102
OAK RIDGE NATIONAL LABORATORY ORNL/TM-9159 3 4456 0044330 3 Stratigraphic and Structural Data for the Conasauga Group and the Rome Formation on the Copper Creek Fault Block near Oak Ridge, Tennessee: Preliminary Results from Test Borehole ORNL-JOY No. 2 9 C. S. Haase E. C. Walls C. D. Farmer b % ENVIRONMENTAL SCIENCES DIVISION Publication No. 2392 .. t OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

Stratigraphic and structural data for the Conasauga Group

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stratigraphic and structural data for the Conasauga Group

OAK RIDGE NATIONAL LABORATORY

ORNL/TM-9159 3 4 4 5 6 0 0 4 4 3 3 0 3

Stratigraphic and Structural Data for the Conasauga Group and the

Rome Formation on the Copper Creek Fault Block near Oak Ridge, Tennessee:

Preliminary Results from Test Borehole ORNL-JOY No. 2

9

C. S. Haase E. C. Walls C. D. Farmer

b

% ENVIRONMENTAL SCIENCES DIVISION Publication No. 2392

..

t

OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

Page 2: Stratigraphic and structural data for the Conasauga Group

Printed in the United States of America. Available from National Technical Information Service

U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161

NTlS price codes-Printed Copy: A06 Microfiche A01

This report was prepared as an account of work sponsored by an agency of the UnitedStatesGovernment. NeithertheUnitedStatesGovernment norany agency thereof, nor any of their employees. makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that i ts use would not infringe privately owned rights Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United StatesGovernment or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Uni ted StatesGovernment or any agency thereof.

Page 3: Stratigraphic and structural data for the Conasauga Group

ORNL/TM-9159

,. ENVIRONMENTAL SCIENCES D I V I S I O N

S l H A T I G R A P H I C AND STRUCTURAL DATA FOR THE CONASAUGA GROUP AND THE ROME FORMATION

ON THE COPPER CREEK FAULT BLOCK NEAR OAK R I D G E , TENNESSEE: PRELIMINARY RESULTS FROM TEST BOREHOLE ORNL-JOY No. 2

C. S . Haase E. C . Wa l l s * C . D. Farmer

Envlronmental Sciences D i v i s i o n P u b l i c a t i o n No. 3392

* Department of Geology, Tennessee Technologica l U n i v e r s i t y , C o o k e v i l l e , Tennessee

Nuclear and Chemical Waste Programs ( A C T I V I T Y NO. AR 05 10 05 K; ONL-WN12)

Manuscr ip t Completed -- March, 1985 Date o f I ssue -- June 1985

Prepared f o r t h e O f f i c e of Defense Waste and Byproducts Management

Prepared by t h e Oak Ridge N a t i o n a l Labora to ry

Oak Ridge, Tennessee 37831 operated by

M a r t i n M a r i e t t a Energy Systems, I n c . f o r t h e

U. S. DEPARlMENT OF ENERGY under Con t rac t No. DE-AC05-840R21400

3 4 4 5 6 0 0 4 4 3 3 0 3

Page 4: Stratigraphic and structural data for the Conasauga Group

- .

,

.

Page 5: Stratigraphic and structural data for the Conasauga Group

CONTENTS

Page

L I S T OF FIGURES ............................................... v

L I S T OF TABLES .................................................. v i i

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i x

ABSTRACT ...................................................... x

1 . INTRODUCTION .............................................. 1

2. GEOLOGIC SETTING .......................................... 4

3 . DRILLING AND GEOPHYSICAL LOGGING OPERATIONS ............... 8

4 . STRATIGRAPHIC DATA ........................................ 13

5 . STRUCTURAL DATA ........................................... 56

6 . SUMMARY ................................................... 69

REFERENCES .................................................... 73

APPENDIX-DETAILED LITHOLOGIC LOG FOR ORNL-JOY NO. 2 ......... 77

.

iii

Page 6: Stratigraphic and structural data for the Conasauga Group
Page 7: Stratigraphic and structural data for the Conasauga Group

F i g u r e

LIST OF FIGURES

Page

4

5

6

7

8

9

10

11

12

13

Regional l o c a t i o n and phys iog raph ic map .............. 3

S i t e geo log i c map 5 .................................... S i m p l i f i e d geophysica l and l i t h o l o g i c l ogs f o r

ORNL-JOY NO. 2 14 ....................................... Photographs o f t h e Copper Ridge Dolomi te ............. 18

Photographs o f t h e Chances Branch member o f t h e

M a y n a r d v i l l e Limestone 21 ............................... Photographs o f t h e Low Hol low member o f t h e

M a y n a r d v i l l e Limestone ............................... 23

Photographs o f t h e Upper Shale and Bradley Creek

members o f t h e No l i chucky Shale ...................... 25

Photographs o f t h e Lower Shale member o f t h e

Nol ichucky Shale ..................................... 27

Photographs o f t h e upper p a r t o f t h e M a r y v i l l e

Limestone ............................................ 31

Photographs o f t h e lower p a r t o f t h e M a r y v i l l e

Limestone ............................................ 33

Photographs R o g e r s v i l l e Shale and o f t h e C r a i g

Limestone member 37

41 Photographs o f t h e Rut ledge Limestone ................ .....................................

Photographs o f t h e upper member o f t h e Pumpkin

V a l l e y Shale 43 .........................................

V

Page 8: Stratigraphic and structural data for the Conasauga Group

1 4

15

1 6

17

1 8

19

20

21

22

23

24

25

26

Photographs of t h e lower member o f t h e Pumpkin

V a l l e y Shale ......................................... 45

Photographs o f sandstones f rom uppermost Rome

Format ion ............................................ 49

Photographs o f mudstones and s i l t s t o n e s f rom t h e

uppermost Rome Format ion ............................. 51

Photographs o f t h e d i s t u r b e d lower Rome Format ion .... 53

Photographs o f t h e uppermost Moccasin Format ion ...... 57

Photograph o f bedding p l a n e - p a r a l l e l f a u l t ........... 59

Photographs o f sma l l - sca le f a u l t s w i t h i n t h e

Conasauga Group and Rome Format ion ................... 61

Photographs o f j o i n t s w i t h i n t h e

Conasauga Group and t h e Rome Format ion ............... 64

Photographs o f f r a c t u r e s w i t h i n t h e

Conasauga Group and t h e Rome Format ion ............... 65

Acous t i c t e l e v i e w e r l o g s o f f r a c t u r e s w i t h i n

t h e Conasauga Group .................................. 66

Photographs o f c a t a c l a s t i t e s and m y l o n i t e s f rom

t h e Rome Format ion ................................... 68

Photograph o f t h e b r e c c i a a t t h e p r i n c i p a l

Copper Creek f a u l t zone .............................. 70

Regional s t r a t i g r a p h i c r e l a t i o n s h i p s a l o n g t h e

Copper Creek f a u l t b l o c k i n eas t Tennessee ........... 72

r .

v i

Page 9: Stratigraphic and structural data for the Conasauga Group

L I S T OF TABLES

T a b l e Page

1 Summary o f b o r e h o l e d e v i a t i o n d a t a ................... 10

2 Summary o f f o r m a t i o n a l th icknesses measured i n

ORNL-JOY No. 2 ....................................... 16

v i i

Page 10: Stratigraphic and structural data for the Conasauga Group
Page 11: Stratigraphic and structural data for the Conasauga Group

ACKNOWLEDGMENTS

The au tho rs wish t o thank t h e personnel o f t h e C o n t r a c t Dri l l

D i v i s i o n of Joy Manu fac tu r ing Company f o r t h e i r e f f o r t s t o b r i n g a

d i f f i c u l t d r i l l i n g p r o j e c t t o a success fu l comp le t i on . I n p a r t i c u l a r

we w ish t o thank W. Leszczyszyn (Con t rac ts Manager), P. H. P o l l a r d

( S u p e r v i s o r ) , and J . S h i p l e y (Foreman) f o r p r o v i d i n g much a d v i c e and

a s s i s t a n c e and f o r conduc t ing a ve ry p r o f e s s i o n a l d r i l l i n g o p e r a t i o n .

W. S. Keys and R . Hodges f rom t h e Water Resources D i v i s i o n o f t h e

U. S. Geo log ica l Survey, Denver, Colorado performed t h e geophysica l

l o g g i n g and p u t i n a much apprec ia ted e x t r a e f f o r t t o dea l w i t h

d i f f i c u l t problems.

E. R . R o t h s c h i l d , 0. M. Sealand, J. Switek, and N. D. Vaughan (Oak

Ridge N a t i o n a l Labora to ry / Environmental Sciences D i v i s i o n ) ;

W. D. Bar ton ( M a r t i n M a r i e t t a Energy Systems / Eng ineer ing ) ; and

K . B. McLaughl in ( M a r t i n M a r i e t t a Energy Systems / Purchasing)

p rov ided numerous and v a r i e d c o n t r i b u t i o n s necessary t o t h e success o f

t h e p r o j e c t . N. H. C u t s h a l l (ORNL/ESD) p rov ided programmatic suppor t

and encouragement. P ro fesso r K . 0. Hasson (ORNL/ESD and East

Tennessee S t a t e U n i v e r s i t y ) p rov ided v a l u a b l e e x p e r t i s e and adv i ce

throughout t h e p r o j e c t ; h i s c o n t r i b u t i o n s were much apprec ia ted .

Borehole geophysica l l o g g i n g was supported by t h e N a t i o n a l Low

Level Waste Management Program under Task 3.5.3.0 AR "USGS Borehole

Geophysics."

R . H. K e t e l l e (ORNL / Energy D i v i s i o n ) and E. R . R o t h s c h i l d

p rov ided ve ry h e l p f u l c r i t i c a l reviews o f a p rev ious manuscr ip t d r a f t .

i x

Page 12: Stratigraphic and structural data for the Conasauga Group

HAASE, C. S. , E . C . WALLS, and C . 0. FARMER. 1984.

S t r a t i g r a p h i c and s t r u c t u r a l d a t a f o r t h e Conasauga Group

and t h e Rome Format ion on t h e Copper Creek F a u l t B lock

near Oak Ridge, Tennessee: P r e l i m i n a r y Data f r o m Test

Borehole ORNL-JOY No. 2.

ABSTRACT

To r e s o l v e l ong -s tand ing problems w i t h t h e s t r a t i g r a p h y o f t h e

Conasauga Group and t h e Rome Format ion on t h e Copper Creek f a u l t b l o c k

near Oak Ridge N a t i o n a l Labora to ry (ORNL), an 828.5-m-deep t e s t

bo reho le was d r i l l e d . Continuous rock c o r e was recovered f rom t h e

17.7- t o 828.5-m-deep i n t e r v a l ; temperature, c a l i p e r , neutron,

gamma-ray, and a c o u s t i c ( v e l o c i t y and t e l e v i e w e r ) l o g s were ob ta ined .

The Conasauga Group a t t h e s tudy s i t e i s 572.4 m t h i c k and

comprises s i x fo rma t ions t h a t a r e - i n descending s t r a t i g r a p h i c

o r d e r - M a y n a r d v i l l e Limestone (98.8 m), No l i chucky Shale (167.9 m),

M a r y v l l l e Limestone (141.1 m), R o g e r s v i l l e Shale (39.6 m), Rut ledge

Limestone (30.8 m) , and Pumpkin V a l l e y Shale (94.2 m ) . The fo rma t ions

a r e l i t h o l o g i c a l l y complex, r a n g i n g f r o m c l a s t i c s t h a t c o n s i s t o f

shales, mudstones, and s i l t s t o n e s t o carbonates t h a t c o n s i s t o f

m i c r i t e s , wackestones, packstones, and conglomerates.

The Rome Format ion i s 188.1 m t h i c k and c o n s i s t s o f v a r i a b l y bedded

mudstones, s i l t s t o n e s , and sandstones. The Rome Format ion t h i c k n e s s

rep resen ts 88.1 m of r e l a t i v e l y undeformed s e c t i o n and 100.0 m o f

h i g h l y deformed, jumbled, and p a r t i a l l y repeated s e c t i o n . The bo t tom

X

Page 13: Stratigraphic and structural data for the Conasauga Group

.- o f t h e Rome Format ion i s marked by a t e c t o n i c d i s c o n f o r m i t y t h a t

occurs w i t h i n a 46-m-thick, I n t e n s e l y deformed i n t e r v a l caused by

mo t ion a l o n g t h e Copper Creek f a u l t .

Resu l t s f rom t h i s s tudy e s t a b l i s h t h e s t r a t i g r a p h y and t h e

l i t h o l o g y o f t h e Conasauga Group and t h e Rome Format ion near ORNL and,

f o r t h e f i r s t t ime, a l l o w f o r t h e unambiguous c o r r e l a t i o n o f cores and

geophysica l l o g s f rom boreholes elsewhere i n t h e ORNL v i c i n i t y .

X i

Page 14: Stratigraphic and structural data for the Conasauga Group
Page 15: Stratigraphic and structural data for the Conasauga Group

1 . INTRODUCTION

-.

.

1.1 BACKGROUND

Geo log ica l i n v e s t i g a t i o n s undertaken over t h e p a s t 30 years a t

r a d i o a c t i v e waste d i s p o s a l s i t e s l o c a t e d i n Me l ton V a l l e y have

r e s u l t e d i n a l a r g e da ta base o f geochemical, l i t h o l o g i c a l , and

s t r u c t u r a l p r o p e r t i e s f o r Conasauga Group s t r a t a ( see S tockda le 1951;

B a r n e t t 1954; Cowser 1958; deLaguna e t a l . 1958; C a r r o l l 1961; Cowser,

Lomenick, and McMaster 1961 ; deLaguna 1961 ; Struxness 1962;

McMaster 1963; Lomenick and Wyrick 1965; McMaster and W a l l e r 1965;

deLaguna e t a l . 1968; Weeren e t a l . 1974; Duguid 1975; Webster 1976;

Krummhansl 1979a and 1979b; Haase and Vaughan 1981; S ledz and

H u f f 1981; Vaughan e t a l . 1982; Haase 1982, 1983, and i n press; Davis

e t a l . 1984; and R o t h s c h i l d e t a l . 1984). The s i t e - s p e c i f i c n a t u r e o f

most o f these i n v e s t i g a t i o n s , however, s e v e r e l y l i m i t s t h e a r e a l

e x t e n t o f t h e Conasauga Group da ta base and makes c o r r e l a t i o n o f t h e

bedrock geology between s i t e s d i f f i c u l t . Furthermore, i t has proved

d i f f i c u l t t o syn thes i ze a rese rva t i on -w ide g e o l o g i c a l summary o f t h e

s t r a t i g r a p h y and l i t h o l o g y o f Conasauga Group s t r a t a d e s p i t e t h e l a r g e

number o f da ta a v a i l a b l e f o r any one p a r t i c u l a r l o c a l i t y w i t h i n t h e

r e s e r v a t i o n .

The d r i l l i n g p r o j e c t desc r ibed i n t h i s r e p o r t was undertaken t o

o b t a i n t h e da ta necessary t o determlne t h e s t r a t i g r a p h y o f t h e

Conasauga Group on t h e Copper Creek f a u l t b l o c k on t h e U. S .

Department o f Energy (DOE) Oak Ridge Reservat ion. I n t h e Oak Ridge

N a t i o n a l Labora to ry (ORNL) v i c i n i t y , Conasauga Group sediments on t h i s

1

Page 16: Stratigraphic and structural data for the Conasauga Group

2

f a u l t b l o c k u n d e r l i e p a s t and c u r r e n t r a d i o a c t i v e waste s to rage and

d i s p o s a l f a c i l i t i e s l o c a t e d i n Me l ton V a l l e y . L i t h o l o g i c and

geophysica l da ta f rom t h i s s tudy p r o v i d e a r e f e r e n c e s t r a t i g r a p h i c

s e c t i o n t o a i d i n t h e unambiguous i n t e r p r e t a t i o n o f s i t e geology a t

t h e v a r i o u s Me l ton V a l l e y f a c i l i t i e s .

1.2 PURPOSE

The purpose o f t h i s r e p o r t I s t o p resen t s t r a t i g r a p h i c , l i t h o l o g i c ,

s t r u c t u r a l , and geophysica l da ta ob ta ined f rom a s t r a t i g r a p h i c t e s t

bo reho le d r i l l e d t o a dep th o f 828.45 m. It 1s a p r e l i m i n a r y summary

o f t h e d r i l l i n g p r o j e c t and c o n t a i n s raw data, such as s t r a t i g r a p h i c

l o g s and l i t h o l o g i c d e s c r i p t i o n s , based on i n i t i a l s tudy o f t h e d r i l l

c o r e and t h e bo reho le geophysica l l ogs . Data presented i n t h i s

r e p o r t , and those con ta ined I n a companion r e p o r t (Haase 1985)

summarize subsur face d a t a on t h e Conasauga Group ob ta ined d u r i n g a

4-year s tudy o f d r i l l co re and geophysica l l o g s ob ta ined f rom numerous

boreholes on t h e DOE Oak Ridge Reservat ion. Regional a n a l y s i s o f t h e

da ta con ta ined i n these r e p o r t s i s presented elsewhere (Hasson and

Haase 1985) .

1 .3 LOCATION

ORNL i s p a r t o f t h e DOE Oak Ridge Reserva t i on ( F i g . 1 ) . The

l o c a t i o n o f t h e bo reho le i s -5 km southwest o f t h e ORNL p l a n t s i t e

( F i g . 2 ) and -15 km southwest o f t h e c i t y of Oak Ridge. The

bo reho le was c o l l a r e d on t h e c r e s t o f Copper Ridge a t an e l e v a t i o n o f

-315.5 m above mean sea l e v e l .

.

Page 17: Stratigraphic and structural data for the Conasauga Group

ORNL-DWG 67-7601 R

V A L L E Y A N D RIDGE

J I

ROANE ANDERSON COUNTY

n A K R l n C E

ION

W F i g . 1 . V a l l e y and Ridge Prov ince and c i t y o f Oak Ridge a r e w i t h i n hatched a r e a s . Study a r e a i l l u s t r a t e d i n g r e a t e r d e t a i l i n F i g . 2.

Locat ion map f o r DOE Oak Ridge R e s e r v a t i o n i n e a s t Tennessee.

Page 18: Stratigraphic and structural data for the Conasauga Group

4

P h y s i o g r a p h i c a l l y , t h e d r i l l s i t e i s l o c a t e d on t h e no r thwes te rn

marg in o f t h e V a l l e y and Ridge Prov ince o f t h e Appalachian Mountains.

I t i s s i t u a t e d on t h e no r thwes t l e a d i n g edge o f a f a u l t b l o c k formed

by t h e r e g i o n a l l y p e r s i s t e n t Copper Creek f a u l t ( F i g s . 1 and 2 ) .

2. GEOLOGICAL SETTING

2.1 STRATIGRAPHY

The bedrock s t r a t i g r a p h y on t h e DOE Oak Ridge Reserva t i on c o n s i s t s

o f Cambrian th rough Ordov ic ian age sediments. From o l d e s t t o youngest

t h e s t r a t i g r a p h i c u n i t s a r e t h e c l a s t i c E a r l y Cambrian Rome Format ion,

t h e mixed c l a s t i c and carbonate M i d d l e and L a t e Cambrian Conasauga

Group, t h e carbonate La te Cambrian and E a r l y O r d o v i c i a n Knox Group,

and t h e mixed carbonate and c l a s t i c M idd le O r d o v i c i a n Chickamauga

Group ( S t o c k d a l e 1951; McMaster 1963). The s t r a t i g r a p h i c u n i t s c r o p

o u t i n a s e r i e s o f southwest- t o n o r t h e a s t - t r e n d i n g l i n e a r b e l t s (see

F i g . 2 ) t h a t a r e t h e r e s u l t o f f a u l t mo t ion a l o n g t h e Copper Creek and

Whiteoak Mounta in t h r u s t f a u l t s . S t r a t a w i t h i n such b e l t s a r e

s t r a t i g r a p h i c a l l y r i g h t - s i d e up and have d i p s t o t h e southeast .

I n t h e s tudy area, t h e Rome Format ion crops o u t a t Haw Ridge, t h e

Cambrian Conasauga Group u n d e r l i e s Me l ton V a l l e y , and t h e Knox Group

crops o u t a l o n g Copper Ridge. The bo reho le was c o l l a r e d i n t h e basa l

p a r t o f t h e Knox Group. Because o f t h e southeast d i p o f t h e s t r a t a ,

Chickamauga Group s t r a t a o f t h e Copper Creek f a u l t b l o c k were n o t

i n t e r s e c t e d by t h e borehole. S t r a t i g r a p h i c a l l y o l d e r u n i t s were

encountered p r o g r e s s i v e l y f u r t h e r downhole as d r i l l i n g proceeded u n t i l

Page 19: Stratigraphic and structural data for the Conasauga Group

ORNL-DWG 83-12595

Q t K

--,.---/---

ORNL JOY-2

KILOMETERS

FORMATION CONTACT

U S DOE FACILITIES

REGIONS ARE ILLUSTRATED WITH NUMEROUS IN GREATER BOREHOLES DETAIL IN

~ ~~- 7 THRUST FAULT (TEETH ON UPPER PLATE )

WBSEOUENT FIGURE

CONASAUGA GROUP STRATA

F i g . 2. i l l u s t r a t i n g t h e Copper Creek and Whlteoak Mountain f a u l t b locks ( a f t e r McMaster, 1963). c ross -ha tch area CC2. l i n e s w i t h t e e t h on upper p l a t e . sediments a re represented by ha tch ing . no r theas t w i t h d i p t o t h e southeast , as i l l u s t r a t e d by symbols. Geologica l da ta f rom cross-hatched areas d iscussed by Haase (1985).

