27
a\-1 L*n\L4LP'Or:-r VV. - Do Not Remove from tho Libr,~; U. S. Fish and Wildlife Service National Wetlands Research C<>n,kr FWSlOBS-82111.2 1 /UU Lajun Uome Boulevard TR EL-82-4 March 1084 Lafayette, Louisiana 70535 Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (South Florida) STONE CRAB Coastal Ecology Group ' Fish and Wildlife Service Waterways Experiment Station U.S. Department of the Interior U.S. Army Corps of Engineers

STONE CRAB - Wetland and Aquatic Research Center · STONE CRAB Coastal Ecology Group ' Fish and Wildlife Service Waterways Experiment Station U.S. Department of the Interior U.S

Embed Size (px)

Citation preview

a\-1 L * n \ L 4 L P ' O r : - r V V . - Do Not Remove from tho Libr,~;

U. S. Fish and Wildlife Service National Wetlands Research C<>n,kr

FWSlOBS-82111.2 1 /UU Lajun Uome Boulevard TR EL-82-4 March 1 0 8 4 Lafayette, Louisiana 70535

Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (South Florida)

STONE CRAB

Coastal Ecology Group ' Fish and Wildlife Service Waterways Experiment Station

U.S. Department of the Interior U.S. Army Corps of Engineers

FWSIOBS-82/11.21 TR EL-82-4 March 1984

Species Prof i les : Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (South Florida)

STONE CRAB

William J. Lindberg Sea Grant Marine Advisory Program and

School of Forest Resources and Conservation and

Michael J . Marshal 1 Department of Zoology University of Florida

Gainesville, FL 32611

Project Manager Larry Shanks

Project Officer Norman Benson

National Coastal Ecosystems Team U . S. Fish and Wildlife Service

1010 Gause Boulevard S l i d e l l , LA 70458

Performed fo r Coastal Ecology Group

Waterways Experiment Station U.S. Army Corps of Engineers

Vicksburg, MS 39180

and

National Coastal Ecosystems Team Division of Biological Services

Research and Development Fish and Wildlife Service

U.S. Department of the In te r io r Washington, DC 20240

Th is s e r i e s should be re fe renced as fo l lows :

U.S. F i s h and W i l d l i f e Serv ice . 1983-. Species p r o f i l e s : l i f e h i s t o r i e s and environmental requi rements of coas ta l f i s h e s and i n v e r t e b r a t e s . U. S. F i s h W i l d l . Serv. FWS/OBS-82/11. U.S. Army Corps o f Engineers, TR EL-82-4.

Th i s p r o f i l e should be c i t e d as f o l l o w s :

L indberg, W.J., and M.J. Marshal 1. 1984. Species p r o f i l e s : l i f e h i s t o r i e s and envi ronmenta l requi rements o f coas ta l f i shes and i n v e r t e b r a t e s (sou th F l o r i d a ) -- stone crab. U.S. F i s h W i l d l . Serv. FWS/OBS-82/11.21. U.S. Army Corps of Engineers, TR EL-82-4. 17 pp.

PREFACE

This species p r o f i l e i s one o f a ser ies on coastal aquat ic organisms, p r i n c i p a l l y f i sh , o f sport, commercial, o r eco log ica l importance. The p r o f i l e s are designed t o provide coastal managers, engineers, and b i o l o g i s t s w i t h a b r i e f comprehensive sketch o f the b i 01 og ica l c h a r a c t e r i s t i c s and envi ronmental requi re- rnents o f the species and t o describe hur populat ions o f t h e species may be expected t o reac t t o envi ronmental changes caused by coastal development. Each p r o f i l e has sect ions on taxonomy, 1 i f e h i s to ry , eco log ica l ro le , environmental requirements, and economic importance, i f appl icable. A th ree- r ing b inder i s used f o r t h i s ser ies so t h a t new p r o f i l e s can be added as they are prepared. Th is p r o j e c t i s j o i n t l y planned and financed by the U.S. Army Corps o f Engineers and the U.S. Fish and U i l d l i f e Service.

Suggestions o r questions regarding t h i s repo r t should be d i rec ted to:

In format ion Transfer Special i s t Nat ional Coastal Ecosystems Team U.S. Fish and W i l d l i f e Serv ice NASA-Sl i d e l 1 Computer Compl ex 1010 Gause Boulevard Sl i d e l l , LA 70458

U.S. Army Engineer Waterways Experiment S ta t i on At tent ion: WESER Post O f f i c e Box 631 Vicksburg, MS 39180

iii

CONTENTS

Page

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CONVERSIONTABLE v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v i

NOMENCLATURE/TAXONOMY/RANGE . . . . . . . . . . . . . . . . . . . . . . . . 1 MORPHOLOGY/IDENTIFICATION AIDS . . . . . . . . . . . . . . . . . . . . . . 3 REASONFOR INCLUSION INTHESERIES . . . . . . . . . . . . . . . . . . . . 3 LIFE HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Copu la t ion and Spawning . . . . . . . . . . . . . . . . . . . . . . . . . 3 La rva l Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pos t la rvae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Juven i l e Crabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Adu l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . GROWTH CHARACTERISTICS 6 THE FISHERY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ECOLOGICAL ROLE 9 Feeding Hab i ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Predators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ENVIRONMENTALREQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . 12 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 S a l i n i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Disso lved Oxygen 13 Other Environmental Requirements . . . . . . . . . . . . . . . . . . . . 14

