63
Structural Health Monitoring of Civil Infrastructure: from Research to Engineering Practice B. F. Spencer, Jr. Nathan M. and Anne M. Newmark Endowed Chair in Civil Engineering Director, Newmark Structural Engineering Laboratory Director, MUSTSIM: NEES@Illinois Director, Smart Structures Technology Laboratory (SSTL)

Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

  • Upload
    others

  • View
    16

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Structural Health Monitoring of Civil Infrastructure: 

from Research to Engineering Practice

B. F. Spencer, Jr.Nathan M. and Anne M. Newmark Endowed Chair in Civil Engineering

Director, Newmark Structural Engineering LaboratoryDirector, MUST‐SIM: NEES@Illinois

Director, Smart Structures Technology Laboratory (SSTL)

Page 2: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Outline

◊Background and Motivation◊Enabling Wireless Smart Sensor Technology

□ High‐fidelity Hardware□ Service‐oriented Software Framework

◊ Full‐scale Implementations◊ Future Directions◊Conclusions

Page 3: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

To detect and localize damage Deteriorating structures Lessons from catastrophic bridge 

collapses Limits in visual inspection SHM reduce inspection cost, while 

providing increased public safety Lifetime monitoring of future 

construction projects

Corrosion

Fatigue (Bay Bridge in CA, 2009)

Sung‐su bridge collapsein Korea (1994)

I‐35 bridge collapse in MN (2007)

1997 2006

$ billion

20

40

21.5 23.030.1

40.4

System expansion (39.9% increase)Rehabilitating (75.2% increase)

Capital investment (US DOT 2008)

Why Monitor Infrastructure?

Page 4: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Why Monitor Infrastructure?

◊ To validate the structural designs and characterize performance (e.g., develop database)

◊ To assist with infrastructure maintenance 

◊ To design appropriate retrofit measures

◊ Improve seismic risk assessment

◊ To monitor and control the construction process

◊ To characterize loads in situ

◊ Assess load carrying capacities

◊ To assist with emergency response efforts, including building evacuation and traffic control

Page 5: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Structural Health Monitoring

Limitation of traditional methods Dense arrays of sensor are required to effectively monitor structures Wired monitoring systems are expensive, with much of the cost derived 

from cabling and installation Centralized data collection is not challenging for monitoring large civil 

infrastructure 

Cabling & instrumentation for 400 wired strain sensors

Bill Emerson Memorial Bridge SHM system: $1.3M for 86 sensors, ~$15k/sensor (Caicedo et al. 2002; Celebi et al. 2004)

Page 6: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Enabling Wireless Smart Sensor Technology

* low cost* ease of installation

* accurate data

Page 7: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

7

Computers are Faster and Cheaper

19901980 2005

$400,000/MIPS (Cray-I)

$500/MIPS (i860)$1/MIPS

.

. .

Page 8: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

8

Where Computing is Done

year

streaming informationto/from physical world

Number CrunchingData Storage

productivityinteractive

Page 9: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Networking Plays an Important Role

1946

The first computer

High performance Computing

PersonalComputers

Internet

IoT/WSN

Cyber Physical Systems

19651980

19952010

Page 10: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Vision of the Future: Internet of Things

◊ Vast networks of sensors, installed in the urban environment, can serve as the eyes and ears of a first line of defense against various vulnerabilities

◊ Different types of sensors can be envisioned, each reporting information that provides insight to the status of critical infrastructure in real‐time

◊ Wireless Smart Sensors will act as the fundamental building block for such sensor networks□ Low costs allow for dense deployment as needed

□ Modularity provides inherent flexibility for use in both permanent and temporary applications

Page 11: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Smart Sensors

◊ But... what is a smart sensor?

◊ First open source hardware and software platforms developed at Berkeley in the late 1990s as part of DARPA’s Smart Dust project (Mica family of smart sensors).