Geologica l map o f t h e Oak Ridge N a t i o n a l Labora to ry V i C i n l t y ,

Th rus t f a u l t t r a c e s a r e denoted by heavy b l a c k Loca t lon o f ORNL-JOY No. 2 i s below and r i g h t of

Outcrop b e l t s o f Conasauga Group General s t r i k e o f sedlments i s

Page 20: Stratigraphic and structural data for the Conasauga Group

6

t h e base o f t h e Copper Creek f a u l t b lock was encountered. The base o f

t h e f a u l t b lock i s a t e c t o n i c con tac t t h a t occurs w i t h i n t h e Copper

Creek f a u l t zone. Below t h i s c o n t a c t , Chlckamauga Group sediments

conta ined o f t h e Whiteoak Mountain f a u l t b lock were encountered.

2.2 STRUCTURE

Thrus t f a u l t i n g i n t h e V a l l e y and Ridge Prov ince has moved upward

i n t h e s t r a t i g r a p h i c s e c t i o n i n a northwestward d i r e c t i o n t h e r e b y

moving o l d e r s t r a t a on t o p o f younger s t r a t a . Such t h r u s t f a u l t i n g i s

p a r t o f a major decol lement o f t h e t h e Southern Appalachian

t h i n - s k i n n e d orogenic t h r u s t b e l t (Roeder, G i l b e r t , and

Witherspoon 1978). I n t h e genera l v i c i n i t y o f t h e DOE Oak Ridge

Reservat ion, such f a u l t i n g has r e s u l t e d i n t h e Lower Cambrian Rome

Format ion be ing jux taposed on t o p o f t h e M i d d l e O r d o v i c i a n Chickamauga

Group. Regional s t r i k e of s t r a t a i n t h i s p o r t i o n o f t h e V a l l e y and

Ridge Prov ince i s N50° t o 60°E, and t h e d i p o f rocks a t t h e

su r face i s 45' t o 55' t o t h e southeast (Oss i 1979).

d i p decreases t o n e a r l y h o r i z o n t a l , and the t h r u s t f a u l t s become

n e a r l y h o r i z o n t a l i n t h e subsur face t o fo rm e s s e n t i a l l y

b e d d i n g - p a r a l l e l f a u l t s (Roeder, G l l b e r t , and Witherspoon 1978).

H o r i z o n t a l d isp lacement a long t h e major f a u l t can be as g r e a t as 50 t o

100 km (Roeder and G i l b e r t 1978).

A t depth, t h e

The r e g i o n a l l y p e r s i s t e n t Copper Creek f a u l t dominates t h e geology

of t h e s tudy s i t e .

g e n e r a l l y p a r a l l e l t o t h e s t r i k e o f t h e Conasauga Group, which i s

N55'E; t h e d i p i s 5' t o 15' SE.

The a t t i t u d e o f t h e Copper Creek f a u l t i s

Such d i p va lues a r e somewhat

Page 21: Stratigraphic and structural data for the Conasauga Group

7

-. l e s s than a r e t y p i c a l l y observed elsewhere i n t h e Oak Ridge v i c i n i t y

and may r e f l e c t compl icated subsurface s t r u c t u r e a l o n g t h e Copper

Creek f a u l t (Roeder, G i l b e r t , and Witherspoon 1978) .

L a t e Paleozoic t e c t o n i c a c t l v i t y t h a t produced t h e t h r u s t f a u

a l s o produced numerous d e f o r m a t i o n a l s t r u c t u r e s w i t h i n t h e i n t e r

o f t h e f a u l t b locks (Roeder, Yust, and L i t t l e 1978). W i t h i n t h e

t s

o r s

deve

2.3

Copper Creek f a u l t b l o c k i n t h e s tudy area, seve ra l genera t i ons o f

smal l amp l i t ude f o l d s and f a u l t s a r e recognized ( O s s i 1979;

S ledz 1980). Furthermore, t h e s t r a t a a r e p e r v a s i v e l y j o i n t e d . A s

many as f o u r d i s t i n c t j o i n t se ts can be recognized i n t h e v i c i n i t y o f

t h e s tudy area t h a t a r e r e l a t e d t o major and minor t e c t o n i c s t r u c t u r e s

t b l o c k (S ledz and H u f f 1981). oped w i t h i n t h e Copper Creek f a u

REGIONAL GEOLOGIC HISTORY

E a r l y Cambrian t o M idd le Ordov ic ian s t r a t a i n t h e V a l l e y and Ridge

Prov ince o f eas t Tennessee reco rd a h i s t o r y o f sed imen ta t i on on a

sha l l ow s h e l f bordered by a c r a t o n t o t h e west and a she l f -marg in

carbonate bank t o t h e eas t ( H a r r i s and M i l i c i 1977;

M a r k e l l o and Read 1981; Hasson and Haase 1982). The Rome Format ion

was depos i ted i n t h e sha l l ow carbonate bank o f t h e Lower Cambrian

Shady Dolomi te. C l a s t i c m a t e r i a l f o r t h e p e r i t i d a l d e p o s i t i o n a l

environment o f t h e Rome f o r m a t i o n was s u p p l i e d f rom t h e c r a t o n t o t h e

west (Samman 1975). The c ra ton -marg ina l p e r i t i d a l environments o f t h e

Rome Format ion were succeeded by a sha l l ow mar ine s h e l f environment

c h a r a c t e r i z e d by an i n t r a s h e l f b a s i n and she l f -marg lna l carbonate ramp

( M a r k e l l o and Read 1981; Hasson and Haase 1985). The Conasauga Group

Page 22: Stratigraphic and structural data for the Conasauga Group

was deposited i n such a setting. By the Late Cambrian, the intrashelf

basin and shallow shelf environment were replaced by a peritidal

carbonate bank environment initiated by the westward transgression of

the self-marginal carbonate bank environment. Initiation of the

carbonate-dominated depositional environment produced the Knox Group

in Late Cambrian to Early Ordovician time.

3. DRILLING AND GEOPHYSICAL LOGGING OPERATIONS

3.1 CONTRACTORS

Diamond core drilling operatlons were conducted by the Contract

Drilling Division of Joy Manufacturing Company, Inc (Joy). Personnel

and equipment were assigned from Joy's Jefferson City, Tennessee,

office: drilling operations at the site were supervised by P . H.

Pol lard.

Geophysical logs o f the completed borehole were obtained by the

Borehole Geophysics Group of the Water Resources Division, U. S.

Geological Survey (USGS), Denver, Colorado. Logging was conducted

under the direction of W . S. Keys.

3.2 SUMMARY OF DRILLING OPERATIONS

Drilling of ORNL-Joy No. 2 began on August 26, 1982, and was

completed at a total depth of 828.45 m (2718 ft*) on December 15,

1982.

Ridge Dolomite of the Knox Group.

The borehole was collared in overburden developed on the Copper

Drilling began with a 15.88-cm

Page 23: Stratigraphic and structural data for the Conasauga Group

( 0 . 5 5 - f t ) t r i c o n e rock b i t and proceeded t o a depth o f 17.68 m ( 5 8 f t )

where bedrock was encountered. A 10.16-cm ( 0 . 3 3 - f t ) i n s i d e d iameter

f l u s h j o i n t c a s i n g w i t h a d r i l l a b l e s e t shoe was i n s t a l l e d . T h i s

c a s i n g was d r i l l e d - 0.31 m ( 1 . 0 f t ) i n t o t h e t o p o f t h e bedrock and

was g rou ted i n p l a c e t o serve as a s u r f a c e cas ing . Core d r i l l i n g

began a t a depth o f 17.68 m ( 5 8 f t ) w i t h NC-size t o o l s , which gave a

rock c o r e d iameter o f 6.10 cm (0.2 f t ) and a nominal bo reho le d iameter

o f 9.40 cm (0.30 f t ) . Core d r i l l i n g con t inued t o t h e f i n a l t o t a l

depth o f 828.45 m (2718 f t ) . Core recovery, c a l c u l a t e d over t h e

e n t i r e cored i n t e r v a l , was b e t t e r t han 99 %. Return o f d r ' l l l i n g water

was l o s t below a depth o f - 18.29 m ( 6 0 f t ) and was never regained

th roughou t t h e e n t i r e d r i l l i n g o p e r a t i o n . The bo reho le was l e f t open

(uncased) f o r t h e 17.68- t o 828.45-m (58- t o 2 7 1 8 - f t ) i n t e r v a l .

Borehole d e v i a t i o n a t t a i n e d a maximum va lue o f 10' f r o m v e r t i c a l

t o t h e no r thwes t d u r i n g t h e course o f t h e d r i l l i n g ( T a b l e 1 ) . For t h e

i n t e r v a l f rom 17.68 t o 274.32 m ( 5 8 t o 900 f t ) , t h e bo reho le was

n e a r l y v e r t i c a l , reach ing a maximum d e v i a t i o n o f 3' a t a depth

of269.75 m (885 f t ) .

v e r t i c a l w i t h i n the i n t e r v a l 269 .75 t o 3 9 4 . 7 2 m (885 t o 1295 f t ) .

Th is i n t e r v a l o f t h e bo reho le i n c l u d e s a s t r u c t u r a l l y complex zone

w i t h i n t h e uppermost M a r y v i l l e Limestone t h a t i s thought t o be

r e s p o n s i b l e f o r most o f t h e i nc rease i n d e v i a t i o n . Below 394.72 m

(1295 f t ) , t h e bo reho le ma in ta ined an e s s e n t i a l l y cons tan t d e v i a t i o n

va lue o f 10' t o t h e no r thwes t (Tab le 1 ) .

Borehole d e v i a t i o n increased f rom 3 t o 8' f r o m

* To f a c i l i t a t e r e f e r e n c e t o d r i l l i n g records, f i e l d notes, and s p e c i f i c i n t e r v a l s o f d r i l l co re as s t o r e d i n t h e Core Storage F a c i l i t y (ORNL B u i l d i n g 7042), s p e c i f i c bo reho le depths o r i n t e r v a l s a r e a l s o g i v e n i n E n g l i s h System u n i t s o f f e e t .

Page 24: Stratigraphic and structural data for the Conasauga Group

10

.-

TABLE 1. Borehole D e v i a t i o n Data f o r ORNL-JOY No. 2

Date

8/30/83 9/02/83 9/08/83 9/13/83 9/16/83 9/22/83 9/29/83

10/11/83 11 /10/83

Depth r m ( f t l l

26.82 (88) 153.92 ( 5 0 5 ) 269.75 (885) 358.14 ( 1 1 7 5 ) 394.72 ( 1295) 516.03 (1693) 611.12 (2005) 668.12 (2192) 731.52 (2400)

Azimuth

N26OW N09OW N13OW N44OW N41 OW N43OW N17OW N43OW N33OW

I n c l i n a t i ona

89 89 87 84 81 80 80 80 80

a I n c l l n a t i o n a n g l e i s measured w i t h r e s p e c t t o h o r i z o n t a l ; a v e r t i c a l bo reho le would have an i n c l i n a t i o n o f 900.

Page 25: Stratigraphic and structural data for the Conasauga Group

11

Core d r i l l i n g proceeded w i t h o u t s e r i o u s problem th roughou t t h e

e n t i r e Conasauga Group i n t e r v a l t o a depth o f 616.00 m (2021 f t ) .

T h i s depth was reached on September 29, 1982, and up t o t h i s t ime ,

d r i l l i n g progress had averaged 8.84 m (29 f t ) p e r 8-h s h i f t . The

depth of 616.0 m (2021 f t ) was t h e p o i n t where t h e Rome Format ion was

encountered and was marked by a s i g n i f i c a n t l i t h o l o g i c change. A

massive and h a r d - t o - d r i l l sandstone was encountered t h a t slowed

progress t o 2.44 m ( 8 f t ) pe r 8-h s h i f t f o r t h e p e r i o d October 1 -

29, 1982. A t t h i s date, a depth o f 737.92 m (2421 f t ) had been

reached, and ano the r l i t h o l o g i c change was encountered t h a t f u r t h e r

compl icated d r i l l i n g ope ra t i ons . The i n t e n s i t y and degree o f

de fo rma t ion o f t h e s t r a t a b e i n g d r i l l e d increased s h a r p l y . Below t h e

737.92 m (2421 f t ) depth, because o f t h e increased de fo rma t ion ,

bedding was t y p i c a l l y p a r a l l e l , o r a t ve ry s h a l l o w angles, t o t h e

d i r e c t i o n o f d r i l l i n g . Furthermore, many 0.31- t o 1.52-m-thick ( 1 - t o

5 - f t ) ho r i zons encountered below 797.92 m (2421 f t ) were s h a t t e r e d and

b r e c c i a t e d . Such a s i t u a t i o n , coupled w i t h problems caused by

i n e f f i c i e n t removal o f c u t t i n g s because o f a l a c k o f r e t u r n

c i r c u l a t i o n o f t h e d r i l l i n g f l u i d , slowed t h e r a t e o f progress t o

1.22 m ( 4 f t ) pe r 8-h s h i f t f o r t h e remain ing p e r i o d o f d r i l l i n g

(November 1 - December 15, 1982).

A t t h e complet ion o f d r i l l i n g on December 15, 1982, Joy personnel

removed t h e d r i l l stem b u t l e f t i t and t h e d r i l l r i g on s i t e . Th i s

was done i n t h e event t h a t t h e equipment would be needed t o a s s i s t I n

c l e a r i n g t h e bo reho le f o r t h e geophysica l l o g g l n g a c t i v i t i e s .

Page 26: Stratigraphic and structural data for the Conasauga Group

12

3.3 SUMMARY OF GEOPHYSICAL LOGGING OPERATIONS

Geophysical l o g g i n g o f t h e bo reho le was begun by t h e USGS on

January 13, 1983. Temperature and c a l i p e r l o g s were i n i t i a l l y

ob ta ined f o r t h e 17.68- t o 821.74-m (58- and 2 6 9 6 - f t ) i n t e r v a l . These

r e s u l t s suggested t h a t - 6.10 m ( 2 0 f t ) o f t h e bo reho le was l o s t

because o f problems w i t h removal o f c u t t i n g s . The c a l i p e r l o g g i n g

t o o l caused u n s t a b l e p o r t i o n s o f t h e bo reho le t o c o l l a p s e , however,

and r e s u l t e d i n t h e b o r e h o l e ' s b e i n g b locked below a depth o f 566.93 m

(1860 f t ) . Personnel f rom Joy were c a l l e d back t o t h e s i t e t o a t tempt

t o reopen t h e bo reho le and t o f l u s h d e b r i s f rom i t . F u r t h e r a t tempts

a t l o g g i n g were suspended u n t i l t h e bo reho le c l e a r i n g and

s t a b i l i z a t i o n c o u l d be at tempted.

On January 19, 1983, l o g g i n g resumed. A f t e r seve ra l unsuccessfu l

a t tempts by Joy t o c l e a r and s t a b i l i z e t h e bo reho le , i t was dec ided t o

leave, t e m p o r a r i l y , 731.52 m (2400 f t ) o f d r i l l stem i n p l a c e so t h a t

l o g g i n g c o u l d be at tempted f rom i n s i d e . I n t h i s fash ion , gamma-ray

and neu t ron l o g s were ob ta ined f o r t h e i n t e r v a l f rom 17.68 t o 731.52 m

( 5 8 t o 2400 f t ) . Gamma-ray s p e c t r a l l o g s were ob ta ined f o r s e l e c t e d

shale/mudstone i n t e r v a l s i n t h e lowermost M a y n a r d v i l l e Limestone

[141.73 m/(465 f t ) ] ; t h e No l i chucky Shale r274.31 m/(900 f t ) ] ; t h e

M a r y v i l l e Limestone [317.91 m/(1043 f t ) , 327.36 m/(1074 f t ) , and

403.56 m/(1324 f t ) ] ; t h e Pumpkin V a l l e y Shale [545.59 m/(1790 f t ) and

586.14 m/(1925 f t ) ] ; and t h e uppermost Rome Format ion

[624.23 m/(2048 f t ) ] . A f t e r these l o g s were obta ined, d r i l l i n g mud

was c i r c u l a t e d i n t h e bo reho le i n a f i n a l a t t e m p t t o s t a b i l i z e t h e

w a l l s b e f o r e t h e d r i l l stem was f i n a l l y removed.

Page 27: Stratigraphic and structural data for the Conasauga Group

13

. -

Because o f schedu l i ng problems, f u r t h e r l o g g i n g was delayed u n t i l

February 12, 1983. A t t h i s t i m e a c o u s t i c v e l o c i t y and waveform l o g s

were s u c c e s s f u l l y ob ta ined f o r t h e i n t e r v a l f rom 17.68 t o 601.98 m ( 5 8

t o 1975 f t ) , and an a c o u s t i c t e l e v i e w e r l o g was ob ta ined f o r t h e

i n t e r v a l f rom 17.68 t o 304 80 m ( 5 8 t o 1000 f t ) .

any e l e c t r i c l ogs , such as SP and r e s i s t i v i t y l ogs , were unsuccessfu l

because o f i n t e r f e r e n c e s w t h i n t h e l o g g i n g t o o l s f rom s i g n a l s o f

unknown o r i g i n . Logging was completed on February 14, 1983.

Attempts t o o b t a i n

4. STRATIGRAPHIC DATA

4.1 INTRODUCTION

The lowermost p o r t i o n o f t h e Copper Creek f a u l t b l o c k a t t h e d r i l l

s i t e c o n s i s t s o f t h e Knox Group, t h e Conasauga Group, and t h e Rome

Format ion. The Conasauga Group i s a complex m i x t u r e o f carbonate and

c l a s t i c l i t h o l o g i e s . I t i s t r a n s i t i o n a l between t h e Rome Format ion

which i s e s s e n t i a l l y carbonate- f ree, and t h e Knox Group, which i s

dominan t l y c l a s t i c - f r e e . The s t a t i g r a p h y and l i t h o l o g y o f t h e

fo rma t ions w i t h i n t h e lowermost p o r t i o n o f t h e Copper Creek f a u l t

b l o c k a r e summarized i n F i g . 3 and i n t h e Appendix.

4.2 THE KNOX GROUP

W i t h i n t h e Oak Ridge v i c i n i t y , t h e Knox Group i s 600 t o 900 m t h i c k

and c o n s i s t s m a i n l y o f do los tone w i t h some in te rbedded l imes tone and

l e s s e r amounts o f sandstone ( M l l i c i 1973). F i v e o r s i x ( M i l i c i 1973)

Page 28: Stratigraphic and structural data for the Conasauga Group

14

MAYNARDVILLE LIMESTONE 98.8Y

NOLICHUCKY SHALE 167.9 Y

MARYVILLE LIMESTONE 141.1 Y

ROGERSVILLE SHALE 39.6 Y

RUTLEDGE LIMESTONE 30.8 Y

P U M P K I N VALLEY SHALE 94.2 Y

.-

F i g . 3 . ORNL-JOY No. 2. Borehole d iamete r i nc reases t o r i g h t . maximum d e f l e c t i o n s t o t h e r i g h t rep resen t d iamete r o f 30.5 cm. Gamma-ray l o g i l l u s t r a t i n g n a t u r a l l y o c c u r r i n g gross gamma-ray a c t i v i t y . A c t i v i t y i nc reases t o r i g h t , and va lues on l o g range between 50 and 250 Bq. ( c ) Neut ron -ep i the rma l neu t ron l o g . Scale i nc reases t o t h e r i g h t and t h e count r a t e s on t h e l o g i l l u s t r a t e d range between 50 and 3800 Bq. The c e n t r a l column rep resen ts g e n e r a l i z e d l i t h o l o g i c l o g I l l u s t r a t i n g bedding c h a r a c t e r and compos i t i on o f Conasauga Group and Rome Format ion. Note Copper Creek f a u l t zone and t h e j u x t a p o s i t i o n o f Rome Format ion s t r a t a on t o p o f Chickamauga Group.

Borehole geophys ica l l o g s and g e n e r a l i z e d l i t h o l o g i c l o g f o r (a) C a l i p e r l o g i l l u s t r a t i n g bo reho le d iamete r .

Nominal d iamete r i s 9.4 cm, and (II)

Page 29: Stratigraphic and structural data for the Conasauga Group

15

r e g i o n a l l y p e r s i s t e n t f o rma t ions can be d e l i n e a t e d w i t h i n t h e Knox -.

Group throughout most o f eas t Tennessee.

A t t h e d r i l l s i t e , t h e Knox Group i s composed o f massive do los tone

and subord ina te amounts o f l imestone. L i t h o l o g i e s w i t h i n t h e Knox

Group va ry f rom dark-gray, massive, c r y s t a l l i n e dolostones t o

l i g h t - g r a y , cher t -poor , t h i n l y bedded t o massive dolostones

(McMaster 1963). Only t h e basal p o r t i o n Copper Ridge Dolomite, which

i s t h e lowermost f o r m a t i o n o f t h e Knox Group on t h e DOE Oak Ridge

Reservat ion, was i n t e r s e c t e d .

The Copper Ridge Dolomi te - I n t h e K n o x v i l l e v i c i n i t y , t h i s

f o r m a t i o n i s t y p i c a l l y 240 t o 300 m t h i c k ( M i l l c i 1973). W i t h i n t h e

USDOE Oak Ridge Reservat ion, Copper Ridge Dolomi te th i cknesses a r e

p o o r l y known, b u t a v a i l a b l e da ta f rom reconnaissance mapping on Copper

Ridge near t h e d r i l l s i t e suggest t h a t t h e f o r m a t i o n i s a t l e a s t 150 m

t h i c k ( E . C . Wal ls , unpubl ished data, 1982). Only t h e lowermost

43.59 m o f t h e f o r m a t i o n were pene t ra ted by t h e bo reho le ( T a b l e 2) .