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . LITERATURE CITED 15

CONVERSION FACTORS

M e t r i c t o U.S. Customary --- To Obta in --

inches inches f e e t m i l e s

mi 11 imete rs (mm) cen t imete rs (cm) meters (m) k i l ome te rs (km)

square meters (m2) square k i l ome te rs (km2) hectares (ha)

square f e e t square m i l e s acres

gal 1 ons cub i c f e e t a c r e - f e e t

l i t e r s (1 ) cub ic meters (m3) cub i c meters

mi 1 1 i grams (mg) grams ( g ) k i lograms (kg) m e t r i c tons (mt) m e t r i c tons k i l o c a l o r i e s ( kca l )

ounces ounces pounds pounds s h o r t tons BTU

Fahrenhe i t degrees Ce ls ius degrees

U.S. Customary t o M e t r i c

mi 11 imete rs cen t ime te r s meters meters k i l o m e t e r s k i l o m e t e r s

inches i nc hes f e e t ( f t ) f a t homs m i l e s (mi) n a u t i c a l m i l e s (nmi )

square f e e t ( f t 2 ) acres square m i l e s (mi2)

square meters hectares square k i lometers

ga l l ons (ga l ) cub i c fee t ( f t 3 ) acre- fee t

1 i t e r s cub i c meters cub i c meters

ounces (02) pounds ( I b ) s h o r t tons ( t o n ) BTU

grams k i 1 ograms m e t r i c tons k i l o c a l o r i e s

Cel s i us degrees Fahrenhei t degrees

ACKNOWLEDGMENTS

We g r a t e f u l l y acknowledge the reviews and comments o f Ms. Theresa M. B e r t , Yale U n i v e r s i t y , New Haven, Connecticut, and Dr. Robert Gore, Academy o f Natural Sciences o f Ph i lade lph ia , Pennsylvania.

I I F i g u r e 1. Dorsal view o f a male stone crab, Menippe mercenaria (Say), f rom Wi l l i ams (1965).

STONE CRAB

NOMENCLATUREITAXONOMY /RANGE

S c i e n t i f i c name. . . . . Menippe mercenar ia (Say)

Comnon name. . . . . . Stone c rab (F igu re 1 ) Class. . . Ma1 acostraca ( f r om Barnes 1980) . . . . . . . . . . . . . . . Order. Decapoda . . . . . . . . . . . . . . Fami ly. Xanthidae

Geographic range: From Cape Lookout, Nor th Carol ina, southward and throughout the Gu l f o f Mexico t o Yucatan, Mexico; Bahamas; Cuba; and Jamaica (W i l l i ams 1965; B e r t e t a l . 1978). P resen t l y i t i s suspected f rom morphologica l s t ud ies t h a t Menippe mercenar ia i n h a b i t i n g t h e nor thern Gu l f o f Mexico should be

s p l i t i n t o two species w i t h t h e demarcat ion between t h e i r ranges a t Apa lach ico la Bay, F l o r i d a (D. Fe lder , U n i v e r s i t y of Southwestern Louisiana, La faye t te , Louis iana, and A. B. Wi l l iams, Smithsonian I n s t i t u t i o n , Washington, D.C.; pers. comm.). On the o the r hand, p re - 1 im ina ry e l e c t r o p h o r e t i c s t u d i e s and f i e l d observa t ions o f h y b r i d i z a t i o n i n t h e zone o f sympatry suggest i n c i p i e n t species (T. Ber t , Yale U n i v e r s i t y , New Haven, Connect icut; pers. comm.). I n t h i s paper, d i s - cuss ions w i l l f ocus on M. mercenar ia f rom pen insu la r F l o r i d a ( l - i g u r e 2), w i t h some re fe rences t o s tud ies f rom t h e A t1 a n t i c coast o f o t h e r Southern States.

A TL AN TIC OCEAN

T . PETERSBURG

OKEECHOBEE

CAPE R O M A N

THOUSAND ISL

M I L E S

C o a s t a l d is t r ibut ion

Figure 2. Coastal distribution of stone crab in south Florida.

MORPHOLOGY/IDENTIFICATION AIDS

Carapace t r a n s v e r s e l y oval , approx i - mate ly two - t h i r ds as l ong as wide, convex, n e a r l y smooth t o unaided eye, m i n u t e l y g ranu la te and punctate. A n t e r o l a t e r a l border d i v i d e d i n t o f o u r lobes: f i r s t two wide, t h i r d wide b u t den t i fo rm, f o u r t h much narrower and den t i fo rm. F r o n t w i t h a median notch and a broad t r i l o b u l a t e l o b e on each s ide. O r b i t a l border t h i c k , f i s s u r e s i n d i s t i n c t .

Chel i peds 1 arge and heavy, unequal i n s ize, n e a r l y smooth; i n s i d e su r f ace o f hands w i t h a patch o f f i n e o b l i q u e p a r a l l e l s t r i a e s e r v i n g as a s t r i d u l a t i n g organ and adapted f o r p l a y i n g aga ins t t h i c k edge o f second and t h i r d a n t e r o l a t e r a l t e e t h and ou te r s u b o r b i t a l t oo th ; d a c t y l o f major che la w i t h a l a r g e basal too th , and immovable f i n g e r w i t h a l a r g e subbasal too th ; f i n g e r s o f mi nor che la w i t h numerous smal l t ee th . Walking l egs s t o u t and d i s t a l l y h a i r y (W i l l i ams 1965).

Co lo r i n l i f e : Nor thern and western g u l f fo rm - smal l j u v e n i l e s g reen ish o r b l u i s h gray t o g ray o r dark tan, w i t h smal l dark spots on dorsa l carapace and chelae; a d u l t s are deep choco la te brown d o r s a l l y , w i t h cream-col ored t o p u r p l i s h underneath carapace and chelae. Legs a re dark brown and no t banded o r o c c a s i o n a l l y f a i n t l y banded w i t h y e l l o w o r cream co lo r . F l o r i d a pen insu la r g u l f coast fo rm - a d u l t s a re l i g h t g ray o r tan do rsa l l y on carapace and chelae, w i t h dark brown o r g ray i sh spots , and cream c o l o r t o wh i t e undersides. Legs are dark brown w i t h d i s t i n c t y e l l o w t o wh i te bands a t t he j u n c t i o n s o f t h e segments. Juveni 1 es a re deep maroon t o n e a r l y b lack , w i t h w h i t e t i p s on t h e chelae and one t o f o u r smal l wh i t e spo ts on d o r s a l carapace (T. Be r t , pers. comm.).