Radio

Data Storage

Embedded Computing

Local Power

Page 12: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Historic Decade of Smart Sensors

CrossbowMica2 (2004)

BTnode rev3 (2004)

EYES (2003)

WINS 1 (1999) 

U3 (2002)

Prototype by Prof. Lynch (2002)

Intel Imote (2004)

Imote2 (2006)

SmartDustWeC (1999)

Page 13: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Full‐scale Implementations to Bridges (selected)Implementation Purpose Sensor 

Platform# of 

NodesSensor 

(channels) Test duration In‐network Processing  Results

Alamosa Canyon (Lynch et al. 2003)

Wireless system proof‐of‐concept

WiMMS(prototype) 7 Accel. (14) Short‐term Independent 

FFTModal frequencies

Ben Franklin (Galbreath et al. 2004)

Demonstration of wireless system with remote programming

MicrostrainSG‐Link 10 Strain + 

Temp. (10)Continuous Medium‐term None

Streaming real‐time strain time histories

Guemdang(Lynch et al. 2006)

Wireless sensor prototype and embedded computing validation

WiMMS(prototype) 14 Accel. (14) Short‐term

Independent FFT and peak picking

Modal frequencies,  ODS

Golden Gate (Pakzadet al. 2008)

Test wireless sensor network requiring multi‐hop communication

MicaZ 64 Accel. (128) Temp. (64) Medium‐term None

Modal analysis after central data collection

Gi‐Lu(Weng et al. 2008)

Test for health monitoring of cable‐stayed bridge

WiMMS(prototype) 12 Accel. (12) Short‐term None

Modal analysis and cable tension force

Page 14: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Smart Sensor Monitoring of the Golden Gate Bridge (2008)

Page 15: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Smart Sensor Monitoring of the Golden Gate Bridge (2008)

Requires 12 hours to transmit 80 seconds of data back to the base station!

Page 16: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Full‐scale Implementations to Bridges (selected)Implementation Purpose Sensor 

Platform# of 

NodesSensor 

(channels) Test duration In‐network Processing  Results

Alamosa Canyon (Lynch et al. 2003)

Wireless system proof‐of‐concept

WiMMS(prototype) 7 Accel. (14) Short‐term Independent 

FFTModal frequencies

Ben Franklin (Galbreath et al. 2004)

Demonstration of wireless system with remote programming

MicrostrainSG‐Link 10 Strain + 

Temp. (10)Continuous Medium‐term None

Streaming real‐time strain time histories

Guemdang(Lynch et al. 2006)

Wireless sensor prototype and embedded computing validation

WiMMS(prototype) 14 Accel. (14) Short‐term

Independent FFT and peak picking

Modal frequencies,  ODS

Golden Gate (Pakzadet al. 2006)

Test wireless sensor network requiring multi‐hop communication

MicaZ 64 Accel. (128) Temp. (64) Medium‐term None

Modal analysis after central data collection

Gi‐Lu(Weng et al. 2008)

Test for health monitoring of cable‐stayed bridge

WiMMS(prototype) 12 Accel. (12) Short‐term None

Modal analysis and cable tension force

Stork(Meyer et al. 2010)

Validation of long‐term field test using wireless sensor network

Tmote Sky 6 Accel. (6) Long‐term None Cable tension force

Ferriby Road(Hoult et al. 2010)

Evaluation of the potential of wireless sensor network

MicaZ 7

Crack (3)Inclin. (3)Temp (7)Humid.(6)

Long‐term NoneCrack growth and inclination of deck

New Carquinez(Lynch et al. 2010)

Wireless system proof‐of‐concept

Narada/Imote2 30 Accel. (14) Long‐term SSI Modal 

Analysis Mode Shapes

Page 17: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

What’s Been Lacking?

◊ Hardware□ Platform with computational capacity for high‐data rate 

applications and distributed computing□ Sensor hardware that to produce high‐fidelity data that is 

appropriate for SHM

◊ Software□ Middleware services to acquire high‐fidelity data□ Application software to implement distributed SHM□ Flexible software that supports network and application scalability

◊ Full‐scale implementation considerations□ Communication performance evaluation□ Autonomous network operation□ Power management□ Fault tolerance

Page 18: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

High‐fidelity Hardware

Page 19: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Imote2 with Sensor Boards

MicaZ Telos iMote2Microprocessor Atmel ATmega128L TI MSP430 Intel XScalePXA271

Clock speed (MHz) 7.373 8 13‐412Active Power (mW) 24 10 44 @ 13 MHz

Non‐volatile memory (bytes) 128 K (Flash) + 512 K (EEPROM) 48K (Flash) 32 M (Flash)