The Copper Ridge Dolomi te i s composed p redominan t l y o f two

l i t h o l o g i e s i n t e r s t r a t i f i e d t o fo rm e q u a l l y abundant a l t e r n a t i n g

ho r l zons ( F i g . 4 and Appendix). One l i t h o l o g y i s a t h i n l y bedded t o

laminated, evenly p a r a l l e l s t r a t i f i e d , dark g ray (N6 t o N4)* do los tone

and m i c r i t e fo rm ing 0.5- t o 3.0-m-thick beds t h a t grade i n t o t

* Munsel l c o l o r des igna t ions (Goddard e t a l . 1948).

f Carbonate rock nomenclature i s based on t h e c l a s s i f i c a t i o n system o f Dunham (1962) w i t h one excep t ion : f l n e - g r a i n e d carbonates a r e c a l l e d m i c r i t e s i n s t e a d o f mudstones as i n Dunham's nomenclature. I n t h i s r e p o r t , mudstone r e f e r s t o a f i n e - g r a i n e d c l a s t i c rock .

Page 30: Stratigraphic and structural data for the Conasauga Group

16

TABLE 2. S t r a t i g r a p h i c Thicknesses Measured i n ORNL-JOY No. 2 ,-

Th i c knes sa S t r a t i g r a p h i c U n i t Downhole Footage

Knox Groupb 43.59 (143) 0-1 43

Copper Ridge Dolomiteb wed t he r e d unweathered

43.59 (143) 17.68 ( 5 8 ) 25.91 (85)

0-1 43 0-58 58-1 43

Conasauga Group 572.42 ( 1878) 143-2021

Maynardvi 1 l e Limestone Chances Branch member Low Ho l l ow member

No l i chucky Shale Upper Shale member B rad ley Creek member Lower Shale member

M a r y v i l l e Limestone upper member l ower member

R o g e r s v i l l e Shale C r a i g member

Rut ledge Limestone Pumpkin V a l l e y Shale

upper member lower member

98.76 (324) 43.89 (144) 54.86 (180)

167.95 (551) 18.90 (62)

9.14 (30 ) 139.90 (459) 141.12 (463)

74.98 (246) 64.92 (213) 39.62 (130)

2.74 ( 9 ) 30.78 (101) 94.18 (309) 48.46 (159) 45.72 (150)

143-467 143-287 287-467 467-1 01 8 467-529 529-559 559-1 01 8 1018-1481 101 8-1 264 1264-1 481 1481 - 161 1 1485-1 494 161 1-1 71 2 171 2-2021 1712-1871 1871 -2021

Rome Format ion upper p a r t lower p a r t

188.06 (617) 88.09 (289) 99.97 (328)

2021 -2638 2021 -231 0 231 0-2638

Copper Creek F a u l t Zone

C h i c kama u ga G r o u p 9

Moccasin Format ionb

46.03 (151) 2561 -271 2

24.38 ( 8 0 ) 2638-2718

24.38 ( 8 0 ) 2638-2718

a Format ion t h i c k n e s s i s t aken as e q u i v a l e n t t o downhole t h i c k n e s s . T h i s assumption i s v a l i d f o r most o f ORNL-JOY No. 2 because bo reho le a t t i t u d e was w i t h i n l o o o f p e r p e n d i c u l a r t o bedding. The assumption i s n o t v a l i d f o r h i g h l y f a u l t e d i n t e r v a l s o f M a r y v i l l e Limestone and Rome Format ion.

comp le te l y pene t ra ted d u r i n g d r i l l i n g . b p a r t i a l t h i c k n e s s va lue f rom a f o r m a t i o n o r group t h a t was n o t

C Chickamauga Group s t r a t a occur on Whiteoak Mountain f a u l t b l o c k .

Page 31: Stratigraphic and structural data for the Conasauga Group

17

. -

m o t t l e d and d i f f u s e l y bedded do los tone [ F i g . 4 ( & ) ] . The o t h e r

l i t h o l o g y c o n s i s t s o f even ly t o wavy l e n t i c u l a r l y laminated,

medium-gray ( N 7 t o N6) do los tone t h a t grades i n t o even ly r ibbon-bedded

do los tone c o n t a i n i n g a minor amount o f sha le s t r i n g e r s and l o c a l l y

abundant 0.3- t o 1.0-m-thick beds o f o o l i t i c and m o t t l e d do los tone

[ F i g . 4 ( b ) ] . S t y l o l i t e s a r e common w i t h i n b o t h l i t h o l o g i e s throughout

t h e e n t i r e Copper Ridge Dolomi te s e c t i o n . O o l i t i c l i t h o l o g i e s occur

throughout most o f t h e s e c t i o n o f Copper Ridge Dolomi te examined b u t

a r e absent f rom a 10-m zone immediate ly above t h e l ower c o n t a c t .

Cher t i s e s s e n t i a l l y absent f rom t h e lowermost Copper Ridge Dolomi te

except f o r two 1- t o 3-cm-thick beds o f d isseminated nodules t h a t

occur w i t h i n t h e lowermost 10-m zone.

The lower c o n t a c t o f t h e Copper Ridge Dolomi te w i t h t h e u n d e r l y i n g

M a y n a r d v i l l e Limestone ( t h e uppermost f o r m a t i o n i n t h e Conasauga

Group) i s g r a d a t i o n a l over a 4-m-thick i n t e r v a l . The c o n t a c t zone i s

marked by t h e appearance o f m o t t l e d t o i r r e g u l a r l y bedded t a n t o

l i g h t - b r o w n (5YR8/1 t o 5YR4/1) c a l c a r e n i t e . W i t h i n t h e c o n t a c t zone,

c a l c i t e con ten t increases f rom e s s e n t i a l l y 0 t o over 90 pe rcen t , w h i l e

t h e d o l o m i t e con ten t decreases r a p i d l y , a l t h o u g h d o l o m i t e does n o t

d isappear a l t o g e t h e r . The lowermost Copper Ridge Dolomi te does n o t

c o n t a i n l a r g e amounts o f c h e r t o r t h e massive p e t r o l i f e r o u s dolostones

commonly r e p o r t e d f rom t h e c o n t a c t zone elsewhere (Rodgers 1953;

M i l l c i 1973). Thus, t h e lower c o n t a c t o f t h e Copper Ridge Dolomi te 1s

marked p r i n c i p a l l y by an a b r u p t decrease i n d o l o m i t e con ten t and a

change i n s t r a t l f i c a t i o n p a t t e r n s .

The M a y n a r d v l l l e Limestone has somewhat l ower gamna-ray a c t i v i t y

and lower neu t ron a b s o r p t i v i t y t han t h e lowermost Copper Ridge

Page 32: Stratigraphic and structural data for the Conasauga Group

18

.-

ORNL-Photo 271 1-85

I J l l l U > e l y LJt2UUl3.I L u l l l u L L ~ c u U U I U ~ L U I I F \ I ] aiiu c v c i i i y p u i u i I G I IU I I I I I IU~ .C .V

dolomite micrlte (2). developed along bedding planes. laminated dolomite micrite (5) Interbedded with mottled dolostone (6).

Note stylolites (3) and solution cavitles (4) [I33 (Box 8: 124.5-132 f t ) Wavy t o evenly

Page 33: Stratigraphic and structural data for the Conasauga Group

19

-.

Dolomi te ( F i g . 3 ) . The gamma-ray and neu t ron l o g s e x h i b i t broad

d e f l e c t i o n s w i t h l n a 5- t o 10-m-thlck zone t h a t ove r laps w i t h t h e

c o n t a c t zone d e f i n e d by l i t h o l o g i c c r i t e r i a . The b a s e l i n e o f b o t h

l ogs e x h i b i t s a r e a d i l y recogn lzab le s h i f t t h a t co inc ides w i t h t h e

l o c a t i o n o f t h e ab rup t change f rom predomlnant ly do los tone l i t h o l o g i e s

t o p redomlnant ly l imestone l i t h o l o g i e s . T h i s suggests t h a t bo reho le

geophys ica l techniques may p r o v i d e a r e l i a b l e means o f l o c a t i n g t h e

c o n t a c t between these two ca rbona te - r i ch fo rma t ions I n o t h e r boreholes

f o r which no d r i l l co re i s a v a i l a b l e .

4.3 THE CONASAUGA GROUP

The Conasauga Group crops o u t th roughout t h e V a l l e y and Ridge

Prov ince i n e a s t Tennessee and southwest V i r g i n i a . W i t h i n i t s ou tc rop

e x t e n t , t h e group undergoes complex l i t h o f a c i e s t r a n s i t i o n s assoc ia ted

w i t h a change f rom c l a s t l c s i n t h e west t o carbonates i n t h e eas t

(Rodgers 1953; M a r k e l l o and Read 1981, 1982; Hasson and Haase 1985).

Rodgers has d i v i d e d t h e Conasauga Group i n t o t h r e e phases t h a t occur

i n nor theas t -southwest t r e n d b e l t s . W i t h i n t h e c e n t r a l phase, s i x

fo rma t ions t h a t rep resen t complex l n t e r f i n g e r l n g o f carbonate and

c l a s t i c s a r e i d e n t i f i e d . To t h e west, i n t h e no r thwes te rn phase, most

o f t h e carbonates d isappear , and o n l y two fo rma t ions a r e recognlzed.

To t h e eas t , i n t h e southeas tern phase, t h e c l a s t i c s d isappear and

t h r e e fo rma t ions can be I d e n t i f i e d .

The Conasauga Group a t t h e d r i l l s l t e occurs near t h e western

marg in o f t h e c e n t r a l phase (Hasson and Haase 1985). and s i x

fo rmat ions can be recognlzed ( F i g . 3 and Appendix). The Rut ledge and

Page 34: Stratigraphic and structural data for the Conasauga Group

20

M a r y v i l l e l imes tones , however, a r e t h i n n e r than i s t y p i c a l f o r t h e

c e n t r a l phase and t h e y c o n t a i n 30 t o 60% c l a s t i c s (Hasson and

Haase 1985).

The M a y n a r d v i l l e Limestone - The M a y n a r d v i l l e Limestone i s

recognized th roughou t e a s t Tennessee and occurs w i t h i n a l l t h r e e

phases o f t h e Conasauga Group (Hasson and Haase 1985). A t t h e d r i l l

s i t e , t h e M a y n a r d v i l l e Limestone i s 98.76 m t h i c k and i s d i v i s i b l e

i n t o two r e g i o n a l l y p e r s i s t e n t members: t h e uppermost Chances Branch

member t h a t i s 43.89 m t h i c k and t h e u n d e r l y i n g Low Ho l l ow member t h a t

i s 54.86 m t h i c k ( see Appendix). The two members have s l i g h t l y

d i f f e r e n t gamma-ray and n e u t r o n l o g s i g n a t u r e s and can be r e a d i l y

i d e n t i f i e d on such l o g s ( F i g . 3 ) .

The Chances Branch member c o n s i s t s o f medium- t o th in-bedded, b u f f

and l i g h t g ray (5Y8/1 t o N7) do lostones, r ibbon-bedded d o l o m i t i c

c a l c a r e n i t e s , wackestones, and m i c r i t e s , and medium-gray (N7 t o 6 )

o o l i t i c packstones and g ra ins tones . The uppermost 20 m o f t h e

Chances Branch member c o n s i s t s o f massive t o laminated d o l o s t o n e and

i n t r a c l a s t i c d o l o m i t i c c a l c i r u d i t e s [F ig . 5(a)] i n t e r s t r a t i f i e d w i t h

i r r e g u l a r l y bedded t o m o t t l e d , b i o t u r b a t e d c a l c a r e n i t e s and d o l o m i t i c

wackestones [ F i g . ~ ( I I ) ] . L e n t i c u l a r l y t o wavy l am ina ted beds o f

d o l o m i t i c m i c r i t e s , 0.1 t o 0.5 m t h i c k , occur th roughou t t h e m o t t l e d

wackestones. The lower 24 m o f t h e Chances Branch member c o n s i s t s o f

a l t e r n a t i n g ho r i zons of wavy t o even ly r lbbon-bedded wackestones

i n te rbedded w i t h d o l o m i t i c o o l i t i c packstones and g r a i n s t o n e s [F ig .

5(c)]. Subord inate amounts of l e n t i c u l a r l y r ibbon-bedded d o l o m i t i c

m i c r i t e occur i n t h e 1,owermost p o r t i o n o f t h e Chances Branch member.

Page 35: Stratigraphic and structural data for the Conasauga Group

.

F i g . 5. L i t h o l o g i e s o f Chances Branch Member o f M a y n a r d v l l l e Limestone. Core rows a r e 0.76 m (2.5 f t ) l o n g and s t r a t i g r a p h l c t o p i s l e f t . [a] (Box 12: 163-168 f t ) Massive t o d i f f u s e l y lamlnated do los tone (1) and d o l o m i t i c i n t r a c l a s t i c c a l c l r u d i t e (2 ) . [b] (Box 18: 221-226 f t ) M o t t l e d d o l o m l t l c c a l c a r e n l t e wackestone. [c ] (Box 19: 231-238.5 f t ) Wavy r ibbon-bedded d o l o m i t i c m i c r i t e ( 3 ) and wavy bedded d o l o m i t i c o o l i t i c packs to i

Page 36: Stratigraphic and structural data for the Conasauga Group

22

Wavy t o even ly r ibbon-bedded c a l c a r e n i t e and m i c r i t e a l t e r n a t i n g

w i t h o o l i t i c packstones and g ra ins tones a r e t h e p r i n c i p a l l i t h o l o g i e s

i n t h e Low Ho l l ow member (see Appendix). Throughout much o f t h e

member, carbonates have a d i s t i n c t i v e p e t r o l i f e r o u s odor when f r e s h l y

broken. Wavy r lbbon-bedded and m o t t l e d d o l o m i t i c c a l c a r e n i t e s and

m i c r i t e s [ F i g . 6 ( a ) ] a r e most abundant i n t h e upper p o r t i o n s o f t h e

member. O o l i t e s become more common lower i n t h e member, w h i l e wavy

r ibbon-bedded o o l i t i c and p e l l o l d a l g ra ins tones a r e more abundant i n

t h e bot tom 35 m of t h e member [ F i g . ~(II)].

The c o n t a c t o f t h e M a y n a r d v i l l e Limestone w i t h t h e No l i chucky Shale

i s g r a d a t i o n a l over a 4.5-m-thick i n t e r v a l . W i t h i n t h i s I n t e r v a l , t h e

Low Ho l l ow member c o n t a i n s 0.1- t o 0.3-m-thick beds o f massive t o

t h i n l y laminated ca lcareous mudstone (N4 t o N2) i n te rbedded w i t h

wackestones and m i c r i t e . The abundance o f such s h a l e - r i c h l i t h o l o g i e s

i nc reases g r a d u a l l y downward th rough t h e I n t e r v a l , and a t t h e c o n t a c t ,

s h a l e accounts f o r 40 t o 60% o f t h e M a y n a r d v i l l e Limestone. W i t h i n

t h e c o n t a c t i n t e r v a l , gamma-ray and neu t ron l o g s ( F i g . 3) e x h i b i t

pronounced s h i f t s c o n s i s t e n t w i t h an i nc rease i n mudstone c o n t e n t .

Gamma-ray energy spectrum measurements w i t h i n a mudstone bed a t

141.73 m (465 f t ) downhole suggest t h a t t h e m a j o r i t y o f gamma-ray

a c t i v i t y i n t h e mudstone w t h i n t h e lowermost M a y n a r d v i l l e i s caused

by n a t u r a l l y o c c u r r i n g 40K

The No l l chucky Shale

V i r g i n i a , t h e No l i chucky

B rad ley Creek, and Lower

and Haase 1985). Typica

' Throughout eas t Tennessee and southwestern

Shale can be d i v i d e d i n t o Upper Shale,

Shale members ( M a r k e l l o and Read 1981; Hasson

l y , t h e B rad ley Creek member occurs toward

Page 37: Stratigraphic and structural data for the Conasauga Group

23

~ -. I 1 -

I . - I -

t

Fig. 6. Core rows are 0.76 m (2.5 ft) long and stratigraphic top i s left. a1

cal of Pa C mi c

Lithologies o f Low Hollow Member of Maynardville Limestone.

l R n v Pa. PhK-97n ft) Wavv +n 1 p n + j r l j l ; l r l v rjbbon-bedded oolitic

.

Page 38: Stratigraphic and structural data for the Conasauga Group

24

t h e m i d d l e of t h e No l i chucky Shale, and t h e Upper and Lower Shale

members a r e o f s i m i l a r t h i ckness . A t t h e s tudy l o c a l i t y , however, t h e

B rad ley Creek Member occurs i n t h e uppermost i n t e r v a l o f t h e

No l i chucky Shale and t h e Upper Shale member i s o n l y 18.90 m t h i c k .

The Brad ley Creek member i s 9.14 m t h i c k , t h e Lower Shale member i s

139.9 m t h i c k , g i v i n g a complete No l l chucky Shale t h i c k n e s s o f

167.95 m ( F i g . 3 ) .

The Upper Shale member c o n s i s t s o f i n t e r s t r a t i f i e d ca lcareous

mudstone and l imes tone l i t h o l o g i e s ( see Appendix). The mudstones (N4

t o N2, l o c a l l y 5YR2/1) a r e wavy t o even ly s t r a t i f i e d and t h i c k l y

laminated. In terbedded throughout t h e mudstones o f t h e Upper Shale

member a r e 1- t o 7-cm-thick s i l t s t o n e beds w l t h u p w a r d - f i n i n g graded

bedding [ F i g . 7(a)]. The l imestones (N8 t o N7) a r e wavy r ibbon-bedded

t o laminated m i c r i t e s , o o l i t i c f o s s i l i f e r o u s wackestones and

packstones [ F i g . 7(a)].

The Brad ley Creek Member c o n s i s t s predominant ly o f l e n t i c u l a r l y t o

i r r e g u l a r l y s t r a t i f i e d a l g a l wackestones and packstones (N7 t o N4)

w i t h i n t e r s t r a t i f i e d m i c r i t e s and o o l i t i c g ra ins tones [ F i g . 7(t1)].

R e g i o n a l l y , t h e Bradley Creek c o n t a i n s abundant bioherms composed o f

-~ Rena lc i s a l g a l remains ( M a r k e l l o and Read 1981). S t r u c t u r e s ve ry

s i m i l a r t o those desc r ibed by M a r k e l l o and Read f o r s t r a t i g r a p h i c a l l y

e q u i v a l e n t l imestones i n southwestern V i r g i n l a a r e noted w i t h l n t h e

B rad ley Creek member a t t h e s tudy s i t e . In terbedded w i t h t h e a l g a l

l imestones a r e wavy t o l e n t i c u l a r , d i s c o n t i n u o u s l y s t r a t i f i e d s h a l y

m j c r i t e s , i n t r a c l a s t i c and o o l i t i c wackestones and ca lcareous

mudstones [ F i g . 7(c)]. Abundances o f such l i t h o l o g i e s a r e h i g h l y

v a r i a b l e b u t g e n e r a l l y i n c r e a s e t o 30 t o 50% toward t h e base o f t h e

Page 39: Stratigraphic and structural data for the Conasauga Group

. - .

Page 40: Stratigraphic and structural data for the Conasauga Group

26

Bradley Creek member.

marked by 2 m o f wavy t o even ly bedded o o l i t i c and p e l l o i d a l packstone

w i t h t h i n f l a s e r l i k e s t r i n g e r s of d o l o m i t i c m i c r i t e [ F i g . 7(c)].

The bot tom o f t h e B rad ley Creek member i s

The Lower Shale member c o n s i s t s of numerous repeated c y c l e s o f

sha le and l imestone. The complex in terbedded n a t u r e o f t h e member i s

r e f l e c t e d i n t h e h i g h l y modulated gamma-ray and neu t ron geophysica l

l o g s ( F i g . 3 ) . L imes tone- r i ch l i t h o l o g i e s compose 20 t o 40% o f t h e

member (see Appendix) w i t h t h e remainder composed o f ca lcareous

mudstones and shales. Such mudstones a r e t y p i c a l l y red-brown t o

maroon o r red-gray I n c o l o r (N6 t o N4 o r 5YR4/1 t o 5YR3/2). The

mudstones a r e massive ly t o t h i n l y laminated [ F i g . 8 ( g ) ] and t y p i c a l l y

a r e in terbedded w i t h 1- t o 5-cm-thick u p w a r d - f i n i n g ca lcareous

s i l t s t o n e beds. Such l i t h o l o g i e s have wavy t o even ly p a r a l l e l s t r a t a

t y p i c a l o f microhummocky c ross s t r a t i f i c a t i o n ( see D o t t and

Bourgeois 1982).

Mudstone-r ich i n t e r v a l s a t t h e t o p and t h e bot tom o f t h e Lower

Shale member d e f i n e mudstone base l i nes on neu t ron and geophysica l

l o g s . Such base l i nes a r e d e f i n e d as t h e l i n e t h a t can be drawn

th rough t h e l e f tward -mos t p o s i t i o n s o f t h e neu t ron l o g t r a c e and t h e

r ightward-most p o s i t i o n s o f t h e gamma-ray l o g t r a c e s . D e f l e c t i o n s t o

t h e r i g h t o r l e f t on t h e r e s p e c t i v e l o g s a r e a genera l i n d i c a t i o n o f

t h e occurrence o f nonmudstone l i t h o l o g i e s , such as carbonates o r

s i l t s o n e s and sandstones, i n te rbedded w i t h o r i n p l a c e o f mudstones.

The mudstone b a s e l i n e on t h e neu t ron l o g f o r t h e e n t i r e No l i chucky

Shale f a l l s a t app rox ima te l y t h e same p o s i t i o n as t h e b a s e l i n e f o r

o t h e r mudstone-r ich fo rma t ions i n lower p o r t i o n s o f t h e Conasauga

Group. Gamma-ray s p e c t r a l analyses f rom red-brown and g ray mudstone

Page 41: Stratigraphic and structural data for the Conasauga Group

27

ORNL-Photo 271 5-85 9.

,- .