L a r v a l stages are descr ibed by P o r t e r (1960) and Hyman (1925). Manning (1961), 'ulass (1955), and Hay and Shore (1918) descr ibed c o l o r a t i o n and mor- pho log i ca l changes i n j u v e n i l e stages o f M. mercenar i a. -

Menippe nod i f rons i s s i m i l a r t o M. rnercenar i a b u t i s sma l l e r , more p u r p l i ST and posseses t u b e r c l e s o r smal l bumps on t h e a n t e r i o r marg in o f i t s carapace (Kaplan 1982).

REASON FOR INCLUSION I N THE SERIES

The stone c rab (Menippe mercenar i a) i s t h e l a r g e s t o f t h e x a n t h i d crabs w i t h i n i t s range and i s t h e o n l y one t o suppor t a f i s h e r y . Stone crabs a re f o rm idab le p reda to r s w i t h massive c laws w e l l - s u i t e d f o r b reak ing open t h e s h e l l s o f many mol lusks. The c laws a re harvested f o r t h e i r appeal as a d e l i c a c y w i t h h i g h market value. I n F l o r i d a t h e annual s tone c rab l and ings a re valued a t w e l l over $4 m i l - l i o n , p l a c i n g t h i s species among t h e S t a t e ' s t o p 10 commerc ia l l y impo r tan t mar ine species.

LIFE HISTORY

Copu la t ion and Spawning

Copu la t ion t akes p l a c e w i t h i n burrows o r c rev i ces , making i t d i f f i c u l t t o observe i n d i v i d u a l copu la t i ons o r t h e t i m i n g o f t h e s tone c rab mat ing season ( B e r t e t a l . 1978). B i n f o r d (1913) wi tnessed mat ings and males guard ing burrows c o n t a i n i n g females d u r i n g August i n No r th Caro l ina . Bender (1971) r e p o r t e d mat ing t o occur f rom November t o March a t Cedar Key, F l o r i d a .

Copu la t ion between s tone crabs was descr ibed by B i n fo rd (1913), Savage (1971), and Yang (1972). A male f i r s t c o u r t s a female f o r up t o 12 h r and then, us i ng h i s wa l k i ng legs, f l i p s t he female v e n t r a l s i d e up beneath h im (Yang 1972). Du r i ng mating, males c r a d l e upside-down females w i t h i n t h e i r wa l k i ng legs . The female t e l s o n curves over t h e r e a r p o r t i o n o f t h e male carapace. Chelae of male crabs a re he ld i n a defens ive pos tu re d u r i n g mating, y e t l o s s of a che la does n o t seem t o i n t e r f e r e w i t h o t h e r aspects o f t h e mat ing r i t u a l . Copu la t i ng females seen by Yang (1972) were f r e s h l y molted, w i t h

so f t she l l s . Binford (1913) described the male's handling of the sof t -shel l female as being done "with care" to avoid injury t o the female. Matings lasted from 6 t o 8 hr (Yang 1972).

During copu 1 a t i on masses of sperm are transferred from male to female within spermatophores , which are stored by the female crab within a chi t in-1 i ned seminal receptacle. Sperm are retained in the re- ceptacle unti l spawning occurs, when only a portion of the sperm i s used fo r f e r - t i l i z a t i o n of a single batch of eggs. Binford (1913) reported t ha t f e r t i l i z a t i o n occured within the lumen of the ovary, although many more sperm c e l l s at tach to the eggs within the oviducts.

A s ing le female may produce from four (Porter 1960) t o s ix (Binford 1913) egg masses or "sponges" during a s ingle mating season. Cheung (1969) reported an average of 4.5 spawnings per molt. Each egg sponge may contain between 500,000 and 1,000,000 eggs according to Binford, or from 160,000 t o 350,000 according to Noe (1967). The number of eggs spawned i s posi t ively correlated with s ize of the female (McRae 1950). After hatching one batch, a female may deposit a new egg mass within a week. Spawnings may occur up to s ix successive times without an intervening mating (Binford 1913). Porter (1960) reported tha t a female spawned four times without mating or molting during a s ingle sumner, and Cheung (1968) reported transmol t re ten t i on of sperm by f emal es.

Binford (1913) described the upright spawning position of the female stone crab. A basket i s formed of the female 's extended abdomen and the exopods of her abdominal appendages. Fer t i 1 ized eggs are re1 eased into t h i s basket and become attached by a st icky secretion to hairs on the exopods. After hatching occurs and larvae are released, the female scrapes the egg she1 1s and the i r s t a lks off these exopod hairs (Binford 1913). Hatching i s reported t o occur within 9 days t o 2 weeks a f t e r spawning (Binford 1913; Porter 1960).

Wi 11 i ams (1965) reported spawning t o occur from May t o July and perhaps August

in North Carolina. Further south spawning can occur year-round in Biscayne Bay and Florida Bay (Noe 1967; Cheung 1969; Bender 1971; Bert e t a l . 1978). In south Florida spawning frequency i s very low from November through March (Cheung 1969). Temperature and photo- period are primary regulators of spawning frequency (Noe 1967; Cheung 1969; Bender 1971). Cheung (1969) reported accelerated ovarian development a t 2g°C, or during the warmest month in Biscayne Bay, with spawning peaking during August and September. In autumn, as temperatures f a1 1 and day length decreases, egg development reportedly slows and spawning frequency decreases. In females, molting increases in frequency in autumn and winter when spawning frequency decreases.

Larval Development

Development of the planktonic larvae to f i r s t crab stage usually requires 27 t o 30 days in the laboratory (Porter 1960; Mootz and Epifanio 1974), b u t may be a1 tered considerably by d i e t (Mootz and Epifanio 1974), temperature, and s a l i n i t y (Porter 1960; Ong and Costlow 1970; Scotto 1979). Larvae normally pass through f i v e zoeal stages. They may also enter e i the r a prezoeal stage j u s t a f t e r hatching or a s ix th zoeal stage (Por ter 1960). Porter (1960) s ta ted t ha t neither the observed prezoea nor the s ixth zoeal stage ever molted t o more advanced stages. The prezoeal stage was believed t o be caused by the s t r e s s of an a r t i f i c i a l environment on the developing embryos.