Volatile memory (bytes) 4 K 1024K 256 K +32 M (SDRAM)

Dimensions (mm) / Weight (g) 58*32*7 / 18 65*31*6 / 23 36 *48*9 / 12

From MEMSIC (2010)

Sensor Board

External Antenna(Antenova 2.4GHz)

iMote2

Battery Boardw/ 3 AAA Batteries

Basic Sensor Board

LEDBasic I/O

Basic I/O

PMICPXA27

Advanced I/O

Advanced I/O

Mini USB Connector

CC2420Antenna

SMA Connector

48mm

36mm

Imote2 and Basic Sensor Board

Imote2: Top and Bottom

Page 20: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

Aliasing

◊ Consider a 48 Hz signal◊ What if the signal is sampled 

at 50 Hz?◊ The resulting measured signal 

has an apparent frequency of 2 Hz

Aliasing

◊ Cannot have significant energy above the Nyquist frequency (fs/2)

◊ Anti‐aliasing filters must be used in dynamic measurements to preserve signal integrity

fN fs

?

Page 21: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Multifunctional Sensor Boards

External InputConnector

SHM‐A Board (bottom)

Basic Connector

Programmable Filterw/ ADC Quickfilter

QF4A512

SHM‐A Board (top)

AccelerometerST Microelectronics

LIS344ALH

OP AMPTI OPA 4344

Humidity & Temp. Sensor

SHT11

Light SensorTAOS 2561

Basic Connector

SHM‐A and SHM‐H Board

SHM‐H Board

Anemometer(RM Young,Model 8100)

Interfaced

Voltage

SHM‐DAQ Board

• Data Acquisition using commercial voltage‐output sensors

• Output Voltage: ‐5 to 5 V0 to 5 V

Page 22: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

High‐sensitivity Accelerometer board (SHM‐H board) Pseudo‐static test: slender column with lumped mass on top

P ¼ ASTM A53 steel pipe(0.54OD, 0.36ID)

10.5’

SHM‐ASHM‐H

5kgmass

FE analysis (1~3th freq.):0.14Hz, 4.42Hz, 14.57Hz

0.1406 Hz 6Hz sampling rate was used Performed well in low‐frequency range

(< 0.2Hz)

Page 23: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Strain monitoring using SHM‐S board

Strain sensor board for Imote2 platform High‐throughput synchronized strain monitoringHigh precision auto‐balanced Wheatstone bridgeUp to 2500 times gain 0.3 µ‐strain resolution at 20Hz B/W Stacked use with SHM‐A or SHM‐DAQ boardBoth foil‐type strain gage and magnetic strain sensor can be used with SHM‐S board

SHM‐S board: top, stacked on SHM‐DAQ and stacked on SHM‐A

RemoteCommand SHMSAutoBalance

Tokyo Sokki magnet strain checker

Page 24: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

High‐precision Strain sensor board (SHM‐S board)

SHM‐S vs. Ni‐DAQ (foil type)

0 1 2 3 4 5-40

-20

0

20

40

time(sec)

-st

rain

Detail (high-level strain)

195 196 197 198 199 200

-1

0

1

2

time(sec)

-st

rain

Detail (low-level strain)

0 10 20 30 40 50

10-5

100

frequency(Hz)

-st

rain

2 /Hz

PSD

0 50 100 150 200-50

0

50

time(sec)

-st

rain

Time history

Wired: Ni-DAQWireless: SHMS

Wired: Ni-DAQWireless: SHMS Wired: Ni-DAQ

Wireless: SHMS

Wired: Ni-DAQWireless: SHMS

a)

d)c)

b)

Page 25: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Pressure and D2A Sensor Board

TI‐DAC8565

SHM‐D2A Board

AMSYS 5812

• 16bits, Digital to Analog conversion of 4 channels

Stacked with SHM‐DAQ Board

SHM‐P Board • Measure wind/airpressure

Page 26: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Imote2 Sensor Enclosure

Acrylic JigSolar PanelExternal 5dBiAntenna

Uni‐directionalmagnet

RechargeableBattery

Antenna Cable

Bolt & Spacer

Page 27: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Future Hardware Enhancement

24‐bit DAQ (TI ADS1274, Delta‐sigma type ADC) Delta‐sigma noise shaping technology Low‐power consumption suitable for wireless sensor application Support full capabilities of low‐noise/high‐sensitivity sensors Make it easy to implement/design new external sensor boards