Fig. 8. Lithologies of Lower Shale member of the Nolichucky Shale. Core rows are 0.76 m (2.5 ft) long and stratigraphic top is left. [a] (Box 84: 840.5-843 ft) Massive to laminated mudstone (1) with wavy to evenly cross-stratified calcareous siltstone (2). [t)] (Box 69: 696-698.5 ft) Upward-coarsening stratification cycle consisting of, from bottom to top: wavy current-ripple-bedded silty calcarenlte (3). evenly bedded calcarenlte (4). massively bedded dolomitic oolitic packstone (5). and intraclastic, oolitic, pelloidal packstone or grainstone (6). [r] (Box 83: 833.5-836 ft) Upward-coarsening cycle without topmost intraclast-bearing packstone or gralnstone. ['I (Box 92: 912-914.5 ft) Intraclastic oolite wackestone with abundant glauconlte pellets (7) interbedded with massive mudstone. [ e ] (Box 73: 737-744.5 ft) Incomplete upward-coarsening cycle missing lowermost calcarenite interval (8) and series of amalgamated cycles (9). [f] (Box 56: 581-583.5 ft) Lenticular to nodular micrite and wavy bedded and burrowed calcarenite interbedded with mudstone.

ard-coarsening cycle missing lowermost c les of amalgamated cycles (9). [f] (Box ticular to nodular micrite and wavy bedd erbedded with mudstone.

Page 42: Stratigraphic and structural data for the Conasauga Group

28

l i t h o l o g i e s w i t h i n t h e Lower Shale member i n d i c a t e t h a t r r a t u r a l l y

o c c u r r i n g 40K i s r e s p o n s i b l e f o r most o f t h e gamma-ray a c t i v i t y

observed w i t h i n t h e mudstones.

Carbonates i n t h e Lower Shale member a r e s i l t y c a l c a r e n i t e s ,

o o l i t i c packstones, f o s s i l i f e r o u s p e l l o i d a l wackestones and

packstones, and i n t r a c l a s t i c packstones and conglomerates. Carbonates

w i t h i n t h e Nol ichucky Shale a r e assoc ia ted w i t h d i s t i n c t i v e 0.2- t o

1-m upward-coarsening c y c l e s . Such c y c l e s [ F i g s . 8(b) and (c)] b e g i n

w i t h ca lcareous mudstone t h a t i s covered i n t u r n by ( 1 ) even ly

p a r a l l e l s t r a t i f i e d , t h i n l y bedded c a l c a r e n i t e and ca lcareous

s i l t s t o n e ; ( 2 ) wavy t o l e n t l c u l a r l y bedded c a l c a r e n i t e and wackestone;

( 3 ) even ly t o wavy bedded o o l i t i c packstone o r g r a i n s t o n e t h a t

t y p i c a l l y c o n t a i n s abundant g l a u c o n i t e p e l l e t s and t r i l o b i t e

f ragments, and ( 4 ) a cap o f l i t h o l o g i c a l l y d i s t i n c t i v e " f l a t pebble"

i n t r a c l a s t i c and o o l i t i c g r a i n s t o n e o r packstone [ F i g . 8(t1)]. I n many

examples, however, t h i s conglomerate l i t h o l o g y i s absent and t h e c y c l e

I s capped w i t h t h e oo id -bear ing m a t e r i a l [ F i g . 8 ( c ) ] . There i s much

v a r i a b i l i t y w i t h i n t h e upward-coarsening cyc les ; one o r more o f t h e

l i t h o l o g i e s may be absent f rom a p a r t i c u l a r occurrence o r seve ra l

c y c l e s may be aggraded [ F i g s . 8(d) and ( e ) ] . A t t h e t o p and bot tom o f

t h e Lower Shale member, 0.2- t o 1.0-m beds o f wavy r ibbon-bedded t o

nodu la r m i c r i t e t o wackestone a r e in terbedded w i t h mudstone [ F i g .

8 ( f ) ] and appear t o be rep lace, I n p a r t , t h e upward-coarsening

l imes tone l i t h o l o g i e s .

The d i s t r i b u t i o n o f t h e l imes tone-bear ing u n i t s throughout t h e

Lower Shale member i s q u i t e u n i f o r m (see Appendix) w i t h i n t h e upper

t w o - t h i r d s of t h e member. For t h i s i n t e r v a l , carbonate l i t h o l o g i e s

Page 43: Stratigraphic and structural data for the Conasauga Group

29

t y p i c a l l y compose 30 t o 60% of t h e format ion, and t h i s abundance o f

carbonates causes a pronounced d e f l e c t i o n o f t h e n e u t r o n l o g t o t h e

r i g h t o f t h e mudstone b a s e l i n e ( F i g . 3 ) . Carbonate abundance

decreases i n t h e lower o n e - t h i r d o f t h e member, where t h e l imes tone

c y c l e s a r e t h i n n e r and occur l e s s f r e q u e n t l y .

r e f l e c t e d by a pronounced l e f t w a r d d e f l e c t i o n on t h e neu t ron l o g

toward t h e b o t t o n o f t h e Nol ichucky Shale (F ig . 3 ) .

Such a decrease i s

The lower c o n t a c t o f t h e Nol ichucky Shale i s a g r a d a t i o n a l zone

marked by an i n c r e a s i n g carbonate con ten t over t h e lowermost 10 m o f

t h e No l i chucky Shale. Th is i n t e r v a l c o n t a i n s c a l c a r e n l t e s and

f o s s i l i f e r o u s wackestones and packstones i n te rbedded w i t h ca lcareous

mudstones and shales. The mudstone c o n t e n t o f t h i s lowermost i n t e r v a l

decreases g r a d u a l l y and a t t h e lower c o n t a c t drops t o 10 t o 20%.

I n t r a f o r m a t i o n a l c l a s t s and f l a t pebble conglomerates, though p resen t ,

a r e r a r e i n t h i s i n t e r v a l . The bot tom o f t h i s i n t e r v a l i s marked by

an ab rup t i n c r e a s e i n t h e l n t r a c l a s t con ten t o f t h e l imestones and t h e

v i r t u a l d isappearance o f mudstones. The lower c o n t a c t o f t h e

No l i chucky Shale i s p laced a t t h l s l l t h o l o g l c t r a n s i t i o n t h a t I s

marked by an ab rup t s t e p i n t h e r i g h t w a r d and l e f t w a r d d e f l e c t i o n s

observed on neu t ron and g a m a - r a y l ogs ( F i g . 3 ) .

The M a r y v i l l e Limestone - The M a r y v i l l e Limestone i s n o t

subd iv ided i n t o members throughout most o f eas t Tennessee

(Rodgers 1953; Hasson and Haase 1985). W i t h l n t h e Oak Ridge v i c i n i t y ,

however, t h e f o r m a t i o n c o n t a i n s r a p i d l i t h o f a c i e s changes (Hasson and

Haase 1985), and i t can be d i v i d e d i n f o r m a l l y i n t o an upper and lower

member. The M a r y v i l l e Limestone a t t h e d r i l l s i t e i s 141.12 m t h i c k ;

t h e upper p a r t i s 74.98 m and t h e lower p a r t i s 64.92 m.

Page 44: Stratigraphic and structural data for the Conasauga Group

30

Al though bo reho le i n c l i n a t i o n e f f e c t s and genera l f o r m a t i o n d i p

have been taken i n t o account, t h e 141.12-m-thickness va lue i s l a r g e r

t h a n t h e t r u e s t r a t i g r a p h i c t h i c k n e s s ( see Table 2) because o f t h e

occurrence o f seve ra l s e v e r e l y deformed i n t e r v a l s w i t h i n t h e M a r y v i l l e

Limestone. Based on a t tempts t o s t r a i g h t e n o u t t h e deformed

i n t e r v a l s , i t i s es t ima ted t h a t t h e t r u e t h i c k n e s s o f t h e M a r y v i l l e

Limestone i s w i t h i n 10 t o 20% o f t h e 141.12-m value.

The upper member o f t h e M a r y v i l l e Limestone i s c h a r a c t e r i z e d by

d i s t i n c t i v e " f l a t pebble" conglomerates [ i n t r a c l a s t i c and l o c a l l y

o o l i t i c packstones, F i g s . 9(&) and (I))]. Such l i t h o l o g i e s occur

elsewhere i n t h e Conasauga Group b u t n o t as abundant ly as no ted i n t h e

upper p a r t o f t h e M a r y v i l l e Limestone. In terbedded w i t h t h e " f l a t

pebble" conglomerates a r e subord ina te amounts o f ca lcareous mudstones

(N7 t o N S ) , wavy t o l e n t i c u l a r l y s t r a t i f i e d nodu la r m i c r i t e and

d o l o m i t i c wackestones [ F i g . 9(c)], wavy t o l e n t i c u a r l y bedded

c a l c a r e n i t e , and f o s s i l i f e r o u s p e l l o i d a l packstone [ F i g s . 9(b) and

(c)]. C a l c a r e n i t e and packstone occur i n upward - f i n ing c y c l e s t h a t

have scoured bases and wavy t o even bedding t y p i c a l o f microhummocky

c ross s t r a t i f i c a t i o n [ F i g . 9(c)].

W i t h i n t h e upper member, conglomerates account f o r over 80% a t t h e

t o p o f t h e upper p a r t and decrease i n abundance toward t h e bot tom o f

t h e upper p a r t t o 40 t o 60%. Other l i t h o l o g i e s , e s p e c i a l l y t h e

c a l c a r e n i t e s and mudstones, i n c r e a s e c o r r e s p o n d i n g l y f rom t h e t o p t o

t h e bot tom of t h e upper p a r t o f t h e M a r y v i l l e Limestone (see

Appendix). W i th t h e e x c e p t i o n of t h e M a y n a r d v i l l e Limestone, t h e

upper p o r t i o n s o f t h e upper member o f t h e M a r y v i l l e Limestone a r e t h e

most pu re carbonate rock I n t h e Conasauga Group a t t h e s tudy s i t e .

Page 45: Stratigraphic and structural data for the Conasauga Group

.

Page 46: Stratigraphic and structural data for the Conasauga Group

32

Such a h l g h carbonate con ten t r e s u l t s i n a d i s t i n c t i v e r i g h t w a r d bu lge

o r hump on t h e neu t ron l o g f o r t h i s s t r a t i g r a p h i c i n t e r v a l . The

r i g h t w a r d d e f l e c t i o n o f t h e neu t ron l o g d im in i shes toward t h e bot tom

o f t h e upper member w i t h t h e t r a c e approaching a mudstone b a s e l i n e

s i m i l a r t o t h a t c h a r a c t e r i s t i c o f t h e No l i chucky Shale. T h i s t r e n d i s

i n response t o i n c r e a s i n g amounts o f mudstone i n t h e lower p o r t i o n o f

t h e upper member. A corresponding, b u t l e s s d i s t i n c t i v e , l e f t w a r d

b u l g e i s observed on t h e gamma-ray l o g f o r t h e same i n t e r v a l .

Superimposed on t h i s bu lge i n t h e gamma-ray l o g a r e t h r e e

l e f t - t o - r i g h t o s c i l l a t i o n s ( F i g . 3 ) . Such o s c i l l a t i o n s a r e t y p i c a l l y

observed on gamma-ray l o g s f o r t h e upper member o f t h e M a r y v i l l e

Limestone w i t h i n t h e Oak Ridge v i c i n i t y (Haase 1985) and r e f l e c t

i n te rbedded mudstone-r ich i n t e r v a l s w i t h i n t h e upper member.

Gamma-ray s p e c t r a l a n a l y s i s o f two mudstone-rqch i n t e r v a l s w i t h i n t h e

upper member i n d i c a t e t h a t 40K i s t h e p r i n c i p a l n a t u r a l l y o c c u r r i n g

r a d i o n u c l i d e w i t h i n mudstones o f t h i s member.

The lower member o f t h e M a r y v i l l e Limestone i s composed o f 0.1- t o

0.4-m-th ick beds o f ca lcareous mudstones i n t e r s t r a t i f i e d w i t h

p e l l o i d a l o r o o l i t i c wackestones and packstones, c a l c a r e n i t e s , and

ca lcareous s i l t s t o n e s ( F i g . 10 and Appendlx). The mudstones a r e

t h i n l y bedded t o t h i c k l y laminated w i t h even ly t o wavy p a r a l l e l

s t r a t i f i c a t i o n t h a t l o c a l l y e x h i b i t c u r r e n t - r i p p l e d s t r u c t u r e s and 1-

t o 3-cm-thick upward - f i n ing s i l t s t o n e - r i c h i n t e r v a l s . The l imes tone

l i t h o l o g i e s occur i n d i s c r e t e 5- t o 20-cm-thick beds w i t h i n

upward-coarsening c y c l e s .

No l i chucky Shale except t h a t t h e c y c l e s i n t h e M a r y v i l l e Limestone a r e

t h i n n e r . The upward-coarsening c y c l e s beg in w i t h ca lcareous

Such c y c l e s a r e s i m i l a r t o those i n t h e

Page 47: Stratigraphic and structural data for the Conasauga Group
Page 48: Stratigraphic and structural data for the Conasauga Group

34

mudstone. The mudstone i s covered by t h i n l y bedded ca lcareous

subarkos ic s i l t s t o n e s and c a l c a r e n i t e s t h a t a r e even ly t o wavy

c u r r e n t - r i p p l e d s t r a t i f i e d . Such l i t h o l o g i e s i n c l u d e seve ra l

amalgamated upward - f i n ing sequences 1 t o 4 cm t h i c k [ F i g . l o ( & ) ] . The

upward-coarsening c y c l e i s capped by massive ly t o t h i n l y bedded,

even ly t o wavy s t r a t i f i e d o o l i t i c o r i n t r a c l a s t i c packstone. The t o p

o f t h e c y c l e i s marked by an ab rup t change t o ca lcareous mudstone.

G laucon i te p e l l e t s a r e common w i t h i n t h e o o l i t e and i n t r a c l a s t

packstones i n t h e uppermost p o r t i o n s o f many upward-coarsening

c y c l e s . Hardgrounds, which a r e t y p i f i e d by p l a n a r c o n c e n t r a t i o n s o f

g l a u c o n i t e p e l l e t s t h a t e x h i b i t p a r a l l e l t o s l i g h t l y cross c u t t i n g

r e l a t i o n s h i p s w i t h bedding, a r e commonly observed w i t h i n t h e

oo ld -bear ing upper p o r t i o n s o f t h e upward-coarsening c y c l e s . Such

hardground s t r u c t u r e s a r e s i m i l a r t o those desc r ibed by M a r k e l l o and

Read (1981, 1982) as o c c u r r i n g w i t h i n carbonates o f t h e M a r y v i l l e

Limestone and No l i chucky Shale i n southwest V i r g i n i a .

The mudstone con ten t o f t h e lower member o f t h e M a r y v i l l e Limestone

ranges f rom 50 t o 80% w i t h t h e remainder compring carbonate

l i t h o l o g i e s . The increased mudstone con ten t i s r e f l e c t e d by

r e l a t i v e l y f l a t neu t ron and gamma-ray l ogs t h a t a r e i n l i n e w i t h t h e

mudstone b a s e l i n e p r e v i o u s l y observed f o r o t h e r p o r t i o n s o f t h e

Conasauga Group.

W i t h i n t h e lower p a r t o f t h e M a r y v i l l e Limestone, t h e

upward-coarsening c y c l e s e x h i b i t a l a r g e amount o f v a r i a b i l i t y . One

o r more o f t h e components o f t h e c y c l e may be absent; a commonly

observed v a r i a t i o n i s t h e absence o f t h e coarse-gra ined oo id -bear ing

t o p o f t h e c y c l e . Another commonly observed v a r i a t i o n i s t h e

Page 49: Stratigraphic and structural data for the Conasauga Group

35

--

amalgamation of two or more upward-fining cycles that locally produces

0.1- to 0.5-m-thick wavy to evenly ribbon-bedded silty packstone and

calcarenite horizons [Fig. 10(b)].

The lowermost 15 m of the Maryville Limestone is characterized by

an increase ln calcareous mudstone content from 30 to 50% of the rock

to 60 to 80%. Limestone-rich intervals decrease in thickness and

frequency over the same interval.

Rogersville Shale falls withln such an interval, marked by a gradual

increase in shale content, the formational contact itself is dlstinct

because it is placed at the bottom of the lowermost ooid-bearing

upward-coarsening cycle. Immediately below this limestone is a 0.7-

to 1.2-m-thick bed of massive shale (N6-N4) that contains few

siltstone laminae, is massive to thinly laminated, and is quite

distinct from the mudstones and shales of the Maryville Limestone.

This mudstone is the uppermost portion of the Rogersville Shale.

Although the contact with the

On neutron and gamma-ray logs, the lower contact of the Maryville

limestone Is readily definable as occurring immediately below the

lowermost of two sharp spikes that occur toward the bottom of the

lower member interval (Fig. 3). These spikes are prominent features

that mark abrupt departures from the baseline position of the

relatively mudstone-rich lower member. Such spikes correspond to

ooid-bearing limestone horizons within the basal Maryville Limestone

and are recognizable throughout the Oak Ridge vicinity (Haase 1985).

Rogersville Shale - The Rogersville Shale at the drill site is

39.62-m thlck. Throughout much of east Tennessee, the Craig member, a

limestone-rich interval, can be delineated within the upper portion of

Page 50: Stratigraphic and structural data for the Conasauga Group

the Rogersville Shale (Rodgers 1953; Hasson and Haase 1985). The

Craig member is recognizable at the study site and is 2.74 m thick,

while regionally, it ranges from 0 to 9 m thick (Hasson and

Haase 1985).

Lithologically, the Rogersville Shale consists of massive to

laminated noncalcareous mudstones and evenly bedded to wavy

current-rippled calcarenites and subarkosic siltstones [Figs. ll(a) and ( b ) ; Appendix]. The mudstones range from red-brown (5R4/2-3/3 to

5YR4/1-2/1) to gray (N6-3) and gray-green (564/1-2/1). A distinctive,

reddish, massive to thinly bedded, evenly parallel stratified mudstone

occurs immediately below the Craig member. This lithology, which is

7.92 m thick at the study site, Is persistent throughout the Oak Ridge

Reservation (Haase 1985) and serves as an excellent stratigraphic

marker for the upper Rogersville Shale. Below this interval, the

remainder of the Rogersvllle Shale is composed of interbedded

mudstones and subarkosic siltstones. The mudstones are massively to

evenly stratified with wavy to straight lenses and dlsseminations o f

siltstone throughout. The subarkosic siltstones are 1 to 20 cm thick

and exhibit wavy to evenly parallel stratification that frequently

contains cross-bedding and current-rippled features [Fig. ll(b)]. Most siltstone intervals have upward-flning graded bedding with scour

surfaces at their bottoms and mud-draped tops.

more siltstone intervals is common. Glauconite pellets are common in

siltstones throughout the Rogersville Shale interval; locally

glauconite accounts for 10 to 30% of the individual siltstone

horizon. Such glauconlte contents contrast with those for siltstones

in the overlying Maryville Limestone where glauconite is essentially

Amalgamation of two or

Page 51: Stratigraphic and structural data for the Conasauga Group

U

Page 52: Stratigraphic and structural data for the Conasauga Group

38

absent, except f o r random d issemina t ions i n s i l t s t o n e s o f t h e

lowermost p o r t i o n o f t h e f o r m a t i o n and f o r concen ta t i ons a s s o c i a t e d

w i t h t r u n c a t i o n l a y e r s con ta ined w i t h i n o o l i t i c packstones t h a t cap

upward-coarsening c y c l e s .

Carbonates w i t h i n t h e R o g e r s v i l l e Shale occur w i t h abundance o n l y

w i t h i n t h e C r a i g member. T h i s member I s an upward-coarsenlng c y c l e

t h a t begins w i t h even ly and wavy bedded ca lcareous s i l t s t o n e s and

grades upward t o ( 1 ) wavy and l e n t i c u l a r l y bedded c a l c a r e n i t e s and

s i l t y wackestones; ( 2 ) p e l l o i d a l packstones and s i l t y c a l a r e n i t e s ; and

( 3 ) capping g l a u c o n i t i c and d o l o m i t i c o o l i t i c and i n t r a c l a s t i c

g ra ins tones [ F i g . 11 (c) 1.

The lower c o n t a c t o f t h e R o g e r s v i l l e Shale i s cont inuous b u t

a b r u p t , o c c u r r i n g over an i n t e r v a l o f 0.5 m. The c o n t a c t i s d e f i n e d

by a sharp t r a n s i t i o n f r o m mudstone w i t h subord ina te amounts o f

i n te rbedded subarkos ic s i l t s t o n e t o t h i n l y bedded c a l c a r e n i t e s and

s i l t y wackestone, and m i c r i t e o f t h e uppermost p o r t i o n o f t h e

u n d e r l y i n g Rut ledge Limestone. The mudstones and s i l t s t o n e s o f t h e

lowermost R o g e r s v i l l e Shale a r e l i t h o l o g i c a l l y homogeneous b u t have

a l t e r n a t i n g i n t e r v a l s o f g ray (N5-3) and red-gray (5R4/2-2/2 and

5YR4/1-2/1). The mudstones immediate ly a t t h e c o n t a c t a r e red-gray

and c o n t r a s t s h a r p l y w i t h t h e l i g h t gray-gray (N8-6) l imestones and

s i l t s t o n e s o f t h e uppermost Rut ledge Limestone.

The borehole geophysica l s i g n a t u r e o f t h e lower c o n t a c t o f t h e

R o g e r s v i l l e Shale i s represented on gamma-ray and neu t ron l o g s by

moderate ly ab rup t r i g h t w a r d and l e f t w a r d d e f l e c t i o n s , r e s p e c t i v e l y ,

away f rom t h e mudstone b a s e l l n e p o s i t i o n ( F i g . 3 ) . Neutron and

gamma-ray l o g s f o r most o f t h e R o g e r s v i l l e Shale a r e c h a r a c t e r i z e d by

Page 53: Stratigraphic and structural data for the Conasauga Group

39

b a s e l i n e s s i m i l a r t o those f o r t h e o v e r l y i n g mudstone-r ich l ower

member o f t h e M a r y v i l l e Limestone. The c o n t a c t w i t h t h e

l i m e s t o n e - r i c h uppermost Rut ledge Limestone produces significant

d e f l e c t i o n s t h a t p e r m i t easy r e c o g n i t i o n o f t h e c o n t a c t f rom

th roughou t t h e Oak Ridge v i c i n i t y (Haase 1985).

