what are optimal settings of AE data acquisition system, structural points better identification, selection of the proper procedure timing, etc.

The proposed procedure may by important for hardened concrete diagnostics, perhaps also in case of certain forensic analysis situations, when the problem is to find out whether a silica fume was actually used as a component of a given concrete mix or not.

Page 51: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 51 )

Page 52: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 53 )

If x1 ≤ x2, x3 ≠ x4, and x3 is red or blue, then decision is A

if x1, x2, x3 are N-valued each then the knowledge above demands:

N=2 a decision tree with 26 nodes and 20 leaves, or 12 conventional decision rules;

N=5 a decision tree with 190 nodes and 810 leaves, or 600 conventional decision rules.

Page 53: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 54 )

natural induction system (Michalski, 2001), based on a knowledge representation language that would facilitate natural induction, (using structures and operators approximately corresponding to natural language concepts, syntactically and semantically well-defined, relatively easy to implement).

Page 54: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 55 )

Example of an Attributional Rule

• Consider a rule:

If x1 ≤ x2 , x3 ≠ x4, and x3 is red or blue, then decision is A (1)

• If variables xi, i=1,2,3,4 are five-valued, then representing (1) would require a decision

tree with 810 leaves and 190 nodes, or 600 conventional rules

• A logically equivalent attributional calculus rule is:

[Decision = A] <= [x1 ≤ x2] & [x3 ≠ x4] & [x3 = red v blue] (2)

• To provide a user with more information about the rule, AQ adds annotations to the rule:

[Decision = A] if [x1 ≤ x2: 3899, 266] & [x3 ≠ x4: 803, 19] & [x3= red or blue: 780, 40]

  t=750, u=700, n=14, f=4, q=.9 where t - the total number of examples covered by the rule (rule coverage) u - the number of examples covered only by this rule, and not by any other rule associated with Decision=A n - the number of negative examples covered by the rule (“negative coverage’) q - the rule quality combining the coverage and training accuracy gain f - the number of examples in the training set matched flexibly

(from Ryszard Michalski – George Mason Univ.)

Page 55: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 56 )

concepts in AQ

Page 56: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 57 )

parameters run ambig trim wts test criteria 1 pos mini cpx e default default-criteria # criterion tolerance 1 minsel 0.00 variables # type levels cost name 1 con 1 1 A.A 2 con 1 1 As.As 3 con 1 1 AB.AB 4 con 1 1 XY.XY 5 con 1 1 RR.RR 6 con 1 1 Ro.Ro 7 con 1 1 W.W 8 con 1 1 FD.FD 9 con 1 1 Der.Der Nob1-events # A As AB XY RR Ro W FD Der 149 5174 179 518 1281 3619 2695 78 1110 18 2382 30 100 1000 1000 5 1000 3 0 0 192 30 100 1000 1000 5 1000 3 0 0 ...... Tob2-events # A As AB XY RR Ro W FD Der 914 36072 164 653 1522 2353 1592 197 1076 .... Nob1-tevents # A As AB XY RR Ro W FD Der 149 5174 179 518 1281 3619 2695 78 1110 18 2382 30 100 1000 1000 5 1000 3 0 0 ····

AQ19

Type. | the target attribute No:label. A:continuous. As:continuous. AB:continuous. XY:continuous. RR:continuous. Ro:continuous. W:continuous. FD:continuous. Der:continuous. Type:Nob1,Qob1,Tob1,Tob2,Tob3,Tob4,Tob5,Tob9. attributes excluded: Ro,Der.

Type. | the target attribute No:label. A:continuous. As:continuous. AB:continuous. XY:continuous. RR:continuous. Ro:continuous. W:continuous. FD:continuous. Der:continuous. Type:Nob1,Qob1,Tob1,Tob2,Tob3,Tob4,Tob5,Tob9. attributes excluded: Ro,Der. 1,1356,109,742,938,1385,1057,40,1063,2,Tob1

2,1311,200,652,1833,5662,2685,30,1233,31,Tob1 3,6751,102,668,1147,1305,1342,96,1088,2,Tob1 4,1112,108,802,929,1247,1000,34,1063,1,Tob1 5,137,182,750,667,4714,1004,9,0,9,Qob1 6,30,100,1000,1000,5,1000,3,0,0,Qob1 .... 2502,2126,582,727,6000,10149,2922,20,1076,178,Tob1 2503,556,172,570,2000,3869,1635,22,1089,11,Tob1 2504,15,226,1000,2000,6,1000,0,0,0,Tob1 aaaa

1,1356,109,742,938,1385,1057,40,1063,2,Tob1 2,1311,200,652,1833,5662,2685,30,1233,31,Tob1 3,6751,102,668,1147,1305,1342,96,1088,2,Tob1 4,1112,108,802,929,1247,1000,34,1063,1,Tob1 5,137,182,750,667,4714,1004,9,0,9,Qob1 6,30,100,1000,1000,5,1000,3,0,0,Qob1 .... 2502,2126,582,727,6000,10149,2922,20,1076,178,Tob1 2503,556,172,570,2000,3869,1635,22,1089,11,Tob1 2504,15,226,1000,2000,6,1000,0,0,0,Tob1 aaaa

See5

Page 57: STRUCTURE IDENTIFICATION  BY MICROINDENTATION  AND ACOUSTIC EMISSION

KASPERKIEWICZ ( 58 )