Page 28: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Service‐oriented Software Framework

Page 29: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Service‐Oriented Architecture (SOA)

◊ Previous smart sensor applications:□ Significant effort to create very specific applications□ Difficult to modify for other applications, even with extensive CS 

knowledge

◊ Service‐Oriented Architecture simplifies SHM software development□ Applications are comprised of manageable, modular services that 

exchange data in a common format□ The middleware framework connects the services by providing 

communication and coordination

SDLV

Numerical ServicesApplication Services Foundation Services SHM Application

Page 30: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Time Synchronization

◊Each sensor has its own local clock which drifts over time

◊ Synchronization errors can be reduced to ~20s

◊Not the whole story…beacon

exchange beacon time&adjust clocks

Page 31: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Synchronized Sensing Service

◊ Uncertainty in start of acquisition □ Independent processors

Sensor 1

Sensor 2

t0,1

t0,2

Resampling middleware service achieves synchronized sensing

27.9 27.95 28-3

-2

-1

0

1

2

3

Time (sec)

Sam

ples

27.9 27.95 28-3

-2

-1

0

1

2

3

Time (sec)

Sam

ples

Page 32: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Power Management and Energy Harvesting

Base Station

DeepSleep

DeepSleep

DeepSleep

DeepSleep

WakeUp and Listen

Effective Power Management with Autonomous OperationSnoozeAlarm:ThresholdSentry:AutoMonitor:

Energy HarvestingSolar panel (or Micro wind turbine) + Rechargeable BatteryPMIC charger manipulates voltage and current for fast and stable charging.

PMIC

Imote2Solar Panels Micro Wind Turbine

Page 33: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

ISHMP Services Toolsuite

Fault tolerant WSSNSkipping of unresponsive nodesData storage in non‐volatile memoryMonitoring of sensor powerExclusion of low‐power sensor nodesWatchdog timer and etc… 

Enhanced operationAutonomous resuming of AutoMonitorThresholdSentry for multi‐hop communicationEmail notification of structural response and network anomalies

Page 34: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Reliable communication Time synchronization Numerical library (e.g. FFT, SVD, etc.)

Network data acquisition Decentralized data aggregation (DDA) Multi‐hop communicationHardware (Imote2)

OS (TinyOS)

Middleware services

SHM application

Correlation function estimation Eigensystem realization algorithm (ERA) Stochastic subspace identification (SSI) Frequency domain decomposition (FDD)

Test applications for Toolkit components Radio and antenna testing

Foundation Services

Network Services

Application Services

Tools and Utilities

ISHMP Service Toolsuite

http://shm.cs.uiuc.edu/

Illinois Structural Health Monitoring Project (ISHMP)

http://shm.cs.uiuc.edu

Page 35: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Full‐scale Implementation

Page 36: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

2nd Jindo Bridge Haenam(Inland)

Daejeon (KAIST)

Seoul

Jindo

JindoBridges

Jeju Island

2nd Jindo Bridge

Type Cable-stayed bridge

Spans 70+344+70 = 484m

Girder Steel box (12.55m width)

Design velocity 70 km/hr

Designed by Yooshin cooperation (2000, Korea)

Constructed by Hyundai construction (2006, Korea)

(September 2008 – 2012)

US       : B.F. Spencer, Jr. & G. Agha (UIUC)Korea : H.J. Jung & C.B. Yun (KAIST), H.K. Kim (SNU) 

J.W. Seo (Hyundai Institute of Const. Tech.)Japan : Y. Fujino & T. Nagayama (U. of Tokyo)

US       : B.F. Spencer, Jr. & G. Agha (UIUC)Korea : H.J. Jung & C.B. Yun (KAIST), H.K. Kim (SNU) 

J.W. Seo (Hyundai Institute of Const. Tech.)Japan : Y. Fujino & T. Nagayama (U. of Tokyo)

US‐Korea‐Japan Collaborative Projecton SHM Test‐bed Using Wireless Smart Sensor Network

Page 37: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Deployment in 2009 (70 Nodes)Cable : 8Deck : 22Pylon : 3Total : 33