For M. nodifrons, Scotto (1979) found tha t n e s ixth s taae did molt in to megalopae, and tha t i t m a y occur in nature under cer ta in conditions. For M . mercenaria, Ong and Costlow (1970) f o u 3 tha t only 2 of 11 sixth-stage zoea observed in t he i r study reached the megalops stage but nei ther became f i r s t crabs. The sixth-stage zoea in t h e i r study occurred under several d i f fe ren t conibinations of temperature and s a l i n i t y , and t h u s could not be a t t r ibu ted t o the e f f ec t s of these. two fac tors .

During l a r v a l l i f e , M. mercenaria pres~lmably feeds on zooplTnkton. I n c u l t u r e they f a r e best on a d i e t o f Artemi a n a u p l i i (Po r te r 1960). A t the p m energy demand d u r i ng 1 a rva l development i n d i v i d u a l l a r vae consume up t o 91 b r i n e shrimp n a u p l i i per day (Mootz and E p i f a n i o 1974), which i s equ i va len t t o 0.502 c a l o r i e s per day. Dur ing t h e i r e n t i r e 1 a rva l ex is tence i n d i v i d u a l stone crabs consume a t o t a l o f 7.329 c a l o r i e s .

Optimal growth r a t e s and bes t s u r v i v a l l e v e l s i n Mootz and E p i f a n i o ' s c u l t u r e system were seen a t a temperature o f 30°C and s a l i n i t i e s i n the range o f 30 t o 35 ppt, as was a l so found by Ong and Costlow (1970). Under these cond i t i ons 1 arvae reached the megalopae stage i n 14 days and the f i r s t crab i n 21 days. Su rv i va l r a tes peaked a t 60% t o 72% under t h i s combination o f cond i t ions .

Post1 arvae

The ecology o f the megalopae o f M. mercenaria i s unknown owing p r i m a r i l y to d i f f i c u l t i e s i n d i f f e r e n t i a t i n g l a r v a l stages o f stone crabs from those of o ther xan th id crabs (Be r t e t . a l . 1978). I n mass c u l t u r e tanks, under h i g h l y a r t i f i c i a l cond i t ions , Yang and Krantz (1976) found t h a t megalopae s e t t l e d upon w i ndow-screen panels. They a lso noted t h a t megalopae were extremely s e n s i t i v e t o poor water q u a l i t y . Megalopae f i r s t appeared i n Yang and K ran tz ' s mass c u l t u r e s on day 9 a f t e r ha tch ing and f i r s t crabs appeared on day 13.

Juven i 1 e Crabs

Savage and McMahon (1968), Manning (1961) and Bender (1971) de f ined j u v e n i l e s t o be crabs o f l ess than 3.0 cm i n carapace w id th (CW) (bu t see Growth C h a r a c t e r i s t i c s below). Dur ing the j u v e n i l e phase - M. mercenar ia 's c o l o r a t i o n p a t t e r n s change from dark pu rp le w i t h t h ree wh i te do ts i n a t r i a n g u l a r p a t t e r n on the dorsa l sur face ( j u v e n i l e s l ess than 1.0 cm CW) to , depending on hab i t a t , a mo t t l ed gray t o green background ( j u v e n i 1 es g rea te r than 1.0 cm) (Bender 1971). According t o Bender (1971), j u v e n i l e stone crabs i n tanks can

change t h e i r c o l o r a t i o n pa t te rns , a f t e r a few days, t o b lend w i t h t h e i r surroundings.

I n Nor th Caro l ina Wi l l iams (1965) found the smal les t j u v e n i l e stone crabs i n deep channels where they l i v e d beneath s h e l l fragments. A t a s i z e o f about 13 mm CW, small crabs move i n t o shal lower water and are found wherever c rev ices are abundant: about rocks, j e t t i e s , p i 1 ings, and i n oys te r she1 1 rubb le . A t Cedar Key, F l o r i d a , j u v e n i l e s l ess than 1.3 cm are found i n deep channels and i n seagrass beds (Bender 1971). A t a l a r g e r s ize, 3.0 t o 5.0 cm, small crabs are found on oys te r bars du r i ng the sumner i n t he Cedar Key area (McRae 1950; Bender 1971). McRae (1950) repo r ted oys te r bars t o be a l e a s t p r e f e r r e d h a b i t a t o f stone crabs, a l though he d i d f i n d j u v e n i l e and a d u l t crabs there. Bender (1971), working i n the same area, repor ted f i n d i n g many stone crabs on oys te r bars. I n the F l o r i d a Keys and a t Cedar Key, sponges, gorgonians, submerged rock, and Sar assum mats are commonly used as refuges 9s y j u v e n i l e stone crabs (Bender 1971; B e r t e t a l . 1978). Of fshore f rom A l l i g a t o r Harbor, F l o r i d a , j u v e n i l e s were commonly found i n co lon ies o f the bryozoan Sch i zopo re l l a p u g s (W.J. Lindberg, U n i v e r s i t y o f F l o r i d a , Ga inesv i l l e , F lo r i da ; unpubl. data) . Juven i l e stone crabs are be l i eved t o be a t t r a c t e d t o seagrass beds bo th by t h e i r abundant r e f u g i a and by Thalassia-b lade e p i f l o r a and ep i fauna (Be r t e t a l . 1978).

Adu 1 t s

McRae (1950) found egg-bearing f e - males always on grass f l a t s o r i n channels, never on oys te r bars. He a l so repor ted t h a t few a d u l t stone crabs were found on shal low f l a t s du r i ng the sp r i ng and e a r l y sumner months, a peak per iod o f spawning. Another spawning peak occurs i n l a t e sumner and e a r l y f a l l (T. Bert, pers. comn.). McRae (1950) and Bender (1971) repor ted t h a t adu l t s move onto sha l low g r a s s f l a t s i n autumn. McRae (1950) witnessed f i n d i n g heterosexual p a i r s o f crabs occupying burrows i n shal low f l a t s du r i ng f a l l . P a i r i n g s l a s t f rom the t ime o f c o u r t i n g and mat ing t o the t ime when t h e exoskeleton o f the newly mol ted female

hardens (Bender 1971). A t t h i s p o i n t the female can defend h e r s e l f , and both sexes vacate the burrow.