The Rut ledge Limestone - The Rut ledge Limestone e x h i b i t s a r a p i d

l i t h o f a c i e s t r a n s i t i o n i n t h e Oak Ridge v i c i n i t y (Hasson and

Haase 1985). Eastward o f t h e Oak Ridge l o c a l i t y , t h e Rut ledge

Limestone i s dominant ly r ibbon-bedded carbonate. Westward f r o m t h i s

l o c a l i t y , t h e Rut ledge Limestone r a p i d l y becomes c l a s t i c - r i c h and

t h i n s t o e x t i n c t i o n (Rodgers 1953). A t t h e s tudy s i t e , t h e f o r m a t i o n

i s 30.78 m t h i c k . A prominent c l a s t i c - r i c h i n t e r v a l i n t h e c e n t r a l

p o r t i o n o f t h e f o r m a t i o n d i v i d e s t h e Rut ledge Limestone i n t o upper and

lower l i m e s t o n e - r i c h p a r t s i n a d d i t i o n t o t h e c e n t r a l c l a s t i c - r i c h

i n t e r v a l ( F i g . 3 and Appendix). Such a s u b d i v i s i o n i s p e r s i s t e n t

t h roughou t t h e Oak Ridge Reserva t i on (Haase 1985) b u t has n o t been

r e p o r t e d elsewhere I n e a s t Tennessee.

The l imestones o f t h e upper p a r t o f t h e Rut ledge Limestone a r e

m i c r i t e s , l o c a l l y f o s s i l i f e r o u s p e l l o i d a l wackestones and packstones,

and s i l t y c a l c a r e n i t e s . The l l rnestones a r e t h i n l y bedded w i t h h i g h l y

v a r i a b l e s t r a t i f i c a t i o n p a t t e r n s .

wackestones and packstones range f rom wavy t o l e n t i c u l a r l y bedded.

The m i c r i t e s a r e l e n t i c u l a r l y r ibbon-bedded t o nodu la r ; such

r lbbon-bedded i n t e r v a l s do n o t a t t a i n a t h i c k n e s s g r e a t e r t han 0.4 m.

The s i l t y c a l c a r e n i t e s f o r m 1- t o 15-cm-thick u p w a r d - f i n i n g i n t e r v a l s

w i t h wavy c u r r e n t - r i p p l e d and even ly c r o s s - s t r a t i f i e d bedding [Fig.

The c a l c a r e n i t e s and most o f t h e

Page 54: Stratigraphic and structural data for the Conasauga Group

40

12 (&) ] . I n te rbedded w i t h t h e coa rse r -g ra ined l i t h o l o g i e s a r e g ray

(N6-3) t o gray-green (5GY4/1-2/1) ca lcareous and noncalcareous

mudstones. These mudstones a r e t h i n l y bedded t o l am ina ted w i t h wavy

t o even p a r a l l e l s t r a t i f i c a t i o n .

The c l a s t i c - r i c h l i t h o l o g i e s i n t h e m i d d l e i n t e r v a l o f t h e Rut ledge

Limestone c o n s i s t of red-brown (5YR4/1-2/1), red-gray (5R4/1-2/1), and

g ray (N6-3) mudstones and shales w i t h i n te rbedded laminae and lenses

o f subarkos lc s i l t s t o n e [F ig . 1 2 ( b ) ] . S i l t s t o n e s have u p w a r d - f i n i n g

graded bedding and wavy t o even ly p a r a l l e l t o d i s c o n t i n u o u s

c u r r e n t - r i p p l e d s t r a t i f i c a t i o n . L o c a l l y such i n t e r v a l s resemble

microhummocky c r o s s - s t r a t i f i c a t i o n .

The lowermost p a r t o f t h e Rut ledge Limestone c o n s i s t s o f l imes tones

t h a t range f r o m l e n t i c u l a r l y bedded t o m o t t l e d and b l o t u r b a t e d g r a y

(N7-6) t o gray-green (5GY4/1-2/1) wackestones and c a l c a r e n i t e s

[ F i g . 1 2 ( a ) ] . Such l imestones a r e i n te rbedded w i t h shales and

mudstones s i m i l a r t o those o f t h e m i d d l e p a r t o f t h e Rut ledge

Limestone. These l i t h o l o g i e s combine t o fo rm a 6-rn-thick sequence o f

t h r e e g r a y l imes tone h o r i z o n s separated by two red-gray mudstone-r ich

h o r i z o n s . T h i s s t r a t i g r a p h i c i n t e r v a l i s r e f e r r e d t o as t h e " t h r e e

l i m e s t o n e beds" (deLaguna e t a l . 1968) and produces a v e r y d i s t i n c t

three-pronged p a t t e r n on gamma-ray and n e u t r o n bo reho le l o g s ( F i g . 3 )

t h a t serves as an e x c e l l e n t s t r a t i g r a p h i c marker th roughou t t h e Copper

Creek f a u l t b l o c k i n t h e Oak Ridge v i c i n i t y (Haase 1985).

The c o n t a c t w i t h t h e u n d e r l y i n g Pumpkin V a l l e y Shale i s g r a d a t i o n a l

over a 10-m-thick i n t e r v a l . Within t h e c o n t a c t zone, t h e amount o f

c a l c a r e n i t e and ca lcareous s i l t s t o n e decreases f r o m 40 t o 70% i n t h e

lowermost Rut ledge Limestone t o 10 t o 20% i n t h e uppermost Pumpkin

Page 55: Stratigraphic and structural data for the Conasauga Group

41 1

I ’ 1 e - > -

I j I

ORNL-Photo 2719-85

.

Fig. 12. Lithologies of Rutledge Limestone. Core rows are 0.76 m (2.5 ft) long and stratigraphic top is left. [a] (Box 168: 1621-1628.5 ft) Wavy and lenticularly ribbon-bedded fossiliferous pelloidal packstone (1). lenticularly bedded mlcrlte (2), and wavy to evenly bedded calcarenlte and calcareous siltstone (3). mudstone containing stringers of calcareous subarkosic siltstone is interbedded (4). [II] (Box 174: 1679-1684 ft) Massive mudstone. [ c ] (Box 177: 1707-1712 ft) Bioturbated silty fossiliferous wackestone (5) and

Page 56: Stratigraphic and structural data for the Conasauga Group

V a l l e y Shale. The c o n t a c t i s p laced a t t h e bot tom o f t h e lowermost

l imes tone h o r i z o n o f t h e " t h r e e l imes tone beds". Th i s p o s i t i o n marks

t h e most ab rup t decrease I n carbonate con ten t w i t h i n t h e c o n t a c t zone.

The Pumpkin V a l l e y Shale - Reg iona l l y , t h e i n t e r n a l s t r a t i g r a p h y

o f t h e Pumpkin V a l l e y Shale i s n o t w e l l known, and fo rma l

s t r a t i g r a p h i c members have n o t been d e f i n e d (Rodgers 1953;

H a r r i s 1964; Hasson and Haase 1985). The f o r m a t i o n has been

i n f o r m a l l y d i v i d e d i n t o an upper and lower member on t h e Whiteoak

Mountain f a u l t b l o c k near Oak Ridge, Tennessee (Law Eng ineer ing 1975)

and such a s u b d i v i s i o n can be a p p l i e d t o t h e f o r m a t i o n throughout t h e

Copper Creek f a u l t b l o c k (Haase and Vaughan 1981; Haase 1985). W i t h i n

t h e Oak Ridge Reservat ion, t h e upper and lower members a r e o f

app rox ima te l y equal t h i c k n e s s (Haase 1985). A t t h e d r i l l s i t e , t h e

Pumpkin V a l l e y Shale i s 94.18 m t h i c k w i t h t h e upper and lower members

b e i n g 48.46 m and 45.72 m t h i c k , r e s p e c t i v e l y .

The upper member o f t h e Pumpkin V a l l e y Shale c o n s i s t s o f red-brown

(10R6/2-2/2), red-gray (5R4/2-2/1), and gray (N6-3) mudstones and

shales Snterbedded w i t h subarkos ic s i l t s t o n e s (Appendix) . The

mudstones a r e massive ly t o t h i n l y bedded and even ly t o wavy p a r a l l e l

s t r a t i f i e d . They range f rom e s s e n t i a l l y pu re mudstone t o s i l t y

mudstones w i t h t h i n 0.1- t o 2-cm-thick s t r i n g e r s and d i ssemina t ions o f

subarkos ic s i l t s t o n e [ F i g . 1 3 ( a ) ] . Such d i ssemina t ions l o c a l l y

coalesce t o fo rm d i scon t inuous l e n t i c u l a r s i l t s t o n e beds t h a t occur

throughout s i l t y mudstone-r ich i n t e r v a l s . S i l t s t o n e - r i c h ho r i zons

e x h i b i t complex s t r a t i f i c a t i o n p a t t e r n s t h a t range f rom t h i n l y

l am ina ted t o t h i n l y bedded 1- t o 25-cm-thick i n t e r v a l s w i t h wavy t o

Page 57: Stratigraphic and structural data for the Conasauga Group

n

43

. ^

F i q . 13. Litholouies of upper member o f Pumpkin Valley Shale. Core t) long and stratigraphic top i s left. 2.5 ft) Evenly to wavy bedded mudstone with trtngers and lamellae. [b] (Box 182: 1750-1755

I LI LUI ICIIL-I I ~ ~ I V U ~ross-stratified siltstones (1) with local slumplng (2). [c ] (Box 179: 1721-1728.5 ft) Upward-flning evenly laminated siltstones (3) interbedded with wavy and current-rfppled s"barkosic -*'11-1--- #.. - - a 1 L * . .I . . * . . . -.

Page 58: Stratigraphic and structural data for the Conasauga Group

44

even ly para1 e l t o n o n p a r a l l e l s t r a t i f i c a t i o n . Such s i l t s t o n e

ho r i zons may e x i b i t even ly c r o s s - s t r a t i f i e d o r c u r r e n t - r i p p l e d

i n t e r n a l lam n a t i o n s t y p i c a l o f microhummocky c r o s s - s t r a t i f i c a t i o n .

Amalgamation of s e v e r a l such c r o s s - s t r a t i f i e d s i l t s t o n e s i s t y p i c a l

[ F i g . 1 3 ( b ) ] . S i l t s t o n e a l s o ocurs as i s o l a t e d u p w a r d - f i n i n g beds

d isseminated th roughou t dominan t l y mudstone-r ich ho r i zons

[ F i g . 1 3 ( c ) ] . Such occurrences have scour bases and i n t e r n a l

l a m i n a t i o n s r a n g i n g f r o m even ly t o wavy p a r a l l e l . Where such

upward - f i n ing beds a r e c l o s e l y spaced, each s i l t s t o n e bed i s capped by

a mud-drape. G laucon i te p e l l e t s a r e u b i q u i t o u s w i t h i n s i l t s t o n e

i n t e r v a l s and occur i n random d issemina t ions th roughou t i n d i v i d u a l

beds o r a r e concen t ra ted i n t o d i s c r e t e laminae and bedding p lanes.

L o c a l l y , 0.5- t o 2.0-cm-thick ho r i zons composed o f 40 t o 60%

g l a u c o n i t e p e l l e t s a r e i n te rbedded w i t h i n s i l t s t o n e s and mudstones i n

t h e upper member.

The lower member o f t h e Pumpkin V a l l e y Shale i s s l i g h t l y more

s i l t s t o n e - r i c h than t h e upper member, as i s r e f l e c t e d by t h e s l i g h t

r i g h t w a r d s h i f t o f t h e neu t ron l o g t r a c e ( F i g . 3 and Appendix). The

lower member i s c h a r a c t e r i z e d by t h e occurrence o f maroon-brown

(10R4/1-2/1) and maroon-gray (5R4/1-2/1) b i o t u r b a t e d s i l t s t o n e s [ F i g .

1 4 ( a ) ] . B i o t u r b a t e d ho r i zons , which a r e 0.2 t o 1 . 5 m t h i c k , a r e

massive t o m o t t l e d and wavy o r l e n t i c u l a r l y bedded. S t r a t i f i c a t i o n

w i t h i n t h e lower member i s h i g h l y v a r i a b l e , w i t h t h e mass ive l y bedded

ho r i zons be ing t h e most comp le te l y b i o t u r b a t e d and homogenized.

Compos i t i ona l l y , t h e b i o t u r b a t e d i n t e r v a l s resemble s imp le p h y s i c a l

m i x t u r e s o f t h e s i l t s t o n e and mudstone l i t h o l o g i e s i d e n t i f i e d i n t h e

upper member. Glauoconi te p e l l e t s a r e ve ry abundant w i t h i n

Page 59: Stratigraphic and structural data for the Conasauga Group

.

....

.)

Page 60: Stratigraphic and structural data for the Conasauga Group

46

bioturbated horizons and can constitute as much as 40% of selected

beds. Gamma-ray spectral analysis of red-brown and gray mudstone-rich

intervals of the lower member indicate that 40K accounts for the

majority of naturally occurring gamma-ray activity.

Interbedded with bioturbated siltstones are mudstones and

siltstones very similar to those previously described for the upper

member [ Figs . 14( I)) and ( c ) 3. Gray (N6-3) and maroon-gray ( 5R4/1-2/1)

silty mudstones are somewhat more common in the lower member than in

the upper member, and the evenly lamlnated and cross-bedded siltstones

locally occur in somewhat thicker (15 cm maximum) beds than in the

Upper Member [Fig. 14(b)]. In general, the siltstone content of the

lower member is greater than that o f the upper member: - 40 to 70% versus 25 to 50%.

The lower contact of the Pumpkin Valley Shale with the Rome

Formation Is continuous but abrupt. The lowermost 7.5 m o f the

Pumpkin Valley Shale is a gray-brown (5YR7/1-4/1), wavy to

lenticularly stratified, shaly siltstone with localized bioturbated

intervals [Fig. 14(c)]. This horizon is somewhat more silt-rich than

most o f the lower Pumpkin Valley Shale and appears transitjonal i n

composition and color to the sediments of the underlying Rome

Formation. The base of this interval marks the abrupt transition to

the massively to thickly bedded gray to gray-green (N7-6 also

5G6/1-5GYd/l) quartz arenites o f the uppermost Rome Formation. The

lower contact o f the Pumpkin Valley Shale is placed at the bottom of

the shaly gray-brown siltstone. The borehole geophysical signature o f

the contact consists of very sharp and prominent deflections o f both

the neutron and gamma-ray logs away from the relatively constant

mudstone baseline o f the Pumpkin Valley Shale.

Page 61: Stratigraphic and structural data for the Conasauga Group

47

4.4 THE ROME FORMATION

.

For t h e Copper Creek f a u l t b l o c k i n e a s t Tennessee, t h i c k n e s s

values r e p o r t e d f o r t h e Rome Format ion range between 90 and 215 m

(Rodgers 1953; Samman 1975; W o j t a l 1981). For t h e Copper Creek f a u l t

b l o c k on t h e Oak Ridge Reservat ion, Rome Format ion t h i c k n e s s va lues

between 90 and 125 m have been r e p o r t e d (S tockda le 1951;

McMaster 1963; S ledz 1981). Such v a r i a b i l i t y i s c h a r a c t e r i s t i c o f t h e

Rome Format ion w i t h l n t h e V a l l e y and Ridge Prov ince o f e a s t Tennessee

where r e g i o n a l t h i cknesses and i n t e r n a l s t r a t i g r a p h i c p a t t e r n s f o r t h e

Rome Format ion a r e ex t reme ly v a r i a b l e (Rodgers 1953; Saman 1975).

Such a s i t u a t i o n i s caused by t h e s t r u c t u r a l s e t t i n g o f t h e

fo rma t ion . Severa l o f t h e major t h r u s t f a u l t s o f t h e V a l l e y and Ridge

Prov ince a r e l o c a t e d i n t h e Rome Formation, and a t v a r i o u s l o c a l i t i e s

t h r u s t f a u l t i n g and assoc ia ted i n t r a f o r m a t i o n a l de fo rma t ion have

caused i n t e r v a l s t o be repeated o r removed. The s i t u a t i o n i s

compl icated f u r t h e r by t h e complex l i t h o f a c i e s t r a n s i t i o n s t h a t occur

b o t h l a t e r a l l y and v e r t i c a l l y w i t h i n t h e Rome Format ion th roughou t t h e

V a l l e y and Ridge Prov ince i n eas t Tennessee.

A t t h e s tudy s i t e , 188.06 m o f Rome Format ion was pene t ra ted . The

t r u e t h i c k n e s s o f Rome Format ion p resen t i s c o n s i d e r a b l y l e s s than

t h i s va lue, p r i n c i p a l l y because o f t h e r e p e t i t i o n o f seve ra l ho r i zons

o f t h e f o r m a t i o n assoc ia ted w i t h complex mo t ion a l o n g t h e Copper Creek

f a u l t . P r e l i m i n a r y a n a l y s i s suggests t h a t t h e 188.06 m o f Rome

Format ion can be d i v l d e d i n t o two p a r t s . One p a r t o f t h e i n t e r v a l i s

88.09 m o f e s s e n t i a l l y u n d i s t u r b e d s t r a t a t h a t rep resen ts t h e

Page 62: Stratigraphic and structural data for the Conasauga Group

48

s t r a t i g r a p h i c a l l y uppermost i n t e r v a l o f t h e Rome Format ion a t t h e

s tudy l o c a l i t y (2021- t o 2310- f t i n t e r v a l ; see F i g . 3 and Appendix).

The o t h e r p a r t o f t h e Rome Format ion I s a 99.97-m-thick, s e v e r e l y

deformed i n t e r v a l t h a t appears t o be composed o f seve ra l i m b r i c a t e d

s l i c e s o f Rome Format ion l i t h o l o g i e s d e r i v e d f rom s t r a t i g r a p h i c a l l y

h i g h e r p o r t i o n s o f t h e f o r m a t i o n (2310- t o 2638- f t i n t e r v a l ; see F i g .

3 and Appendix).

Upper Rome Format ion - R e g i o n a l l y t h e Rome Format ion i s

c h a r a c t e r i z e d by l i t h o l o g i c h e t e r o g e n e i t y and c o n s i s t s o f v a r i o u s l y

bedded gray, green, and maroon sandstones i n te rbedded w i t h g ray t o

maroon shales and mudstones (Rodgers 1953; M i l l i c i 1973). The upper

Rome Format ion i n t h e Oak Ridge v i c i n i t y i s w e l l desc r ibed by t h i s

genera i z e d d e s c r i p t i o n (McMaster 1963). A t t h e s tudy s i t e , massive-

t o med um-bedded, subarkos lc t o q u a r t z a r e n i t i c sandstones make up 60

t o 80% o f t h e upper Rome Format ion. The remainder o f t h e f o r m a t i o n

c o n s i s t s o f medium-bedded sandstones and s i l t s t o n e s i n te rbedded w i t h

th in l y -bedded s i l t y mudstones and shales. S t r a t i g r a p h l c a l l y , t h e

upper Rome Format ion c o n t a i n s a d i s t i n c t i v e gray t o gray-green,

sands tone- r i ch t o p p a r t and a bot tom p a r t t h a t i s l i t h o l o g i c a l l y much

more heterogeneous than t h e t o p p o r t i o n .

Sandstones a r e abundant w i t h i n t h e Rome Format ion. A massive,

d i f f u s e l y t o even ly bedded, g r a y (N8-6) t o gray-green (5GY8/1-6/1)

q u a r t z a r e n i t e occurs a t t h e t o p of t h e Rome Format ion [ F i g . 15(a)J.

T h i s massive sandstone i s i n te rbedded w i t h t h i n l y bedded sandstone

composed o f 2- t o 10-cm-thick, u p w a r d - f i n i n g c y c l e s t h a t have scour

bases and a r e capped by mudstone drapes. Each c y c l e c o n t a i n s wavy

.-

,

Page 63: Stratigraphic and structural data for the Conasauga Group

.

Page 64: Stratigraphic and structural data for the Conasauga Group

laminated sha le s t r i n g e r s , and seve ra l i n d i v i d u a l c y c l e s a r e commonly

amalgamated i n t o 0.2- t o 0.5-m-thick beds o f massive sandstone t h a t

c o n t a i n wavy d i scon t inuous sha le s t r i n g e r s d isseminated th roughou t

( F i g . 1 5 ( b ) ] . A 15-m-thick i n t e r v a l o f such l i t h o l o g y occurs - 12 m

below t h e t o p o f t h e Rome Format ion and i s a l o c a l l y d o l o m i t i c

gray-green sha ly sandstone w i t h wavy t o l e n t i c u l a r s t r a t i f i c a t i o n .

Th is example rep resen ts t h e o n l y s i g n i f i c a n t occurrence o f

carbonate-bear ing l i t h o l o g i e s w i t h i n t h e upper Rome Format ion a t t h e

s tudy s i t e .

Another common sandstone t y p e i s a massive ly t o t h i c k l y bedded,

maroon-brown t o g ray (5R6/2-4/2), subarkose w t t h d i f f u s e l y t o even ly

p a r a l l e l s t r a t i f i c a t i o n . Th is sandstone grades i n t o a mass ive l y

appear ing t h i n l y bedded sandstone [ F i g . 15(c)J t h a t forms 1 t o

4 m- th i ck i n t e r v a l s throughout t h e lower 60% o f t h e upper Rome

Format ion (see Appendix). Such l i t h o l o g i e s a l t e r n a t e w i t h massive,

i r r e g u l a r l y bedded maroon sandstones t h a t c o n t a i n 1- t o 15-cm-thick,

s h a l e - r i c h i n t e r v a l s assoc ia ted w i t h l e n t i c u l a r t o m o t t l e d bedding;

b i o t u r b a t i o n and v e r t i c a l bu r row ing occur throughout . Disseminated

throughout t h i s l i t h o l o g y a r e i n t e r v a l s o f f l a s e r l i k e , wavy t o

l e n t i c u l a r d i scon t inuous laminae and s t r i n g e r s o f maroon mudstone and

sha ly s i l t s t o n e s [ F i g . 15(c i ) ] .