Cable : 7Deck : 26Pylon : 3Wind: 1

Total : 37

Nodes on pylon top(powered by solar cell)Deck Nodes

Reference NodesNodes on pylons Nodes on cables

Nodes on cables(powered by solar cell) Amemometer

Max. 420 channels of sensors(207 ch. Acceleration & 3 ch. Wind)

Page 38: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Cable node

Cable node

Pylon node

Base station Pylon node

Wind turbine

3D ultra‐sonic anemometer

Deck node

TeamViewer(for remotely access to basestation)

Deployment in 2010

Page 39: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Deployment in 2010

104 80 25H

88 121 102 144 86 98 96 116 81 18 150 39 85 52

2 9 3 7 69 66 53 41 39 64 100 56 8 3WT23 6 20 152 33 35 53 83 54 69 114

69 53 88 37 133 34 87 120 104 24 51 81 85 113 51 32 24 73 23 89 48 2 34 64

52 132 6

72

170 145 35 21 105 86 23 3 41 70 7 150 151 56 135 119 4 40 20 133 65

118

24

T101S

70

32ST

20113

71151

19W

136T

145H

135H

133H

149W

146W

144H

135H

132H

129H

72 24

T101

:  Jindo Deck network (single hop) :  Haenam Deck network (single hop)

:  Jindo Cable network (multi hop) :  Haenam Cable network (single hop)

W :  Anemometer (SHM‐DAQ)T :  Temperature

WT :  Wind Turbine powerH :  High‐sensitivity (SHM‐H)

S :  Strain sensor (SHM‐S1)ST :  Strain + Temp correction (SHM‐S2)

Haenam side(North)

Jindo side (South)

East  West East  WestDeck networks

Cable networks

West

East

West

East

Haenam sidePylon

Jindo sidePylon

11869 53 88 37 133 34 87 120 104 24 51 81

695388371333487120104245181

Haenam side Jindo sideDeck Cable Deck Cable

Communication channel Ch 25 Ch 15 Ch 26 Ch 20

Network size 30 nodes 26 nodes 31 nodes 26 nodes

SHM‐H board (cluster head) 5 nodes ‐ 5 nodes ‐

SHM‐DAQ board (wind) 1 nodes ‐ 2 nodes ‐

Sentry node 3 nodes 2 nodes 3 nodes 2 nodes

Temperature node (exposed) 1 nodes ‐ 1 nodes 1 nodes

FunctionalitiesCommon RemoteSensing, AutoUtilsCommand, ChargerControl, 

ThresholdSentry and SnoozeAlarm

Particular DDA CTE DDA CTE

Communication protocol Single‐hop Single‐hop Single‐hop Multi‐hop

In total, 669 sensing channels with 113 sensor nodes were deployed

In total, 669 sensing channels with 113 sensor nodes were deployed

Page 40: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Evaluation

Typhoon Kompasu (2010.09.01) 

Aug. 29. 21:00Birth of Typhoon

Sep. 2, 3:00

Sep. 1, 21:00 (Closest to Jindo)

Sep. 2, 9:00

Sep. 2, 15:00

Sep. 2, 21:00

Sep. 3, 9:00

Sep. 3, 21:00

Korea

Japan

China

Jindo Bridges

Typhoon center

Jindo Bridge

Page 41: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Evaluation: Wind Monitoring

SHM‐DAQ + AnemometerWind Speed

Wind Direction

Measured Wind by KMA‐Jindo (Mt. Chun‐Chal) at Sep. 01, 2010.

15‐20m/s

0 200 400 600 800 10000

10

20

30

Wind

Spe

ed (m

/s)

0 200 400 600 800 1000100

150

200

250

Azim

uth

Dir.

(Deg

)

0 200 400 600 800 1000-40

-20

0

20

40

Time (sec)

Eleva

tion

(Deg

)

0 200 400 600 800 10000

10

20

30

Wind

Spe

ed (m

/s)

0 200 400 600 800 1000100

150

200

250

Azim

uth

Dir.