Migra t ions i n v o l v i n g one sex and/or a s i n g l e s i ze c l ass have been repor ted t o occur seasonal ly (Ber t e t a l . 1 9 7 8 ) ~ . Females appear t o be year-round res iden ts o f g r a s s f l ats, b u t do move from shal low t o deep f l a t s as temperatures inc rease i n the sp r i ng (Bender 1971). Male crabs normal ly l i v e f u r t h e r o f f sho re than do females, bu t move i n t o s h a l l ower g rass f 1 a t areas t o mate w i t h r e c e n t l y molted females a t the end o f the spawnitig season (McRae 1950; Bender 1971; S u l l i v a n 1979). Movement p a t t e r n s and h a b i t s o f stone crabs found we l l o f f sho re are no t described i n the c u r r e n t 1 i te ra tu re .

S u l l i van (1979) descr ibed movements o f nearshore M. mercenaria a long the south- west coast o f ~ l o r i d a . Average movement o f tagged i n d i v i d u a l s showed t h a t ma1 e movement was d i r e c t e d shoreward ( e a s t e r l y ) or longshore ( n o r t h e r l y ) dur ing f a l l and w in te r . Th is p a t t e r n reversed i n s p r i n g and males moved o f f sho re (wes te r l y ) . Females moved inshore du r i ng f a l l and w in te r , and o f f sho re du r i ng March. A f t e r 1 month o f o f f sho re movements females again headed shoreward. The 1-month o f f sho re movement o f females would perhaps b r i n g them t o deeper g rass f l a t s , as descr ibed f o r the Cedar Key popu la t i on by Bender (1971).

GROWTH CHARACTERISTICS

Growth f o r M. mercenaria, l i k e o ther crustaceans, can b e charac ter ized by the frequency o f mo l t i ng o r i n te rmo l t i n - t e r v a l , and by the incremental inc rease i n s i ze per mol t . Publ ished d e s c r i p t i v e da ta suggest pa t te rns f o r these parameters which, f o r the most pa r t , awa i t s t a t i s t i c a l analyses. Chel i ped growth and regenera- t i o n , as the bas is f o r management o f t h i s

IA t r a p b i a s may c a l l i n t o quest ion t r a p data i n d i c a t i n g m i g r a t i o n (T. Ber t , pers. corn.).

f i shery , was the pr imary focus f o r much o f the work r e l a t e d t o growth.

La rva l growth i nvo l ves metamorphosis through f i v e , sometimes s i x , zoeal stages and a megalopa, as discussed above. F igu re 3 ( f rom Ong and Costlow 1970) i l l u s t r a t e s the s l i g h t l y f a s t e r development a t h igher s a l i n i t y and the markedly f a s t e r develop- ment a t h igher temperatures w i t h i n the to le rance ranges f o r stone crabs. Under c u l t u r e cond i t i ons o f 25°C and 30 ppt , Mootz and Ep i fan io (1974) def ined the progress ion of l a r v a l stages as f o l l ows : f i r s t zoea f rom day 0 t o 4; second zoea f rom day 5 t o 8; t h i r d zoea from day 9 t o 11; f o u r t h zoea from day 12 t o 15; f i f t h zoea f rom day 16 t o 20; and megalopa f rom day 21 t o 28.5. The r e l a t i o n s h i p o f l a r v a l d r y weight over t ime was exponent ia l and descr ibed by the equat ion:

l o g l O O O Y = 1.0114 + 0.07687X

where: Y = i s mg d r y weight X = i s age i n days.

The average d r y weight o f the f i r s t crab stage repor ted by Mootz and E p i f a n i o was 0.69 mg, bu t carapace dimensions were n o t given. The average s i z e o f the f i r s t crab stage f rom n a t u r a l popu la t ions has no t been est imated i n the 1 i te ra tu re . The smal les t c rab f rom a c o l l e c t i o n o f 80 e a r l y j u v e n i l e crabs measured 1.40 mn CW (Savage and McMahan 1968).

Var ious morphometric r e l a t i o n s h i p s and apparent ly growth per se are equ i va len t among males and females as j uven i l es , b u t then the sexes d iverge w i t h sexual m a t u r i t y (Savage and S u l l i v a n 1978). Savage and McMahan (1968) found an approximate i n t e r - m o l t i n t e r v a l o f 40 days f o r juven i les , b u t a l so noted a t rend f o r the i n t e r m o l t pe r i od t o increase w i t h the i nc reas ing s i z e ( i .e., CW) o f j u v e n i l e crabs. They a l so found an incremental increase i n CW per mo l t o f about 15% o f the pre-exuvi a1 dimension, w i t h gene ra l l y smal ler increments ex- h i b i t e d by crabs w i t h widths above 10 mm. S a l i n i t y and temperature were no t con- t r o l l e d i n t h i s study, and ranged f rom

- 3 0 '/,.

----- 2 O 0 / e .

D A Y S FROM HATCHING

Figure 3. Average r a t e s o f development f o r t he l a r v a e o f M. mercenaria a t 20 and 30 ppt and th ree d i f f e r e n t temperatures; Z. 1 through 2.5 are zoeal stages, Meg. i s the megalopa, and C . l i s t he f i r s t c rab stage ( f rom Ong and Costlow 1970).

23.32 t o 35.68 p p t and from 15.5" t o 30°C, respec t i ve l y , so i t i s no t known i f system- a t i c changes i n cond i t i ons con t r i bu ted t o these perceived t rends toward slower growth.