A l t e r n a t i n g w i t h major sandstone i n t e r v a l s a r e ho r i zons o f t h i n l y

bedded sha ly s i l t s t o n e and mudstone. The sha ly s i l t s t o n e s range f rom

g ray (N7-5) t o gray-maroon (5R4/2-2/2). S t r a t i f i c a t i o n p a t t e r n s a r e

h i g h l y v a r i a b l e , r a n g i n g f rom even ly bedded t o wavy, l e n t i c u l a r l y , and

d i s c o n t i n u o u s l y f l a s e r bedded [ F l g . 1 6 ( a ) ] . B i o t u r b a t i o n and m o t t l e d

bedding a r e a l s o commonly observed [ F i g . 1 6 ( b ) ] . I n t e r s t r a t i f i e d ,

Page 65: Stratigraphic and structural data for the Conasauga Group

51

a.

? - b ORNL-Photo 2723-85

L

Fig. 16. Siltstone and mudstone lithologies of upper part of Rome Formation. Core rows are 0.76 m (2.5 ft) long and stratigraphic top i s left. [a] (Box 241: 2290-2295 ft) Current-rippled and wavy bedded shaly siltstone (1). partially bloturbated and mottled sllty mudstone (2), and evenly lamlnated siltstone strlngers (3). [b] (Box 233: 2216-2223.5 ft) Bioturbated sllty mudstone (4) interbedded with current-rippled to parallel cross-stratified siltstone (5). [c ] (Box 232: 2208-2213 ft) Massive mudstone (6) with interbedded with wavy cross-stratified siltstone stringers (7) and massive evenly to wavy bedded sandstone (8).

Page 66: Stratigraphic and structural data for the Conasauga Group

52

0.1- t o 5-cm-thick s i l t s t o n e s w i t h wavy t o even ly laminated

upward - f i n ing c y c l e s occur l o c a l l y w i t h i n mudstones. Such

l i t h o l o g i e s , however, a r e noted much l e s s f r e q u e n t l y than i n t h e

Pumpkin V a l l e y Shale. Mudstones fo rm ing 0.1- t o 1.0-m-th ick beds

occur w i t h g r e a t e s t abundance i n t h e lower 50% o f t h e upper Rome

Format ion. Mudstones range f rom maroon (10R3/3-6/3) t o gray-maroon

(5R4/1-2/1). They a r e massive t o t h i n l y laminated and commonly

c o n t a i n l e n t i c u l a r laminae, s t r i n g e r s , and d i ssemina t ions o f s i l t s t o n e

[ F i g . 1 6 ( c ) I .

Lower Rome Format ion - L i t h o l o g i c a l l y , t h i s i n t e r v a l i s composed

o f e s s e n t i a l l y t h e same, o r ve ry s i m i l a r , m a t e r i a l as t h a t which

composing t h e upper Rome Format ion (see Appendix). The p r i n c i p a l

d i f f e r e n c e between t h e upper and lower p a r t s o f t h e f o r m a t i o n i s t h e

degree o f de fo rma t ion . The upper Rome Format ion has l o c a l i z e d f a u l t

zones 0.1 t o 1.0 m t h i c k and s m a l l - s c a l e f o l d s , b u t i t i s e s s e n t i a l l y

undeformed. The lower Rome Format ion, however, i s c h a r a c t e r i z e d by

severe de fo rma t ion and ext remely c h a o t i c s t r a t i f i c a t i o n p a t t e r n s

( F i g s . 17 (a ) and ( b ) ] . P r e l i m i n a r y a n a l y s i s o f t h e s t r u c t u r e s i n t h i s

i n t e r v a l suggests t h a t most, i f n o t a l l , o f t h i s i n t e r v a l c o n s i s t s o f

s l i c e s and fragments o f l i t h o l o g i e s t h a t compose t h e upper Rome

Format ion. Such s l i c e s have been t e c t o n i c a l l y j ux taposed and mixed t o

f o r m a complexly i m b r i c a t e d and jumbled i n t e r v a l t h a t l i t h o l o g i c a l l y

resembles t h e upper Rome Format ion. I t has n o t been p o s s i b l e t o

d e l i n e a t e w i t h c e r t a i n t y which p a r t s o f t h e upper Rome Format ion a r e

i n c l u d e d w i t h i n t h i s i n t e r v a l o r what t h e s t r a t i g r a p h i c success ion o f

t h e j ux taposed s l i c e s i s . I t i s p o s s i b l e t h a t s i g n i f i c a n t p o r t i o n s o f

Page 67: Stratigraphic and structural data for the Conasauga Group

, - i 8

c

Page 68: Stratigraphic and structural data for the Conasauga Group

54

t h e lower Rome Format ion may n o t be t e c t o n i c a l l y emplaced b u t may

s imp ly rep resen t i n t e n s e l y deformed m a t e r i a l s t r a t i g r a p h i c a l l y below

t h e r e l a t i v e l y undeformed upper Rome Format ion.

The lower c o n t a c t o f t h e Rome Format ion i n t h e Oak Ridge v i c i n i t y

i s a d i scon t inuous t e c t o n i c boundary t h a t corresponds approx ima te l y

w i t h t h e s t r a t i g r a p h i c p o s i t i o n o f t h e Copper Creek f a u l t

( S t o c k d a l e 1951; McMaster 1963). Th i s r e g i o n a l s t r u c t u r e j ux taposes

t h e Rome Format ion over t h e younger Chickamauga Group con ta ined i n t h e

u n d e r l y i n g Whiteoak Mountain f a u l t b l o c k . Deformat ion a s s o c i a t e d w i t h

mo t ion a l o n g t h e Copper Creek f a u l t i s concen t ra ted w i t h i n a

46-m-thick i n t e r v a l t h a t i n c l u d e s t h e lowermost p a r t o f t h e lower Rome

Format ion and t h e uppermost p o r t i o n o f t h e Moccasin Format ion o f t h e

Chickamauga Group ( e q u i v a l e n t i n p a r t t o U n i t H i n S tockda le 1951).

S t r u c t u r e s w i t h i n t h i s i n t e r v a l w i l l be desc r ibed i n a subsequent

s e c t i o n , b u t g e n e r a l l y , i t c o n t a i n s numerous f a u l t s and f o l d s . A t a

bo reho le depth o f 804 m (2638 f t ) , a major f a u l t i s pene t ra ted t h a t i s

c h a r a c t e r i z e d by a l -m- th i ck zone c o n s i s t i n g o f two 0.2-m-thick

m y l o n i t e s [see subsequent s e c t i o n and F i g . 21 (b ) ] . Th i s f a u l t zone

a l s o corresponds t o a s i g n j f i c a n t change i n bedding p l a n e a t t i t u d e .

Below t h e f a u l t zone, d i p angles a r e shal low, r a n g i n g between 0 and

l o o , which a r e va lues g e n e r a l l y r e p r e s e n t a t i v e o f r e g i o n a l d i p :

w h i l e above t h e zone, d i p angles a r e s teep and h i g h l y v a r i a b l e . The

f a u l t zone a l s o corresponds t o a s i g n l f i c a n t l i t h o l o g y change. Below

t h e f a u l t zone, carbonate-bear ing maroon (10R6/3-8/3) t o gray-maroon

(5R6/3-8/3) s i l t s t o n e s and g ray (N8-6) l imestones occur . L i t h o l o g i e s

c h a r a c t e r i s t i c o f t h e Rome Format ion a r e absent below t h e f a u l t zone.

The lower c o n t a c t o f t h e Rome Format ion i s p laced, t h e r e f o r e , a t t h e

Page 69: Stratigraphic and structural data for the Conasauga Group

55

.

bot tom o f t h i s f a u l t zone. The lower Rome Format ion c o n t a c t marks n o t

o n l y t h e bot tom o f t h a t f o r m a t i o n b u t a l s o t h e bot tom o f t h e Copper

Creek f a u l t b l o c k a t t h e s tudy s i t e . S t r a t a below t h e c o n t a c t a r e

p a r t o f t h e Whiteoak Mountain f a u l t b l o c k t h a t immediate ly u n d e r l i e s

t h e Copper Creek f a u l t b l o c k .

4.5 THE CHICKAMAUGA GROUP

The Ordov ic ian Chickamuaga Group i s t h e youngest f o r m a t i o n

encountered i n t h e d r i l l i n g and l i e s s t r a t i g r a p h i c a l l y above t h e

Cambro-Ordovician Knox Dolomi te Group. Because o f t h e e f f e c t o f

mo t ion a l o n g t h e Copper Creek f a u l t , however, t h e Chickamauga Group

l i t h o l o g i e s encountered a t t h e bot tom o f ORNL-JOY No. 2 were n o t t hose

assoc ia ted w i t h t h e Copper Creek f a u l t b lock , b u t were r a t h e r those

b e l o n g i n g t o t h e Whiteoak Mountain f a u l t b lock . The Chickamauga Group

i s between 450 and 600 m t h i c k i n t h e Oak Ridge v i c i n i t y and c o n s i s t s

o f a l t e r n a t i n g l imes tone and s i l t s tone /muds tone l i t h o l o g i e s

( S t o c k d a l e 1951; Rodgers 1953; McMaster 1963; Switek 1984). Only t h e

s t r a t i g r a p h i c a l l y uppermost f o r m a t i o n i n t h e group, t h e Moccasin

Format ion, was encountered i n t h e borehole.

The Moccasin Format ion - I n eas t Tennessee, t h e Moccasin

Format ion i s o f v a r i a b l e t h i c k n e s s and c o n s i s t s o f ca lcareous g ray t o

gray-maroon mudstones and 3- t o 10-m-thick i n t e r v a l s o f g ray

l imestones (Rodgers 1953; M i l i c i 1973). On t h e DOE Oak Ridge

Reservat ion, Stockdale (1951) d i v i d e d t h e Chickamauga Group i n t o e i g h t

l i t h o s t r a t i g r a p h i c u n i t s , t h e uppermost b e i n g U n i t H, which i n c l u d e s

Page 70: Stratigraphic and structural data for the Conasauga Group

the Moccasin Formation (J. Switek, personal communication, 1984).

Unit H averages 90 to 95 m in thickness, and its uppermost part

consists of - 26 m of maroon to gray calcareous siltstone with shaly partings and thin limestone lenses that are underlain by 66 m of gray

limestone (Stockdale 1951).

At the drill site, only 24.38 m of the uppermost siltstone-rich

portions of the Moccasin Formation were penetrated.

limestone middle unit of Unit H, as described by Stockdale (1951) was

not intersected. Lithologically, the Moccasin strata at the drill

site consists o f interbedded calcareous siltstones and shaly

limestones. The siltstones are maroon-gray (5R4/2-2/1) and medium to

thinly bedded with wavy to lenticular discontinuous stratification.

Flaser-bedded, maroon, mudstone-rich intervals 0.1- to l-m thick occur

throughout [Fig. 18(a)]. The thinly bedded limestones are gray (N7-4)

to maroon-gray (5R4/2-2/1) micrites, wackestones, and calcarenjtes

with wavy, irregular, and lenticular stratification [Fig. 18(b)].

Locally intraformational conglomerates occur in discontinuous horizons

associated with the limestones.

The thick gray

5. STRUCTURAL DATA

The structural fabrlc o f strata within the Copper Creek fault block

on the DOE Oak Ridge Reservation is complex (McMaster 1963: Sledz and

Huff 1981) and is the result of multiple periods of deformation

associated with several pulses of the Appalachian orogeny.

Examination of the drill core and geophysical logs permits

characterization of several important structural elements common to

Page 71: Stratigraphic and structural data for the Conasauga Group

.

Page 72: Stratigraphic and structural data for the Conasauga Group

t h e s t r a t a o f t h e Conasauga Group and t h e Rome Format ion on t h e Copper

Creek f a u l t b l o c k i n Mel ton V a l l e y . F a b r i c elements observed i n c l u d e

bedding p l a n e - p a r a l l e l and h igh-angle f a u l t s , i n t r a f o r m a t i o n a l t h r u s t

f a u l t s , sma l l - sca le f o l d s , m u l t i p l e j o i n t se ts , and sma l l - sca le

f r a c t u r e s . A b r i e f d i s c u s s i o n o f such s t r u c t u r e s i s i n c l u d e d he re

because t h e s t r u c t u r e s can i n f l u e n c e t h e s t r a t i g r a p h i c da ta ob ta ined

f r o m t h e borehole. S p e c i f i c a l l y , I n t r a - and c r o s s - f o r m a t i o n a l f a u l t s

can accomodate v a r y i n g amounts o f s t r a i n d u r i n g de fo rma t ion o f t h e

s e c t i o n . I n so doing, t h e i n i t i a l t h i c k n e s s and s t r a t i g r a p h i c

r e l a t i o n s h i p s o f t h e sedimentary s e c t i o n have been m o d i f i e d t o some

e x t e n t .

Bedding-plane f a u l t s - Bedding p l a n e - p a r a l l e l sma l l - sca le f a u l t s

a r e u b i q u i t o u s w i t h i n t h e Conasauga Group and t h e Rome Format ion.

Such f a u l t s c h a r a c t e r i s t i c a l l y occur a t c o n t a c t s between l i t h o l o g i e s

t h a t have g r e a t l y d i f f e r e n t t e n s i l e s t r e n g t h s (e.9. mudstone and

l i m e s t o n e ) , a l t hough such f a u l t s a r e a l s o observed w i t h i n

mudstone-r ich i n t e r v a l s , where they a p p a r e n t l y a r e n o t r e l a t e d t o

l i t h o l o g y d l f f e r e n c e s [ F i g s . 19(g) and ( b ) ] . The d e n s i t y and spacing

o f beddlng-plane f a u l t s i s h i g h l y v a r i a b l e th roughou t t h e

s t r a t i g r a p h i c s e c t i o n , b u t t h e f a u l t s a r e most abundant i n t h i n - t o

medium-bedded I n t e r v a l s o f l imestones o r s i l t s t o n e , and mudstones.

Beddlng-plane f a u l t s a r e l o c a l i z e d w i t h i n a d i s t u r b e d zone 2.0 t o

5.0 mm t h i c k and a r e c h a r a c t e r i z e d by t h e development o f s l i c k e n s i d e d

and s t r i a t e d t e x t u r e s on t h e bedding p lane s u r f a c e [see F i g . 1 9 ( b ) ] .

Commonly t h e f a u l t s u r f a c e i s assoc ia ted w i t h a ve ry t h i n (0.1 t o

2.0 mm t h i c k ) zone o f I tg lassyl1 m y l o n i t e l i k e m a t e r i a l t h a t i s x-ray

amorphous and i s p e t r o g r a p h i c a l l y c r y p t o c r y s t a l l i n e [ F i g . 1 9 ( & ) ] .

Page 73: Stratigraphic and structural data for the Conasauga Group

59

.

.

Fig. 19. Bedding plane-parallel fault within Maryville Limestone (Box 108: 1022 ft). [a] (Core is 61 mm in diam.) Side view o f bedding plane-parallel fault that occurs at limestone-mudstone contact (1). Fault i s approximately 1 to 2 mm thick and is composed of mylonitelike cryptocrystalline material. [ t ~ ] (Core 4s 61 mm in diameter) Plane t r i n w n F F a n i l + i l l i i r + ~ a + n A in r a l Nn+n + h n nlsrrtr n n l i r h n A

Page 74: Stratigraphic and structural data for the Conasauga Group

Because o f t h e i r abundance, bedding-plane f a u l t s rep resen t a

mechanism t h a t cou ld have accomodated l a r g e amounts o f s t r a i n d u r i n g

de fo rma t ion and t h r u s t - f a u l t i n g events. The amount o f such s t r a i n

accomodation cannot be determined, b u t i t may have s i g n i f i c a n t l y

changed t h e o r i g i n a l th icknesses o f p a r t i c u l a r i n d i v i d u a l

s t r a t i g r a p h i c u n i t s .

High Angle F a u l t s - F a u l t s s i t u a t e d a t h i g h angles t o bedding

a r e common throughout t h e e n t i r e s e c t i o n s t u d i e d b u t appear t o be most

abundant i n t h e R o g e r s v i l l e Shale, Rut ledge Limestone, and Pumpkin

V a l l e y Shale fo rma t ions o f t h e Conasauga Group and i n t h e lower p a r t

o f t h e Rome Format ion. Such f a u l t s a r e commonly observed i n o u t c r o p

(S ledz 1980; Sledz and H u f f 1981; Oavis and S t a n s f i e l d 1984) and i n

d r i l l co re f rom throughout t h e Oak Ridge v i c i n i t y (Haase 1985). A s

measured i n ou tc rop , t h e f a u l t s have e l t h e r a normal o r a reve rse

sense o f mo t ion and a r e c h a r a c t e r i z e d by smal l amounts o f d isp lacement

( s e v e r a l meters t o seve ra l tens o f meters; Wal ls and Haase,

unpubl ished da ta ) . High-angle f a u l t s a r e c h a r a c t e r i z e d by 0.2- t o

1.5-m-thick i n t e n s e l y deformed zones i n which bedding and sedimentary

s t r u c t u r e s a r e h i g h l y d i s t u r b e d , b r e c c i a t e d , o r p a r t i a l l y t o

comp le te l y o b l i t e r a t e d ( F i g . 20) . I n a d d i t i o n , d rag f o l d s , developed

i n t h e o the rw ise u n a l t e r e d s t r a t a immediate ly a d j a c e n t t o t h e

l o c a l i z e d f a u l t zone, a r e commonly assoc ia ted w i t h h i g h ang le f a u l t s .

W i t h i n t h e deformed zones, t h e h o s t l i t h o l o g y appears t o be

m i n e r a l o g i c a l l y a l t e r e d t o a ve ry f i n e - g r a i n e d , c l a y - r i c h , b leached

m a t e r i a l . T y p i c a l l y , f a u l t zones have c a l c i t e - f i l l e d ve ins t h a t

c r o s s - c u t t h e i n t e r v a l a t o r i e n t a t i o n s p a r a l l e l o r s u b p a r a l l e l t o t h e

Page 75: Stratigraphic and structural data for the Conasauga Group

61

.

Fig. 20. Localized structures associated with high-angle faults within Conasauga Group. Core rows are 0.76 m (2.5 ft) long and stratigraphic top i s left. [a] (Box 105: 1026-1028.5 ft) Small drag fold (1) associated with fault at limestone-shale contact. Such structures are common within Maryvllle Limestone. [II] (Box 183: 1765-1772.5 ft) Drag fold (2) and calcite-filled fracture (3) assocfated with high-angle fault within Pumpkin Valley Shale. [c] (Box 160: 1543-1550.5 ft) Drag fold and brecciated siltstone associated with high angle fault In Rogersville Shale [see also Fig. 14(&)]. [a] (Box 115: 1118-1128 ft)

.

Page 76: Stratigraphic and structural data for the Conasauga Group

62

f a u l t p lane. Such ve ins a r e 0.1 t o 5 cm t h i c k and l o c a l l y coalesce t o

f o r m 4.0- t o 10.0-cm-thick c a l c i t e - r i c h i n t e r v a l s . I n a few r a r e

examples, c a l c i t e ve ins a r e absent f rom f a u l t zones.

I n t r a f o r m a t i o n a l Th rus t F a u l t s - W i t h i n t h e upper p o r t i o n o f t h e

upper p a r t o f t h e M a r y v i l l e Limestone and i n t h e m i d d l e p o r t l o n o f t h e

R o g e r s v i l l e Shale, two e x t e n s i v e l y deformed 5- t o 20-m-thick i n t e r v a l s

occur . W i t h i n such zones, bedding i s c h a o t i c and p o r t i o n s o f t h e

f o r m a t i o n may a c t u a l l y be repeated, suggest lng t h a t t h e zones may

rep resen t sma l l - sca le I m b r i c a t e t h r u s t f a u l t s . The a t t i t u d e o f t h e

f a u l t p l a n e ( s ) w i t h i n these zones i s d i f f i c u l t t o determine, however.

I n t h e R o g e r s v i l l e Shale example, t h e f a u l t p lanes appear t o be a t

h i g h angles t o bedding, sugges t lng t h a t such zones may be t h e r e s u l t

o f a l a rge -sca le , p e r s i s t e n t , h igh-angle f a u l t , a l t h o u g h t h e

p o s s i b i l i t y o f an l n t r a f o r m a t i o n a l t h r u s t f a u l t t h a t has l o c a l l y

repeated p a r t o f t h e R o g e r s v i l l e Shale cannot be r u l e d o u t . Recent ly ,

such a s i t u a t i o n has been documented f o r t h e R o g e r s v l l l e Shale

elsewhere i n t h e Oak Ridge v i c i n i t y ( R o t h s c h l l d e t a l . 1984). I n t h e

f a u l t zone l o c a t e d i n t h e M a r y v i l l e Limestone, t h e f a u l t p l a n e ( s )

appear t o be a t sha l l ow angles o r s u b p a r a l l e l t o t h e bedding. The

occurrence o f s i m i l a r l y deformed zones w i t h i n app rox ima te l y t h e same

s t r a t i g r a p h l c i n t e r v a l o f t h e upper member o f t h e M a r y v i l l e Limestone

elsewhere a l o n g t h e Copper Creek f a u l t b l o c k i n t h e Oak Ridge v i c i n i t y

(Haase 1985) suggests t h a t t h e deformed i n t e r v a l w i t h i n t h e M a r y v i l l e

Limestone i n t e r s e c t e d I n ORNL-JOY No. 2 i s an i n t r a f o r m a t i o n a l t h r u s t

f a u l t t h a t has a l a t e r a l e x t e n t o f seve ra l k i l o m e t e r s .