(Deg

)

0 200 400 600 800 1000-40

-20

0

20

40

Time (sec)

Eleva

tion

(Deg

)

Jindo

Haenam(Inland)

41

Narrow Strait:Increased wind speed ‐Slight change in direction

Anemometer: Jindo‐side (at 21:14)

Anemometer: Haenam‐side (at 21:12)

Ch1: wind speedCh2: wind direction (horizontal)Ch3: wind direction (vertical)

Page 42: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Evaluation: Acceleration Responses

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg)

1 (center span)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 200 400 600 800 1000

-20

0

20

time(s)ac

c(m

g)

2

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg)

3

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg)

4

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg)

5

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg)

6

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg)

7

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg)

8

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg)

9

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg) 10

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg)

11 (pylon)

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg) 12

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg)

13

0 200 400 600 800 1000

-20

0

20

time(s)

acc(

mg)

14 (girder end)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 510-4

10-2

100

102

freq(hz)

z-axis PSD (Haenam side deck)0.446

0.6451.033

1.3561.555

1.653

1.871

2.2592.405 2.812

Page 43: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Evaluation: System ID

NExT & ERA method Identified frequency range: 0~3Hz 1000 seconds data at 25Hz sampling

ModeName

WiredSystem  (2007)

FE analysis

WSSN (During Kompasu)

Haenam Jindo Avg.

DV1 0.440 0.442 0.446  0.446  0.446 

DV2 0.659 0.647 0.645  0.647  0.646 

DV3 1.050 1.001 1.033  1.033  1.033 

DV4 1.367 1.247 1.356  1.342  1.349 

DV5 1.587 1.349 1.555  1.549  1.552 

DV6 1.660 1.460 1.653  1.635  1.644 

DT1 ‐ 1.789 1.798  1.802  1.800 

DV7 1.856 1.586 1.871  1.870  1.871 

DV8 2.319 2.115 2.259  2.261  2.260 

DV9 2.808 2.561 2.812  2.813  2.813 

Identified natural frequencies (Hz)

DV1

DV2

DV3

DT1

DV9

Page 44: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Evaluation: Pylon Strain

Node 70 (sensor node)

Node 32 (sensor node + solar panel on it)

Solar panel for node 70

Active   Dummy(Node 32)

(Node 70)Active

Enclosure inside

0 100 200 300 400-4

-2

0

2

4

time(sec)

mg

Acceleration time history

0 2 4 6 8 10 1210-5

100

frequency(Hz)

mg2 /ro

ot(H

z)

Acceleration PSD

0 100 200 300 400

-5

0

5

time(sec)

u-st

rain

Strain time history

0 2 4 6 8 10 1210-5

100

frequency(Hz)

ustra

in2 /ro

ot(H

z)

Strain PSD

x-axisy-axisz-axis

x-axisy-axisz-axis

2.4Hz (pylon bending)

2.4Hz (pylon bending)

Synchronized acceleration & strain sensing at 25Hz For pylon, strain measurement was more informative

09/21 09/22 09/23 09/24 09/25 09/26 09/27 09/28 09/29 09/30 10/01 10/02 10/03 10/04 10/05 10/06 10/07 10/08 10/09 10/10 10/11 10/12

-400

-200

0

Date (MM/DD)

Stra

in d

rift (

u-st

rain

)

Strain drift due to temperature effect

Node70: Quarter bridgeNode32: Half bridge with a dummy gage

Temperature compensation using the half bridge with a dummy gage worked

Page 45: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Evaluation: Girder Strain

Lead wire

Embedded Wheatstone bridge

Magnet strain checker

Sensor nodeat midspan

at pylon bearing position

At mid span At bearing location Using magnet strain checker with SHM‐S

0 50 100 150 200 250 300 350 400-8-6-4-202

time(sec)

u-st

rain

Strain time history (at pylon bearing position)

0 50 100 150 200 250 300 350 400-50

0

50

time(sec)

u-st

rain

Strain time history (at midspan)

double peaks

compression

tension

due to slip

Strain responses under traffic loadings Compressive strain at pylon bearing and tensile strain at midspan Double peaks (?) in the strain measurements at pylon bearing location

Page 46: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Evaluation: Strain Analysis Truck loading simulation using FE model 

Box girder model Pylon model

3D Frame modelExtruded 

appearance

5‐tonf truck  12 tonf when full loaded 60 km/hr (38 mile/hr)

using MIDAS/Civil

0 10 20 30 40-15

-10

-5

0

time(sec)

u-st

rain

Girder strain at pylon bearing location

0 10 20 30 40

0

20

40

time(sec)

u-st

rain

Girder strain at midspan

6.0 sec

3.1 sec

51m

100 m

(51m)/(3.1sec)*(3600sec/hr)/(1000m/km) = 59.2 km/hr

(north bound)Truck moving

Truck moving(north bound)