The t r a n s i t i o n from j u v e n i l e t o a d u l t form apparent ly occurs a t a CW o f about 35 mm. As j u v e n i l e s approach t h i s size, t h e i r carapace shape t ransforms t o the a d u l t shape (Manning 1961), and carapace-wi dth versus c l aw-size r e 1 a t i on - sh ips begin t o d iverge between the sexes (Savage and S u l l i v a n 1978). By assuming a f i r s t crab stage o f 1.40 mm CW, an i n t e r m o l t i n t e r v a l o f 40 days, and an incremental increase o f 15% per molt , t he j u v e n i l e ex is tence i s ca l cu la ted t o cover seven mol ts and 320 days u n t i l the t r a n s i t i o n t o an a d u l t form. Add t o t h i s t he d u r a t i o n o f l a r v a l ex is tence (see F i g u r e 3), and sexual m a t u r i t y should no t occur u n t i l a t l e a s t 1 year o f age. S u l l i v a n (1979) i n d i c a t e d " t h a t 1 arge-scale p a r t i c i p a t i o n i n egg produc t ion does n o t occur u n t i l approximately 60 mn CW," w i t h t he smal les t o v i erous females repor ted f rom F l o r i d a c o l ~ e c t ~ o n s being 36.9 mm CW (Savage and S u l l i v a n 1978), 46.0 mn CW (McRae 1950), and 54 mm CW ( S u l l i v a n 1979). Therefore, the s i ze and age a t sexual m a t u r i t y are n o t

c l e a r l y known, and are no doubt sub jec t t o v a r i a t i ~ n . ~

The repor ted pa t te rns o f growth among i n t a c t adu l t s show d i f f e r e n c e s between the sexes and a t r end toward slower growth i n l a r g e r i n d i v i d u a l s . I n general, males are heavier and ga in weight f a s t e r than females o f t he same CW ( S u l l i v a n 1979). This dimorphism r e s u l t s i n p a r t from males' having grea ter chelae growth increments than females and, consequently, i n c r e a s i n g l y 1 arger c l aws f o r any g iven CW (Savage and S u l l i van 1978; S u l l i van 1979). Chel i peds account f o r approximately 51% o f the l i v e weight i n adu l t stone crabs (Davis e t a l . 1978). Furthermore, Cheung (1969) suggeste'd t h a t sumner spawning i n h i b i t s m o l t i n g by females (females mo l t p r i m a r i l y i n w in te r ) . This, too, would c o n t r i b u t e t o an o v e r a l l s i z e d i f f e r e n c e between males and females, as found by Bender (1971), assuming t h e i n t e r m o l t per iod o f males i s no t s i m i l a r l y a f fec ted .

2More d e t a i l e d data on s i z e a t sexual ma tu r i t y , pa t t e rns o f growth and pop- u l a t i on, age s t r u c t u r e are for thcoming by B e r t e t a1 . (T. Ber t , pers. comm.).

Savage and S u l l i v a n (1978) noted t h a t an increase i n the i n t e r m o l t i n t e r v a l and a decrease i n the average percentage o f growth was associated w i t h l a rge r s i z e ( i .e., CW). They reported, from labo ra to ry studies, average i n t e r m o l t i n t e r v a l s o f 107.0 days f o r crabs 60-69 mn premol t CW, 142.8 days fo r 70-79 mn CW, 156.8 days f o r 80-89 mn CW, and 159.0 days f o r 90-99 mn CW. Comparable s i z e classes from another group o f t h e i r crabs showed average percentages o f growth (i.e., increase i n CW) o f 14.4%, 12.6%, 10.2% and 10.2%, respec t i ve l y . These t rends were not sta- t i s t i c a l l y tested, bu t suggest slower growth i n o lder crabs. Cheung (1973, c i t e d i n Coste l lo e t a l . 1979) suggested a te rmi - na l mo l t stage a t about 112 mn CW (year I V o r V) ; however, considerably 1 arger crabs were reported by S u l l i v a n (1979), and T. Ber t (pers. comn.) c la ims females can reach 130 mn CW and males, 145 mn CW.

Autotomy o r loss o f a chel iped, e i t h e r n a t u r a l l y o r induced by the f i s h e r y prac t ice , a l t e r s both the incremental increase i n CW and the i n t e r m o l t i n t e r v a l . Savage and Sul 1 i van (1978) repor ted average increments o f 7.7 mn CW per mo l t and 6.5 mn CW f o r s i n g l y and doubly autotomized crabs, respect ive ly , almost 2 and 3 mn less than f o r i n t a c t con t ro l s . They f u r t h e r observed t h a t t he i n t e r m o l t i n t e r v a l may be shortened by autotomy j u s t a f t e r ecdysis o r lengthened by autotomy l a t e r i n the mo l t cycle. Claw regenerat ion was near l y complete a f t e r two mol ts (Savage and Su l l i van 1978).

Size frequency d i s t r i b u t i o n s f rom f i e l d sampling were presented by S u l l i van (1979) and i n t e r p r e t e d t o i n d i c a t e year I crabs from 45 t o 60 mn CW, year I 1 crabs centered around 80 mn CW, and year I 1 1 and some year I V crabs around 100 mm CW. However, claw length r a t h e r than CW l e g a l l y def ines harvestable s i z e f o r stone crabs. According t o Sul 1 i van (1979), males reach harvestable major claw s izes a t about 80 mn CW; females, a t about 87 mm CW. Harvestable minor claws are produced a t about 93 mn CW f o r males, and 103 mm CW f o r females.

THE FISHERY

Men i ppe mercenar i a i n F 1 o r i da supports a unique spor t and comnercial f i s h e r y i n which, by law, o n l y the claws - - are harvested and the l i v e - crabs are re turned t o the water. The f i s h e r y p rac t i ces and socioeconomic character- i s t i c s are described i n d e t a i l by Ber t e t a l . (1978) and the stone crab f i s h e r y management p lan (Cos te l l o e t a l . 1979). The value o f F l o r i d a landings places stone crabs among the top 10 comnercial marine species i n the Sta te (Prochaska 1976). Estimates o f the rec rea t iona l catch are not known and are considered n e g l i g i b l e , a1 though almost four out of f i v e stone crab permitholders f a l l i n t o the rec rea t iona l category (Zuboy and Sne l l 1982). The l e g a l f i s h i n g season runs from 5 October t o 15 May. During t h a t per iod i n 1980-81, t h e comnercial catch of stone crab claws had a reported docksi de value o f $4,873,884 (Zuboy and Snel l 1982).