Page 77: Stratigraphic and structural data for the Conasauga Group

63

J o i n t S e t s and Small Scale Frac tures - S t r a t a o f t h e Conasauga

Group and t h e Rome Format ion a r e cha rac te r i zed by t h e development o f

a t l e a s t two and, l o c a l l y , as many as f i v e , p e r v a s i v e j o i n t se ts

(S ledz and Hu f f 1981). The frequency, spacing, and l e n g t h o f j o i n t s

developed w i t h i n the Conasauga Group have been demonstrated t o be

complex f u n c t l o n s o f bed th i ckness and l i t h o l o g y (S ledz and H u f f

1981). Because o f such a r e l a t i o n s h i p , t h e degree o f j o i n t i n g

observed f o r a p a r t i c u l a r s t r a t i g r a p h i c h o r i z o n w i t h i n d r i l l co re i s

q u i t e v a r i a b l e ( F i g . 21) . T y p i c a l l y , j o i n t s observed i n d r i l l c o r e

have o r i e n t a t i o n s t h a t a r e e i t h e r n e a r l y p e r p e n d i c u l a r t o o r p a r a l l e l

t o bedding. W i t h i n l imestone and s i l t s t o n e / s a n d s t o n e l i t h o l o g i e s ,

j o i n t s a r e p a r t i a l l y t o comple te ly f i l l e d by secondary m i n e r a l i z a t i o n

o f c a l c i t e o r d o l o m i t e [F igs . 21(&) t o ( c ) ] . J o i n t s w i t h i n mudstones,

however, a r e open w i t h l i t t l e , i f any, secondary m i n e r a l i z a t i o n [F igs .

21(&) and ( e ) ] . Development o f secondary m i n e r a l i z a t i o n w i t h i n j o i n t s

appears t o be r e l a t e d most s t r o n g l y t o t h e hos t l i t h o l o g y i n which a

p a r t i c u l a r j o i n t i s developed; i t does n o t appear t o be r e l a t e d t o

depth w i t h i n t h e borehole.

Numerous smal l -sca le f r a c t u r e s , 0.1 t o 1.5 m long, a r e observed

w i t h i n t h e l l m e s t o n e - r i c h members o f t h e Conasauga Group and t h e

massive sandstone hor izons w i t h i n t h e Rome Format ion. The f r a c t u r e s

a r e r e a d i l y apparent I n d r i l l core ( F i g . 22) . Open f r a c t u r e s t h a t

l a c k a p p r e c i a b l e secondary m i n e r a l i z a t i o n a r e observable on a c o u s t i c

t e l e v i e w e r l ogs [F igs . 22(d) t o ( f ) and F ig . 231. F r a c t u r e f requency

i s h i g h l y v a r i a b l e , a l t h o u g h most occur w i t h i n l imestone o r sandstone

i n t e r v a l s g r e a t e r than 0.5 m i n th ickness .

l e s s v a r i a b l e , w i t h most f r a c t u r e s o r i e n t e d w i t h i n 15' o f v e r t i c a l

F r a c t u r e o r i e n t a t i o n I s

Page 78: Stratigraphic and structural data for the Conasauga Group

.

Fig . 21. J o i n t s w i t h l n Conasauga Group. Diameter o f core I s 61 mm. [a] (Box 106: 1040 f t) Evenly laminated s i l t y c a l c a r e n i t e o f M a r y v i l l e Llrnestone w l t h c a l c l t e - f l l l e d j o i n t s ( 1 ) o r l e n t e d p e r p e n d l c u l a r l y t o bedding t rends . Note t h e t e r m l n a t l o n o f j o l n t s a t c i n te rbedded mudstone l a y e r s . [b] (Box 179: 1721 f t : s i l t s t o n e o f upper Pumpkin V a l l e y Shale w i t h c a l c i t c ( 2 ) . Note l a c k o f c o n t i n u i t y o f j o i n t s across beddlng con tac ts . (Box 192: 1848 f t ) I n t e r l a m i n a t e d s i l t s t o n e and mudstone o f upper Pumpkin V a l l e y Shale l l l u s t r a t l n g two o r i e n t a t i o n s o f c a l c i t e - f i l l e d j o l n t s ( 3 and 4 ) . [a] (Box 72: 725 f t ) Mudstone o f No l ichucky Shale i l l u s t r a t l n g development o f two major j o i n t se ts ( 5 and 6) and bedding p lane p a r t i n g ( p e r p e n d i c u l a r t o t h e edge o f core) . Note t h a t these j o i n t s a r e n o t f i l l e d w i t h secondary m i n e r a l i z a t i o n . [ e ] (Box 267: 1985 f t ) " sha t te red" I n t e r v a l s ( 7 and 8) r e s u l t i n g f rom a h i g h d e n s i t y o f j o i n t s and bedding p lane p a r t i n g s . bedding p lane p a r t i n g i s s l m i l a r t o t h a t observed I n [a].

[z]

Mudstone of lower Pumpkin V a l l e y Shale e x h i b i t i n g two

O r l e n t a t l o n s of j o i n t se ts and

Page 79: Stratigraphic and structural data for the Conasauga Group

Fig. 22. Fractures with Conasauga Group and Rome Formation. Core diameter is 61 mm. grainstone of Nolichucky Shale that exhibits two sets of calcite-filled fractures. second set of fractures with a different orientation (1). 104: 1021) Calcite-filled fracture within intraclastic grainstone of Marville Limestone. Note fracture is offset at bedding contacts (2). [c ] (Box 83: 832 ft) Mudstone of Nollchucky Shale with calcite-filled fracture (3) oriented parallel to principal joint set. 288 ft) Fracture within oolitic packstone of Maynardvtlle Limestone (4) that i s open and only locally filled with secondary mineralization. within a mudstone of the Nolichucky Shale. [F ] (Box 222: 2123 ft) Two generations of fractures within massive sandstone of upper Rome Formation. mineralization (6) and cuts across earlier quartz-filled fracture (7).

[a] Box 98: 970 ft) Oolitic and intraclastic

One set parallels edge of core and cuts [b] (Box

[c!] (Box 25:

[ e ] (Box 91: 907 ft) Open, unfilled fracture (5)

One fracture is only partially filled with secondary

Page 80: Stratigraphic and structural data for the Conasauga Group

66

ORNL-Photo 2730-85

.

r i y . CJ. oureiiuie wai I iiiwyeb u u ~ a ~ i i e u WITII ~YLUUSTIL televiewer l ogger . The photographs represent complete 360° scan o f boreho le w a l l w i t h n o r t h on l e f t s i d e o f t h e photograph and south i n midd le . S t r a t i g r a p h i c a l l y up d i r e c t i o n i s toward t o p o f f i g u r e . [a] (Boreho le depth 285 t o 290 f t ) Prominent open f r a c t u r e (1) w i t h i n M a y n a r d v l l l e Llmestone. Th is same f r a c t u r e i s i l l u s t r a t e d I n F ig . 22(d). [b] (Boreho le depth 768 t o 778 f t ) In terbedded l imes tone ( l i g h t areas) and mudstone ( d a r k areas) I n t e r v a l o f No l ichucky Shale w i t h t h r e e open f r a c t u r e s v i s i b l e ( 2 - 4). [c ] (Boreho le depth 523 t o 537 f t ) E x t e n s i v e v e r t i c a l l y - o r i e n t e d , open f r a c t u r e s ( 5 - 7) w i t h i n l i m e s t o n e - r i c h i n t e r v a l o f No l ichucky Shale.

i

Page 81: Stratigraphic and structural data for the Conasauga Group

67

or horizontal. Fractures within limestones are typically filled or

partially filled with secondary mineralization, usually calcite [Figs.

22(a) and (b) ] . Fractures within siltstone or sandstone intervals

(Fig. 22(f)] are open or only slightly filled by secondary

mineralization that can be either calcite, dolomite, or quartz. There

is no readily apparent, simple relationship between borehole depth and

the degree of fracture filling; open fractures were observed

throughout the entire borehole.

- Copper Creek F a u 1 t - B . E - Deformation associated with the Copper

Creek fault is concentrated within a 45-m-thick interval that is

intersected close to the bottom of ORNL-JOY No. 2. In additon to this

fault zone, the lower section of the Rome Formation, as described

previously, is a jumbled composite of fragments and slices o f various

lithologies juxtaposed and separated by numerous intraformational

thrust and high-angle faults that have highly variable orientations.

Deformation within the fault zone occurs throughout and is

concentrated within several discrete zones. Within such zones,

cataclastites and mylonjtes are comnonly observed (Fig. 24). Such

material represents intensely deformed and broken-up rock material

that is very heterogeneous in grain size. The fine-grained matrix of

the cataclastite consists of crypto- to microcrystalline material

composed of fragmented and ground-up host-rock lithology. Partially

disaggregated and fragmented pieces of the host rock are randomly

scattered throughout (Fig. 24). Mylonltes are associated within

cataclastite intervals. They are 1 - to 5-m-thick zones of

cryptocrystalline material that typically has a glasslike appearance

Page 82: Stratigraphic and structural data for the Conasauga Group

.

. rauir;. Lare rows are u.10 m (L.D r r ~ long ana srrarigrapnic rop I S

l e f t . [a] (Box 278: 2614-2616.5 f t ) M y l o n i t e ( 1 ) and c a t a c l a s t i t e formed w i t h i n t h i c k l y bedded sandstone h o r i z o n o f lower Rome Format ion . ['I (Box 280: 2634-2639 f t ) C a t a c l a s t i t e s ( 2 ) a s s o c i a t e d w i t h f a u l t s w i t 1 Moccasin Format,

Page 83: Stratigraphic and structural data for the Conasauga Group

69

* .

. -

Copper Creek

ca lcareous s

reduced t o a

f a u l t i n t e r v a l

s i m i l a r t o t h e bedding p l a n e - p a r a l l e l f a u l t s d iscussed p r e v i o u s l y

( F i g s . 19 and 24)

The b r e c c i a zones a r e o f v a r i a b l e t h i c k n e s s (0.1 t o 5 m) and range

f rom s l i g h t b r e c c i a t i o n and d i s r u p t i o n o f bedding p a t t e r n s , t o

complete d i s r u p t i o n and d i s a g g r e g a t i o n o f t h e rock t h a t i s accompanied

by c a t a c l a s t i t e and m y l o n i t e f o r m a t i o n ( F i g . 2 2 ) . The p r i n c i p a l

i s a b r e c c i a zone 6 m t h i c k where t h e

l t s t o n e s and m c r i t e s o f t h e Moccasin Format ion have been

s o f t , f r i a b l e , h i g h l y a l t e r e d and bleached,

unconso l i da ted mud ( F i g . 2 5 ) . Stockdale (1951) r e p o r t s s i m i l a r 2- t o

6-m-thick, h i g h l y b r e c c i a t e d and d isaggregated zones a t t h e bot tom o f

t h e Copper Creek f a u l t b l o c k elsewhere i n t h e Oak Ridge v i c i n i t y .

The b r e c c i a s and m y l o n i t e s o f t h e Copper Creek f a u l t zone rep resen t

i n t e r v a l s where ve ry l a r g e amounts o f s t r a i n have been accommodated

d u r i n g t h r u s t movement. Such i n t e r v a l s , t o g e t h e r w i t h t h e numerous

f a u l t s throughout t h e lower i n t e r v a l o f t h e Rome Format ion, account

f o r an undoubtedly l a r g e b u t s t i l l unkown amount o f change i n t h e

s t r a t i g r a p h i c t h i c k n e s s o f t h e Rome Format ion.

6 . SUMMARY

The s t r a t i g r a p h y o f t’le Conasauga Group i n Me l ton V a l l e y i s

complex.

c l a s t i c - t o - c a r b o n a t e c y c l e s ( F i g . 3 ) . Th is s t r a t l f i c a t i o n p a t t e r n i s

c h a r a c t e r i s t i c o f t h e c e n t r a l phase o f t h e Conasauga Group throughout

e a s t Tennessee (Rodgers 1953; Hasson and Haase 1985).

l o c a l i t y i s on t h e western marg in o f t h i s phase and i s a t a p o i n t

I n s j m p l i f l e c ! ternis, t h e s t r a t a o f t h e group rep resen t t h r e e

The Oak Ridge

Page 84: Stratigraphic and structural data for the Conasauga Group
Page 85: Stratigraphic and structural data for the Conasauga Group

71

where the group i s undergoing very pronounced lithologic changes,

marked by the disappearance o f the lower and mlddle carbonate

formatlons (the Rutledge and Maryville limestones, F i g . 26).

Reglonally, along the Copper Creek fault block in east Tennessee,

there is a southwestward trend of clastic enrichment that I s

accompanied by a gradual thinning of the group (Fig. 26). The complex

lithologic sequences described for the study locallty are the result

of the paleogeographic setting that was a landward margin of an

intrashelf basln (Hasson and Haase 1985).

Page 86: Stratigraphic and structural data for the Conasauga Group

MILES 0 10 20

FEET

20 40 m KILOMETERS

DOLOSTONE

RI LIMESTONE

SHALE, MUOSTONF _ - _-- _ _ -- - AND SANDSTOP' -- - -- __

F i g . 26 . C r o s s s e c t i o n a l o n g Copper f a u l t b l o c k i n e a s t Tennessee i l l u s t r a t i n g r e g i o n a l t h i c k n e s s and s t r a t i g r a p h i c v a r i a t i o n s i n Conasauga Group. L o c a l i t y No. 27 i s b o r e h o l e ORNL-JOY No. 2; o t h e r l o c a l i t i e s a r e s u r f a c e exposures ( s e e Hasson and Haase 1985: Tab les 1 and 2 and F i g s . 6 - 8 ) .

. .

Page 87: Stratigraphic and structural data for the Conasauga Group

7 3

REFERENCES

-. B a r n e t t , J. 1954. Geo log ica l I n v e s t i g a t i o n s , Waste D isposa l Area, Oak Ridge N a t i o n a l Laboratory , Oak Ridge. Tennessee, U. S. Army Corps o f Engineers, Ohio R i v e r D i v i s i o n L a b o r a t o r i e s , Mariemont, Ohio.

Cowser, K . E. 1958. S e l e c t i o n o f a B u r i a l Ground S i t e a t ORNL f o r S o l i d Waste Disposal , ORNL/CF-58-5-96, Oak Ridge N a t l . Lab.

Cowser, K . E. and Parker, F. L. 1958. " S o i l D i sposa l o f R a d l o a c t i v e Wastes a t ORNL: C r i t e r i a and Techniques o f S i t e S e l e c t i o n and M o n i t o r i n g , " H e a l t h Phys., 1, 152-153.

Cowser, K . E., Lomenick, T. F . , and McMaster, W. M. 1961. S t a t u s Report on E v a l u a t i o n o f S o l i d Waste D isposa l a t ORNL - I, ORNL-3035, Oak Ridge N a t l . Lab.

C a r r o l l , D., 1961. S o i l s and Rocks o f t h e Oak Ridge Area, Tennessee, U. S. Geo log ica l Survey Trace Element I n v e n t o r y Report TEI 785, Washington, D. C .

Davis, E. C. and S t a n s f i e l d , R. G. 1984. Design and C o n s t r u c t i o n o f a French D r a i n f o r Groundwater D i v e r s i o n i n S o l i d Waste Storage Area 6 a t t h e Oak Ridge N a t i o n a l Labora to ry , ORNL/TM-9014, Oak Ridge N a t l . Lab.

delaguna, W. 1956. Some Geologic Fac to rs That I n f l u e n c e D isposa l o f Rad ioac t i ve Wastes i n t o P i t s , i n Seminar on S a n i t a r y E n g i n e e r i n g -y I n d u s t r y , C i n c i n n a t i . 1955, U. S. Atomic Energy Commission, D i v . Tech. I n f . Report , TID-7517, p a r t l b .

delaguna, W. 1961. F i r s t and Second F r a c t u r i n g Exper iments. Unpubl ished d r a f t r e p o r t d i s t r i b u t e d a t a meet ing o f t h e Waste Disposal Committee, D i v i s i o n o f E a r t h Sciences, N a t i o n a l Academy o f Sciences - N a t i o n a l Research Counci l a t t h e Savannah R i v e r P l a n t , December 8, 1961.

delaguna, W., Cowser, K . E., and Parker, F. L. 1958. "Disposal o f High Level Rad ioac t i ve L i q u i d Wastes i n T e r r e s t r i a l P i t s : A Sequel," i n Proceedings o f t h e Second U n i t e d Na t ions Conference on t h e Peaceful Uses o f Atomic Energy, Geneva, Sw i t ze r land , June, 1956.

delaguna, W. , e t a l . 1968. Eng ineer ing Devlopment o f H y d r a u l i c F r a c t u r i n g as a Method f o r Permanent Disposal o f Rad ioac t i ve Wastes, ORNL-4259, Oak Ridge N a t l . Lab.

D o t t , R . H., J r . and Bourgeois, J . 1982. "Hummocky S t r a t i f i c a t i o n : S i g n i f i c a n c e o f I t s V a r i a b l e Bedding Sequences," Geol. SOC. o f America B u l l . , 93, 663-680.

Duguid, J . 0. 1975. S ta tus Report on R a d i o a c t i v i t y Movement f rom B u r i a l Grounds i n Mel ton and Be the l V a l l e y s - I, ORNL-5017, Oak Ridge N a t l . Lab.

Page 88: Stratigraphic and structural data for the Conasauga Group

74

Dunham, R. J . 1962. " C l a s s i f i c a t i o n o f Carbonate Rocks Accord ing t o D e p o s i t i o n a l Texture," i n American A s s o c i a t i o n o f Petro leum Geo log is t s Mem. No. 1, 108-121.

Goddard, E. N, Trask, P. D . , De Ford, R. K . , Rove, 0. N., Singewald, J . T., and Overbeck, R . M. 1948. Rock-Color Char t , Geo log ica l S o c i e t y o f America, Denver, Colorado.

H a r r i s , L. D. and M l l i c i , R . C. 1977. C h a r a c t e r i s t i c s o f Thin-sk inned S t y l e o f Deformat ion i n t h e Southeastern Appalachians. and P o t e n t i a l Hydrocarbon Traps, P r o f e s s i o n a l Paper 1018, U. S. Geo log ica l Survey.

Haase, C . S. 1983. "Geo log ica l and P e t r o l o g i c a l Cons ide ra t i ons Relevant t o t h e D isposa l o f R a d i o a c t i v e Wastes by H y d r a u l i c F r a c t u r i n g : An Example a t t h e U. S. Department o f Energy 's Oak Ridge N a t i o n a l L a b o r a t o r y " i n Proceedinss o f t h e S i x t h M a t e r i a l Research S o c i e t y Symposium on t h e S c i e n t i f i c Basis f o r R a d i o a c t i v e Waste Management, Boston, Massachusetts, November, 1982, l5, 307-31 4.

Haase, C . S. 1985. Subsurface Geo log ica l Data f o r t h e Conasausa Group on t h e Whiteoak Mountain and Copper Creek F a u l t B locks, DOE Oak Ridge Reservat ion, ORNL/TM-9159, Oak Ridge N a t l . Lab., i n p ress .

Haase, C . S. and Vaughan, N. D. 1981. " S t r a t i g r a p h y and l i t h o l o g y o f t h e Conasauga Group i n t h e V i c i n i t y o f Oak Ridge, Tennessee ( a b s t . ) , " Geo log ica l S o c i e t y o f America A b s t r a c t s w i t h Programs, v o l 13.

Hasson, K. 0. and Haase, C. S. 1982. " S t r a t i g r a p h y o f t h e Conasauga Group i n t h e V a l l e y and Ridge Prov ince, East Tennessee ( a b s t . ) , " Geo log ica l S o c i e t y o f America A b s t r a c t s w i t h Programs, v o l . 1 4

Hasson, K . 0. and Haase, C. S. 1985. " L i t h o f a c i e s and Paleogeography o f t h e Conasauga Group ( M i d d l e and L a t e Cambrian) i n t h e V a l l e y and Ridge Prov ince o f East Tennessee," American A s s o c i a t i o n o f Petro leum Geo log is t s B u l l e t i n , submi t ted.

Krumhansl, J . L. 1979a. P r e l i m i n a r y Resu l t s Report Conasausa Near-Surface Heater Exper iment, SAND79-0745, Sandia N a t l . Lab., Albuquerque, New Mexico.

Krumhansl, J . L. 1979b. F i n a l Report : Conasauga Near-Surface Heater Exper iment, SAND79-1855, Sandia N a t l . Lab., Albuqerque, New Mexico.

Law Eng ineer ing . 1975. P r e l i m i n a r y S a f e t y A n a l y s i s Report , Exxon NFRRC : Docket 50-564.

Lomenick, T. F., and Wyrick, H. 3 . 1965. Geohydrologic E v a l u a t i o n o f S o l i d Waste Storage Area 6 : ORNLITM-1327, Oak Ridge N a t l . Lab.

.

Page 89: Stratigraphic and structural data for the Conasauga Group

75

.

*

r

Marke l l o , J . R. and Read, J . F. 1981. "Carbonate Ramp-to-Deeper Shale S h e l f T r z q s l t i o n s o f an Upper Cambrian I n t r a s h e l f Basin, No l i chucky Foramtion, Southwest V i r g i n i a Appalachians," Sedimentology, 28, 573-597.

M a r k e l l o , J . R . and Read, J . F. 1982. "Upper Cambrian I n t r a s h e l f Bas in No l ichucky Formation, Southwest V i r g i n i a Appalachians," American A s s o c i a t i o n o f Petro leum Geo log is t s B u l l e t i n , 66, 860-878.

McMaster, W. M., 1963. Geoloqic Map o f t h e Oak Ridge Reservation, Tennessee, ORNL/TM-713, Oak Ridge N a t l . Lab.

McMaster W. M. and Wal le r , H. D . 1965. Geology and S o i l s o f Whlteoak Creek Basin. Tennessee, ORNL-1108, Oak Ridge N a t l . Lab.