(100m)/(6.0sec)*(3600sec/hr)/(1000m/km) = 60 km/hr

Double peaks are caused by the double‐concaved influence line Can be utilized for estimation of vehicle’s speed, moving direction, and 

weight (Bridge Weigh‐in‐motion, BWIM)

Page 47: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Evaluation: Battery Monitor

0:00 2 4 6 8 10 12 14 16 18 20 22 0:00 2 4 6 8 10 12 14 16 18 20 22 0:004

4.05

4.1

4.15

4.2

4.25

Time (HH:MM)

Bat

tery

Vol

tage

(V)

East-side nodes

0:00 2 4 6 8 10 12 14 16 18 20 22 0:00 2 4 6 8 10 12 14 16 18 20 22 0:00

0

100

200

Time (HH:MM)

Cha

rgin

g cu

rrent

(mA

)

East-side nodes

151 96116144 64 70135150132 39 2129 85 52

Page 48: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

09/08/10 09/09/10 09/10/10 09/11/10 09/12/10

24

26

28

30

32

34

Date (MM/DD/YY)

Bat

tery

Vol

tage

(V)

Temperature nodes

151 64 39 85 3 35 83 86

Temperature monitoring Temp. inside enclosure

Temp. outside enclosure

Evaluation: Cable Tension and Temperature

c1 c2 c3 c4 c5 c6 c7 c8 c9 c11 c120

50

100

150

200

250

300

350

Cable ID

Tens

ion

(tonf

)

Design TensionPark et al. (2008)CableTensionEstimation

Cable tension estimation

[ Cable tension comparisons ][ Cable ID ]

Page 49: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Evaluation: Long‐term performance of Jindo‐side WSSN 

Battery voltage (V)

Charging current (mA)

Number of responsive 

node (out of 31)

Basestation problem

Average charging current > 100mA

Responsive rate : 70~85%

Page 50: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Deployment Achievements

669 sensors at 113 nodes High-sensitivity accelerometer board Solar panel with rechargeable battery Wind-induced energy harvesting

• Hardware

Multi-hop reliable data transfer and printing Fault tolerant operation Remote software updates Better user interface

• Software

Modal analysis with system synchronization Vibration-based tension estimation Multi-scale structural health monitoring

(Modal information + Cable tension force) Wind-vibration correlation analysis

International collaboration for test-bed Web-based data repository and sharing

• Analysis & Monitoring • Collaboration

World’s largest deployment to date of wireless sensors for civil infrastructures monitoring.

World’s first long-term deployment.

Page 51: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Next Steps

Page 52: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Wind Load and Wind Effects on Xihoumen Bridge

Hui Li, B.F. Spencer, Yan Yu, Jinping Ou

Page 53: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Add 32 wireless pressure modules(P992 connected to SHM‐DAQ)Range: ± 250‐500PaAccuracy: ≤ 0.5% of full span

SHM‐DAQ board

KAVLICO P992 Low‐level pressure sensor

Wind Load and Wind Effects on Xihoumen Bridge

Page 54: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

册 子 岛( 北 ) 金 塘 岛( 南 )

U A 3 / U A 4

北 塔 南 塔U A 4(主跨跨中右幅)

U A 3(主跨跨中左幅)

向册子行驶方向为左幅、向金塘行驶方向为右幅

册 子 岛( 北 ) 金 塘 岛( 南 )AC10

AC11/AC12 AC14/AC15 AC17/AC18

AC16AC13AC4

AC5/AC6

AC11/AC11/AC12 AC16/AC17/AC18

AC13/AC14/AC15

AC4/AC5/AC6

册 子 岛( 北 ) 金 塘 岛( 南 )

U A 3 / U A 4

北 塔 南 塔U A 4(主跨跨中右幅)

U A 3(主跨跨中左幅)