The closed sumner season and minimum claw s i ze o f 7.0 cm propodus length (2.75 inches) are intended t o p r o t e c t spawning females and ensure a t l e a s t one re - product ive season before e n t r y i n t o the f i shery . The requirement t o r e t u r n l i v e crabs t o t h e i r h a b i t a t imnediate ly a f t e r decl awing i s intended t o promote s u r v i v a l f o r regenerat ion o f harvestable claws and added reproduction. From tagging studies, S u l l i v a n (1979) estimated 20%-25% o f l e g a l - s ized crabs were undergoing claw regeneration. He f u r t h e r noted claw re- generation t o a harvestable s i ze w i t h i n 1 year. Davis e t a l . (1978) exper imental ly observed m o r t a l i t y ra tes of 28% and 46.5% fo r s i n g l y and doubly autotomi zed crabs, respect ive ly . Despite such s i g n i f i c a n t m o r t a l i t y , a l lowing crabs the oppor tun i t y t o s u r v i ve, regenerate, and reproduce seems pre ferab le t o the a l t e r n a t i v e o f harvest ing e n t i r e crabs f o r use o f j u s t t he claws.

Comnerc i a1 1 and i ngs have been concentrated a1 ong F l o r i da's west coast, as i nd i ca ted i n Table 1 and F igure 4. Recent stock assessments i n d i c a t e ex- pansi on o f the f i s h e r y f u r t h e r o f f shore and

Table 1. The percentage o f landings i n t he F l o r i d a west coast stone crab f i s h e r y , 1967-76, p a r t i t i o n e d according t o f i s h i n g grounds shown i n F igure 4 ( f rom Cos te l l o ~t a l . 1979).

Evergl ades Southwest Tampa Cedar Year F l o r i d a Bay coast Bay Key Panhandle

a dec l i ne i n t he catch per t r a p haul w i t h i n the t e r r i t o r i a l sea ( i . . , i n s i d e 9 n a u t i c a l m i 1 es) and s l i g h t l y beyond (Zuboy and Sne l l 1980, 1982).

Catch and e f f o r t s t a t i s t i c s are given i n Table 2, and were used by Zuboy and Snel l (1982) t o generate the product ion models shown i n F igure 5. They noted a d i s c o n t i n u i t y i n the data and there fore f i t t e d two a1 t e r n a t i ve curves, one o f which w i 11 be taken t o descr ibe the f i s h e r y when s u f f i c i e n t data are ava i lab le . The i r bes t est imate of maximum susta inab le y i e l d (MSY) f o r t he west coast f i s h e r y was taken t o be the average o f the 4 h igh years, 1.88 m i l l i o n pounds. Zuboy and Sne l l (1982) f u r t h e r s ta ted t h a t " t he stone crab f i s h e r y should produce approximately 2 m i l l i o n pounds o f claws annua l ly a t an effortof250,OOO - 300,000 repo r ted t raps, g iven no det r imenta l environmental e f f e c t s and the continuance o f cu r ren t s i z e and season regu la t ions" . However, if nearshore stocks are d e c l i n i n g and are being o f fse t i n t h e t o t a l catch by expansion i n t o r e l a t i v e l y unexp lo i ted o f f - shore f i s h i n g grounds, then one cou ld expect a dec l i ne i n t o t a l catch as those o f f s h o r e stocks become f u l l y exp lo i ted .

ECOLOGICAL ROLE

Feeding Hab i ts

A c t i v e l y feeding l a r v a l stages o f stone crabs are genera l l y thought t o be almost e n t i r e l y carnivorous. I n labora- t o r y c u l t u r e they have been susta ined through a l l l a r v a l stages on a d i e t o f b r i n e shrimp naupl i i (Artemia sp. ) (Po r te r 1960; Mootz and E p i f m 9 7 4 ; Scot to 1979; S u l k i n and Van Heukelem 1980). Po r te r (1960) found low s u r v i v a l l e v e l s i n c u l t u r e s o f stone crab 1 arvae t h a t were f e d o n l y a l g a l c e l l s . Su l k in and Van Heukelem (1980) found reduced s u r v i v a l l e v e l s i n stone crab l a rvae maintained on r o t i f e r s ins tead o f Artemi a. Apparent ly Menippe 1 arvae have s t r i c t d i e t a r y requirements t h a t are met by on l y c e r t a i n types o f p lank ton i c animals. No d i e t a r y s tud ies o f zoeae o r megalopae have been performed, bu t p lank ton i c 1 a r v a l stages and permanent zooplankton are probably t h e i r p r e f e r r e d Prey

The n a t u r a l d i e t o f j u v e n i l e stone crabs i s a l so unknown. Bender (1971) repor ted t h a t j u v e n i l e stone crabs he ld i n c a p t i v i t y a te polychaetes, small b ivalves, oys ter d r i l l s , and each other . I n aquaria, j u v e n i l e crabs a te every th ing from f i s h

PANHANDLE

CEDAR KEY

TAMPA BAY

SOUTHWEST COAST

GULF OF

MEXICO

EVERGLADES - FLORIDA BAY

M O N R O E

iverolodes Notional

F igure 4. Gu l f o f Mexico stone crab f i s h i n g grounds by reg ion and county ( f rom Cos te l l o e t a l . 1979).

f l e s h t o beef l i v e r and chicken p a r t s (Savage and McMahan 1968).

Adu l t stone crabs can generate t r e - mendous crushing fo rces w i t h t h e i r smal le r chelae o r "pincer." Brown e t a l . (1979) reported t h a t the p incer o f 5 mercenaria can e x e r t a pressure on i t s rearmost crushing tee th o f up t o 19,000 1b/inch2. The p incer a l so has occ lud ing tee th t h a t are used i n c u t t i n g s h e l l or t i ssue. These formidable claws are used t o break open s h e l l s o f numerous types o f mollusks

(Menzel and Nichy 1958; Bender 1971; Merz 1979). Cheung (1976)- however, speculated t h a t the la rger , o r crusher claw, i s t he most important claw i n feeding because, when the o r i g i n a l crusher i s removed, t h e p incer o r f a s t claw develops, through mol t ing , i n t o a more h e a v i l y b u i l t rep1 acement crusher claw.