M i l i c i , R . H., 1973. "The S t r a t i g r a p h y o f Knox County, Tennessee" i n Geology o f Knox County, Tennessee, Tennessee D i v i s i o n o f Geology B u l l e t i n 70, N a s h v i l l e , Tennessee.

M i l i c i . R. H., B ren t , W. B., and Walker, K. R. 1973. l tDepos l t l ona l Environments i n Upper Conasauga Lagoon-F i l l Sequence" i n Geology o f Knox County, Tennessee, Tennessee D i v i s i o n o f Geology B u l l e t i n 70, N a s h v i l l e , Tennessee.

M i l i c i , R . H, H a r r i s , L. D., and S t a t l e r , A. T. 1979. An I n t e r p r e t a t i o n o f Seismic Cross Sec t ions i n t h e V a l l e y and Ridge o f Eas tern Tennessee, Tennessee D i v i s i o n o f Geology O i l and Gas Seismic I n v e s t i g a t i o n s Ser ies 1 .

O s s i , E. J . 1979. "Mesoscopic S t r u c t u r e s and F a b r i c W i t h i n t h e Th rus t Sheets between t h e Cumberlanf Escarpment and t h e S a l t v i l l e F a u l t " (unpub l ished M.S. t h e s i s ) , The U n i v e r s i t y o f Tennessee, K n o x v i l l e .

Rodgers, J . 1953. Geologic Map o f East Tennessee w i t h Exp lanatory Text, Tennessee D i v i s i o n o f Geology B u l l e t i n 58, N a s h v i l l e , Tennessee.

Roeder, 0 . H., G i l b e r t , 0. E., and Witherspoon, W. D. 1978a. E v o l u t i o n and Mic roscop ic S t r u c t u r e o f V a l l e y and Ridge Th rus t F a u l t s . Tennessee and V i r g i n i a , U n i v e r s i t y o f Tennessee Stud ies i n Geology, 2, The U n i v e r s i t y o f Tennessee, K n o x v i l l e .

Roeder, D. H, Yust, W. W., and L i t t l e , R . L. 1978b. " F o l d i n g i n t h e V a l l e y and Ridge Prov ince o f Tennessee," American J . o f Science, - 278, 477-496.

Ro thsch l l d , E. R., e t a l . 1984. Hydro loq ic C h a r a c t e r i z a t i o n o f Proposed S o l i d Waste Storage Area 7, ORNL/TM-9314, Oak Ridge N a t l . Lab.

Samman, N. F. 1975. "Sedimentat ion and S t r a t i g r a p h y o f t h e Rome Format ion i n East Tennessee" (unpub l ished Ph.D. d i s s e r t a t i o n ) , The U n i v e r s i t y o f Tennessee, K n o x v i l l e .

Page 90: Stratigraphic and structural data for the Conasauga Group

76

Sledz, J. J. and H u f f , 0. 0. 1981. Computer Model f o r De te rm in ing F r a c t u r e P o r o s i t y and P e r m e a b i l i t y i n t h e Conasauga Group, Oak Ridge N a t i o n a l Labora to ry . Tennessee, ORNL/TM-7695, Oak Ridge N a t l . Lab.

Sledz, J. 6. 1980. " P e t r o l o g i c , M i n e r a l o g i c , and Ion-Exchange C h a r a c t e r i s t i c s o f t h e Rome Format ion and Pumpkin V a l l e y Shale on t h e Oak Ridge N a t i o n a l Labora to ry Reserva t i on , Oak Ridge, Tennessee" (unpub l i shed M. S. t h e s i s ) : The U n i v e r s i t y o f Tennessee, K n o x v i l l e .

Stockdale, P. B. 1951. Geo log ica l Cond i t i ons a t t h e Oak Ridge N a t i o n a l Labora to ry (X-10) Area Relevant t o t h e D isposa l o f R a d i o a c t i v e Waste, ORO-58, U. S. Atomic Energy Commissionm, Oak Ridge Operat ions, Oak Ridge, Tennessee.

St ruxness, E . G., 1962. General D e s c r i p t i o n of Oak Ridge S i t e and Surrounding Areas - Hazards E v a l u a t i o n , v o l . 2, ORNL/TM-323, Oak Ridge N a t l . Lab.

Vaughan, N. D., e t a l . 1982. F i e l d Demonstrat ion o f Improved Sha l l ow Land B u r i a l P r a c a t i c e s f o r Low-Level R a d i o a c t i v e S o l i d Wastes: P r e l i m i n a r y S i t e C h a r a c t e r i z a t i o n and Progress Repor t , ORNL/TM-8477, Oak Ridge N a t l . Lab.

Webster, 0. A., 1976. A Review o f Hydro log i c and Geologic C o n d i t i o n s Related t o t h e R a d i o a c t i v e Sol id-Waste B u r i a l Grounds a t Oak Ridge N a t i o n a l Labora to ry , U. S. Geo log ica l Survey Open F i l e Report 76-727, Washington, D. C.

Weeren, H. O., Brunton, G. D., delaguna, W., and Moore, J. G. 1974. H y d r o f r a c t u r e S i t e Proof Study a t Oak Ridge N a t i o n a l Labora to ry , ORNL/TM-4713, Oak Ridge N a t l . Lab.

. .-

.

W o j t a l , S. F., 1982. " F i n i t e Deformat ion i n T h r u s t Sheets and T h e i r M a t e r i a l P r o p e r t i e s " (unpub l i shed Ph.0. d i s s e r t a t i o n ) , Johns Hopkins U n i v e r s i t y , B a l t i m o r e , Maryland.

Page 91: Stratigraphic and structural data for the Conasauga Group

77

A P P E N D I X

D E T A I L E D L I T H O L O G I C LOG FOR BOREHOLE ORNL-JOY N o . 2

.

Page 92: Stratigraphic and structural data for the Conasauga Group

. .

Page 93: Stratigraphic and structural data for the Conasauga Group

1

8

100.

150-

200-

250 -

79

ORNL- DWG 83-13888

ORNL JOY 2 (58-658w)

300-

4 C R

MY 350- €

4 0 0 -

450-

500-

550-

600-

650-

F i g . A l . L i t h o l o g i c l o g f o r borehole ORNL-JOY No. 2 . F lgure consists o f t h r e e columns l l l u s t r a t l n g , from l e f t t o r l g h t , rock c o l o r , beddlng and s t r a t i f l c a t l o n p a t t e r n s , and l l t h o l o g y (symbols summarized I n F l g . A2). Sect lon I s based on d e t a l l e d core logg lng a t 1 - f t i n t e r v a l s .

MY c

NL c

Page 94: Stratigraphic and structural data for the Conasauga Group

80

1000-

1050-

ORNL-DWG 83-13889

1

ORNL JOY 2 (658-1258~~)

4- NL c c

MR

.

Page 95: Stratigraphic and structural data for the Conasauga Group

81

*.

.

* .

ORNL-DWG 83-13890

ORNL JOY 2 (1258~1858~)

1500-

1550-

1600-

1650-

MR €

RG c

RG € c

R T

1700

1750

1800

I

4- R T

PV €

1 .

Page 96: Stratigraphic and structural data for the Conasauga Group

82

1900.

1950-

20007

ORNL-DWG 83-13891

ORNL JOY 2 (1858-2458FT)

PV €

RM €

2100

c

Page 97: Stratigraphic and structural data for the Conasauga Group

83

*.

:

2500,

2550

2600

2650

.... .. . . . - a

ORNL-DWG 83-13892

ORNL JOY 2 (245892718FT)

2700

T.D. 2 7 1 8 ~ ~

f RM

0 CH

Page 98: Stratigraphic and structural data for the Conasauga Group

ORNL-DWG 83-12596

SYMBOL KEY

COLOR STRUCTURES LITHOLOGY

0 WHITE: N9 TO N8

171 MEDIUM GRAY: N7 TO N5

0 DARK GRAY: N4 TO N3

BLACK: N2 TO N1; ALSO ALL ' HUES WITH VALUE 2.5 OR LESS

a MAROON TO MAROON-BROWN: 10R */3 TO *I8

MAROON TO GRAY: 5R * I 3 TO "18

GRAY TO GRAY-GREEN: 5GY a / * * TO ' I * * ; 10GY; 5G " / I TO */4

GRAY TO MAROON-BROWN: 5R '11 ' TO */2; 10R '11 TO '12

GRAY TO BROWN: 5YR TO IxI 3 / * ~ ; lOYR 5/.* TO 4 /s*

GRAY TO TAN: 5YR TO 6 / s + ; lOYR ' I t * TO ' I * * ; 5YR */I

REPRESENTS VALUES WITHIN THE RANGE 3 TO 8

* * REPRESENTS CHROMAS WITHIN THE RANGE 1 TO 6

CONTINUOUS PARALLEL LAM I NATION

DISCONTINUOUS PARALLEL LAMINATION

a MASSIVE TO POORLY LAMINATED

WAVY LAMINATED

LENTICULAR BEDDING

@ FLASER BEDDING

CROSS BEDDING

CURRENT RIPPLED LAMINATION

MICRO HUMMOCKY CR OSS-ST R AT I F I CAT I ON

@ OOlDS

@ INTRA CLASTS a BRECCIA

@ MOTTLED, IRREGULAR BEDDING

BIOTURBATION

ALGAL BIOHERMS

SILTSTONE

a MUDSTONE

SILTY MUDSTONE

CALCAREOUS MUDSTONE

LIMESTONE

DOLOSTONE

@ SHALEY LIMESTONE

SILTY LIMESTONE

GLAUCONITIC

TRACE FOSSILS

NO CORE RECOVERY

F t g . A 2 . Symbol key f o r lithologic log o f ORNL J O Y No. 2.

Page 99: Stratigraphic and structural data for the Conasauga Group

85

ORNL/TM-9159 * *

INTERNAL DISTRIBUTION

1. 2. 3, 4. 5 , 6. 7. 8. 9.

10-14. 15. 16, 17. 18. 19.

20-30. 31. 32. 33 34. 35. 36. 37.

S. I. Auerbach W. J . Boegly, Jr. T. R . Butz R. 0. Chester R, 8. Clapp N. H. Cutshall E . C. Davis R. Dreier L. D . Eyman C. D . Farmer N. 0 . Farrow C. W. Forsberg W . F. Furth G. A. Gillis J. R. Gissel C. S. Haase S. G. Hildebrand F. J. Homan D . 0. Huff G. K . Jacobs R. H . Ketelle S. Y. Lee T. F. Lomenick

38. 39. 40. 41. 42. 43. 44. 45. 46.

47-51. 52. 53.

54-58. 59-63.

64. 65. 66. 67.

68-82. 83-84.

a5. 86. 87.

R. S. Lowrle E . W . McDaniel J. G. Moore T. W. Oakes C. R. Olsen B. 0. Pattun w. w . Pitt 0. E. Reichle T. H. Row 0. M. Sealand E. 0 . Smith 8. P. Spaldlng S , H. Stow L. E. Stratton J. Switek D . M. Walls 6. T. Yeh Central Research Library ESD Library Laboratory Records Dept. Laboratory Records, ORNL-RC ORNL Patent Section ORNL Y-12 Technical Library

1

EXTERNAL DISTRIBUTION

88. J. F . Albaugh, Program Manager, Solld Waste Processing and Dlsposal, Rockwell Hanford Operatlons, P.O. Box 800, Richland, WA 99352 E. L. Albenesius, Savannah River Laboratory, P.O. Box A , Aiken, SC 29801 V . P . Amy, Geraghty and Miller, Inc., 2700 PGA Blvd., Suite 104, Palm Beach Gardens, F . 33410 Z. Bailey, U.S. Geological Survey, A-413 Federal Building, U.S. Courthouse, Nashville, TN 37203 M. Barainca, Program Manager, Low-Level Waste Management Program, U.S. Department o f Energy, 550 Second Street, Idaho Falls, ID 83401 J. Thomas Callahan, Associate Director, Ecosystem Studies Program, Room 336, 1800 G Street, NW, National Science Foundation, Washlngton, DC 20550 T . C. Chee, R&D and Byproducts Division, DP-123 (GTN), U.S. Department of Energy, Washington, DC 20545 J . L. Coleman, Jr., AMOCO Productlon Co., P.O. Box 50879, New Orleans, LA 701 50 Peter Colombo, Group Leader, Nuclear Waste Research, Brookhaven National Laboratory, Bldg. 701, Upton, NY 11973 E . F. Conti, Office o f Nuclear Regulatory Research, Nuclear Regulatory Commlsslon, MS-1130-SS, Washington, DC 20555

89.

90.

91.

92.

93. B

94.

95.

96.

97.

Page 100: Stratigraphic and structural data for the Conasauga Group

86

98.

99.

100.

101.

102.

103.

104.

105. 106.

107.

108.

109.

110.

1 1 7 .

172.

113.

714.

115.

116.

117.

‘l18.

J. J. Davls, Offlce of Nuclear Regulatory Research, Nuclear Regulatory Commission, MS-1130-SS, Washlngton, DC 20555 J. E. Dleckhoner, Actlng Dlrector, Bperatlons and Traffic Dlvislon, DP-122 (GTN), U.S. Department of Energy, Washington, DC 20545 John L. Delchman, Program Director, Waste Management Program Offlce, Rockwell Hanford Bperatlons, P.O. Box 800, Rlchland, WA 99352 T . W . Doe, Earth Sciences Dlvislon, Lawrence Berkeley Natlonal Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 G. J. Folev. Offlce of Envlronmental Process and Effects

M Street, Research, i:S. Envlronmental Protection Agency, 40 SW, RD-682, Washlngton, DC 20460 Carl Gertz, Dtrector, Radloactlve Waste Technology Idaho Operatlons Offlce, U.S. Department of Energy Street, Idaho Falls, I D 83401 C. R . Goldman, Professor o f Llmnology, Dtrector of Research Group, Dlvlslon of Envlronmental Studies, of Callfornla, Davls, CA 94616 0. Hasson, 214 W. Holston, Johnson Clty, TN 37601

Dlvlslon, 550 Second

Tahoe Unlverslty

R . E . Hershey, Dlrector and State Geologlst, Tennessee Dlvlslon of Geology, Customs House, 701 Broadway Street, Nashvllle, TN 37219-5237 E . F. Hollyday, U.S. Geological Survey, Federal Bulldlng, U.S. Courthouse, Nashvllle, TN 37203 6. R. Holzhausen, Appljed Geomechanlcs, Inc., 1336 Brommer St., Santa Cruz, CA 95062 Frank F . Hooper, Ecology, Flsherles and Wildlife Program, School of Natural Resources, The Unlverslty of Michigan, Ann Arbor, MI 48109 R. A. Hopklns, Tennessee Valley Authorlty, Englneerlng Geology and Selsmology Sectton, 177 Llberty Bulldlng, Knoxville, TN 37902 J. W . Huckabee, ProJect Manager, Envlronmental Assessment Department, Electrlc Power Research Institute, 3412 Hlllvlew Avenue, P.O. Box 10412, Palo A l t o , C A 94303 E. A. Jennrlch, Program Manager, Low-level Waste Management Program, EG&G Idaho, Inc., P.O. Box 1625, Idaho Falls, IO 83415 J. J. Jlcha, Director, R&D and Byproducts Dlvislon, DP-123 (GTN), U.S. Department of Energy, Washlngton, DC 20545 W . Johnson, Tennessee Dlvlslon of Geology, Dempster Bulldlng, 305 W. Sprlngdale Ave., Knoxville, TN 37917 E . A. Jordan, Low Level Waste Program Manager, Dlvlslon o f Storage and Treatment Projects, NE-25 (GTN), U.S. Department o f Energy, Washlngton, DC 20545 J. Howard Klttel, Manager, Offlce of Waste Management Programs, Argonne Natlonal Laboratory, 9700 S. Cass Ave., Bldg. 205, Argonne, IL 60439 0. C. Kopp, Department o f Geological Sciences, Unlverslty of Tennessee, Knoxville, TN 37996 M . R. Krelter, Waste Isolatlon, Paclflc Northwest Laboratory, Rlchland, WA 99352

z

I

I

b .

Page 101: Stratigraphic and structural data for the Conasauga Group

87

119.

120.

121. 122,

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

i

4

135.

136.

137.

138.

139.

Leonard Lane, Los Alamos N a t l o n a l Laboratory , P . O . Box 1663, Los Alamos, NM 87545 D. B. L e c l a l r e , D l r e c t o r , O f f l c e o f Defense Waste and Byproducts Management, DP-12 (GTN), U.S. Department o f Energy, Washlngton, DC 20545 H. E. LeGrand, 331 Yadkln Dr l ve , Rale igh, NC 27609 W. Lesnczyszyn, Con t rac ts Manager, Con t rac t Drl l l D l v l s l o n , Joy Manu fac tu r ing Co., 707 Boyd Boulevard, P.O. Drawer 489, LaPorte, I N 46350 E, Majer, E a r t h Sclences D l v l s l o n , Lawrence Berkeley N a t l o n a l Labora to ry , 1 C y c l o t r o n Road, Berke ley, CA 94720 Helen McCammon, D i r e c t o r , E c o l o g i c a l Research D l v l s l o n , O f f l c e o f H e a l t h and Environmental Research, O f f i c e o f Energy Research, MS-E201, ER-75, Room E-233, U . S . Department o f Energy, Washlngton, DC 20545 W. C. McClaln, RE/SPEC, I n c . , P.O. Box 725, Rapid C i t y , SD 57709 G. L. Meyer, Envlronmental P r o t e c t l o n Agency, 401 M S t r e e t SW, MS-ANR459, Washlngton, DC 20460 Haro ld A. Mooney, Department o f B l o l o g i c a l Sclences, S t a n f o r d U n l v e r s l t y , Stanford, C A 94305 Donald T . Oakley, Program Manager f o r Waste Management, Los Alamos N a t i o n a l Laboratory , P.O. Box 1663, Los Alamos, NM 87545 Edward O'Donnel l , E l l v l s l o n o f R a d l a t l o n Programs and E a r t h Sclences, U.S. Nuclear Regulatory Commlsslon, M a l l Stop 1130 SS, Washington, DC 20555 W l l l l a m S. Osburn, J r . , E c o l o g i c a l Research D l v l s l o n , O f f l c e o f H e a l t h and Environmental Research, O f f i c e o f Energy Research, MS-E201, EV-33, Room F-216, U.S. Department o f Energy, Washlngton, DC 20545 J. W. Pat terson, Program D l r e c t o r , Waste Management Program O f f i c e , Rockwell Hanford Operat ions, P.O. Box 800, Rlch land, WA 99352 J . F. Read, Department o f Geo log lca l Sclences, V l r g i n i a Po ly techn lc I n s t i t u t e and S t a t e U n i v e r s i t y , Blacksburg, V A 24061 I r w l n Remson, Department o f App l i ed E a r t h Sclences, S t a n f o r d U n l v e r s l t y , Stanford, C A 94305 Paul G. R l sse r , O f f i c e o f t h e Ch ie f , I l l l n o l o N a t u r a l H i s t o r y Survey, N a t u r a l Resources Building, 607 E. Peabody Ave., Champaign, I L 61820 Jackson Robertson, USGS, 410 N a t i o n a l Center, Reston, VA 22092 E . M. Romney, U n l v e r s l t y o f C a l i f o r n i a , Los Angeles, 900 Veteran Avenue, Los Angeles, CA 90024 E. R . Ro thsch l l d , CH2M H l l l , 310 W. Wlsconsln Ave., S u i t e 700, P .O. Box 2090, Mllwaukee, W I 53201 L. L. Sloss, Department o f Geologlca l Sclences, Nor thwestern U n i v e r s i t y , Evanston, I L 60201 D. L. Smith, Geraghty and M l l l e r , I n c . , 1410 Whiskey Road, Alken, SC 29801

Page 102: Stratigraphic and structural data for the Conasauga Group

140.

141.

142.

143. 144.

145. 146.

147.

148.

149. 150.

151.

152.

153.

154.

155.

156-1 82.

R. J , Starmer, HLW Technical Development Branch, Office of Nuclear Material Safety and Safeguards, Nuclear Regulatory Commission, Room 427-SS, Washington, DC 20555 J. G. Steger, Environmental Sciences Group, Los Alamos National Laboratory, MS4495, P . O . Box 1663, Los Alamos, NM 87545 J. A. Stone, Savannah River Laboratory, E. I. DuPont de Nemours and Company, Bldg. 773-A, Room E-112, Alken, SC 29808 David Swan, Point Road, Wilson Point, S . Norwalk, CT 06854 K. R. Walker, Department of Geological Sciences, University of Tennessee, Knoxville, TN 37996 E. C. Walls, Route 2, P.O. Box 558, Rockwood, TN 37854 Robert L. Watters, Ecologlcal Research Division, Office of Health and Environmental Research, Office of Energy Research, MS-E201, ER-75, Room F-226, U.S. Department of Energy, Washington, DC 20545 0 . A. Webster, U.S. Geological Survey, 1013 North Broadway, Knoxville, TN 37917 Raymond 6. Wilhour, Chief, Air Pollution Effects Branch, Corvallis Environmental Research Laboratory, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97330 0. A. Witt, P.O. Box 2567, Grand Junction, CO 81501 Frank J. Wobber, Division of Ecological Research, Office of Health and Environmental Research, Office of Energy Research, MS-E201, U.S. Department of Energy, Washington, DC 20545 M. Gordon Wolman, The Johns Hopklns University, Department of Geography and Environmental Engineering, Baltimore, M D 21218 Robert W. Wood, Director, Division of Pollutant Characterization and Safety Research, U.S. Department of Energy, Washington, DC 20545 N. 6. Woodward, Department of Geological Sciences, University o f Tennessee, Knoxville, TN 37996 H. H. Zehner, U.S. Geological Survey, 1013 North Broadway, Knoxville, TN 37917 Office of Assistant Manager for Energy Research and Development, Oak Ridge Operatdons, P. 0. Box E, U.S. Department of Energy, Oak Ridge, TN 37831 Technical Information Center, Oak Kldge, TN 37831

t ’

.I

i

1

1