向册子行驶方向为左幅、向金塘行驶方向为右幅

册 子 岛( 北 ) 金 塘 岛( 南 )AC10

AC11/AC12 AC14/AC15 AC17/AC18

AC16AC13AC4

AC5/AC6

AC11/AC11/AC12 AC16/AC17/AC18

AC13/AC14/AC15

AC4/AC5/AC6

Add 12 bidirectional wireless accelerometers in ten sections    

Add 10 bidirectional wireless accelerometers

Vibrations of cable

CAC1/CAC2

册子岛(北)

CAC3/CAC4

CAC5/CAC6

CAC9/CAC

CAC11/CACCAC7/CAC8

Wind Load and Wind Effects on Xihoumen Bridge

Page 55: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Campaign Monitoring for Management of Railroad Assets

Page 56: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

The Future

Page 57: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Cyberinfrastructure for Smart StructuresBridges

Dams

Tunnels

The Other Infrastructure

• Structure Monitoring•Hurricane & Earthquake Monitoring

• Traffic Monitoring • Emergency Response

• Structure Monitoring•Hurricane & Earthquake Monitoring

• Load Rating• Emergency Response

• Pressure Monitoring• Leakage Detection•Deflection Monitoring• Emergency Response

•Deflection Monitoring• Leakage Detection• Fire Detection• Traffic Monitoring• Emergency Response 

WSN

WSN

WSN

WSN

Cloud Services

• WSN applications for structural monitoring• Repository of structure data and monitoring algorithms

• Repository of models 

Page 58: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

CitySee: City‐wide Urban Sensing

◊ Objective: 20 KM2 urban area in Wuxi□ 4000+ sensor nodes with temperature/humidity and light sensors□ 500+ nodes with CO2 sensor

Final Goal: 10,000 Nodes, 100 KM2

(Courtesy of Prof. Yunhao Liu of Tsinghua U.)

Page 59: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Asia-Pacific Summer School on Smart Structure Technology

To enhance students' understanding of the cross-disciplinary technological developments on the emerging subjects of smart structure technologiesTo develop the cross-cultural human-network and understanding for the future cooperation in their professional career development.3 weeks program for 6 years among US/Korea//China/Japan/India supported byNSF, NRF, JSPS, & NSFC.Coordinators

Goals of APSS Program

Korea : C-B. Yun (KAIST) US : B.F. Spencer (UIUC) Japan : Y. Fujino (U. of Tokyo) China : L. Sun (Tongji U.)

Page 60: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

1st APSS at KAIST, Korea, 2008SISTeC‐KAIST, July 28 ‐August 16, 2008

50 graduate students attended. http://sstl.cee.uiuc.edu/apss

2nd APSS at U. of Illinois, USA, 2009July 3 – July 25, 2009

45 graduate students attended.

3rd APSS at U. of Tokyo , Japan, 2010July 15 – August 4, 2010

40 graduate students attended.

4th APSS at Tongji U., China, 2011July 28 – August 10, 2011

48 graduate students attended.

5th APSS at IIT, India, 2012July 23‐August 11, 2012 48 graduate students attended. 6th APSS at KAIST, Korea, 2013

Page 61: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Concluding Remarks

Page 62: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Concluding Remarks

◊ This paper discusses recent advances and field validationof a state‐of‐the‐art WSSN framework developed atthe University of Illinois at Urbana‐Champaign

◊ The open source ISHMP Services Toolsuite a wide variety of services and fault‐tolerant features  

◊ Full‐scale WSSNs are realized for the purpose of SHM andthe evaluation as well as the data analysis show high practicality of wireless SHM systems for civil infrastructure

◊ Tremendous potential and a level of maturity of WSSN for SHM has been demonstrated through full‐scale deployment on the Jindo Bridge in Korea

◊ Education of the next generation of engineers in smart structures technology is of high importance

Page 63: Structural Health Monitoring of Civil Infrastructure€¦ · Structural Health Monitoring of Civil Infrastructure: ... Wireless system proof‐of‐ concept Narada/ ... Power Management

Acknowledgement

◊ NSF Grant CMS 06‐00433 (Dr. S.C. Liu, Program Manager)

◊ Global Research Network Program (NRF‐2008‐220‐D00117)from the National Research Foundation in Korea

◊ Smart Infra‐Structure Technology Center (SISTeC) at KAIST in Korea

◊ Ministry of Land, Transport and Maritime Affairs in Korea

◊ Hyundai Construction Co. Ltd. 

Thank you for your attention!