Behavi o r

Larva l behavior o f M, mercenaria i s unknown except f o r t h e i r p o s i t i v e

Table 2. Catch and e f f o r t s t a t i s t i c s f o r t h e west coast o f F l o r i d a stone c rab f i s h e r y ( f rom Zuboy and Sne l l 1982).

Catcha Traps Catch per Season (mi 11 i ons o f pounds) ( thousands) t r a p ( I b )

--

1962-63 0.30 14.6 20.6 1963-64 0.35 15.0 23.3 1964-65 0.35 21.0 16.7 1965-66 0.45 19.7 22.8 1966-67 0.40 43.2 9.3 1967-68 0.55 39.3 14.0 1968-69 0.60 55.9 10.7 1969-70 0.70 36 .O 19.4 1970-71 0.85 60.8 14.0 1971-72 0.95 73.7 12.9 1972-73 0.90 113.3 7.9 1973-74 1.25 143.0 8.7 1974-75 1.00 159.1 6.3 1975-76 1.15 193.2 6.0 1976-77 1.45 213.8 6.8 1977-78 2.10 264.3 8.3 1978-79 1.85 222.0 8.3 1979-80 1.93 297.6 6.5 1980-81 1.64 314.6 5.2

aCatch i s claw weight. Claw weight i s 0.5 whole weight .

TRAPS 1Thousandsi

F igu re 5. Cur ren t a1 t e r n a t i v e p roduc t ion models o f t he F l o r i d a west coast stone crab f i s h e r y ; p o i n t s r ep resen t i ng annual p roduc t ion , years 1970-80 a re i n d i c a t e d ( f rom Zuboy and Sne l l 1982).

photo tax is and shadow response (Forward 1977). When l i g h t l e v e l s are suddenly decreased, Meni e la rvae s top swimming and s ink passive -+- y Forward suggested t h i s as an an t i p reda to r t a c t i c and noted t h a t Mnemio s i s l e i d i, the comb j e l l y , i s an * r e d t h a t zoea cou ld avoid by use o f t he shadow response.

Juven i l e stone crabs, f rom s i t e s along t h e Texas coast, are repo r ted t o f e i g n death upon capture (Powell and Gunter 1967). Bender (1971) repor ted t h a t juven- i l e stone crabs captured food w i t h t h e i r walk ing legs and re tu rned t o t h e i r r e fuge t o eat. They a lso s t r i d u l a t e o r produce a raspy sound by rubb ing a patch o f f i n e , obl ique, p a r a l l e l s t r i a e , l oca ted on t h e i n s i d e sur face o f each chel iped, aga ins t the t h i c k edge of the second and t h i r d an te ro l a t e r a l t e e t h and ou ter s u b o r b i t a l t o o t h (Wi l l iams 1965). The f u n c t i o n o f s t r i d u l a t i o n i n bo th j u v e n i l e s and a d u l t s i s unknown (Guinot-Dumort i e r and Dumorti e r 1960; Bender 1971).

Adu l ts possess a complex behav io ra l r e p e r t o i r e . They defend burrows ( S i n c l a i r 1977), move o f f sho re and onshore as p r e v i o u s l y discussed, cou r t before mating (Yang 1972), s t r i d u l a t e (Bender 1971), and employ d iverse modes f o r feed ing on several types of gastropods and b i va l ves (Merz 1979; Vermeij 1978). As one example o f behav io ra l complexity, Merz (1979) de- sc r ibed the procedure used by Menippe t o open gastropod s h e l l s . The a t t ack ing stone c rab f i r s t manipulates the prey she1 1 w i t h i t s two l a r g e claws and i t s wa lk ing legs. The minor claw o r p ince r may be i n s e r t e d i n t o t he s n a i l ' s aper tu re w i t h a p rob ing motion t h a t may have a chemosensory f unc t i on . The crab then p o s i t i o n s t h e s h e l l between the t e e t h o f i t s crusher and attempts t o crush the sp i re , t he s iphonal canal, o r the co lumel la r reg ion . I f crushing these areas f a i 1s because t h e s n a i l i s l a rge r e l a t i v e t o the crab, t he crab may r e p o s i t i o n the s n a i l so t h a t t he thumb o f the crusher can be i nse r ted i n t o t he aper tu re o f the s h e l l . Th is p laces the l i p o f the s h e l l between the t e e t h o f t he c rab ' s claw. The crab then bends t h e l i p outward, an ac t i on which, i n j u v e n i l e sna i l s , causes the l i p t o break. Th is

act ion, when repeated, "peels" the s h e l l so t h a t e i t h e r the f l e s h y s n a i l p a r t s a re exposed o r the s i z e o f t he s n a i l i s reduced and may be grasped f o r f u r t h e r at tempts a t crushing.

Predators

L a r v a l stone crabs are undoubted ly t sub jec t t o a wide range o f p lank ton- feed ing predators as are o ther zooplanktonic animals (Lev in ton 1982). These predators may i nc lude o ther p lank ton i c animals o r small f i shes .

J u v e n i l e stone crabs are preyed upon by grouper and b lack sea bass (iJender 1971). They are presumably a lso preyed upon by many o ther species o f l a rge f i s h .

A d u l t stone crabs possessing both c l aws can probab ly defend themselves aga ins t a wide range o f predators, b u t are eaten by a few species. According t o r e p o r t s by fishermen, crabs i n t r aps are o f t e n eaten by octopods, sea t u r t l e s , and horse conchs (Be r t e t a l . 1979). I n ho ld ing tanks and i n t r aps stone crabs a l so p r a c t i c e cannibal ism.

Disease

Iversen and Beardsley (1976) re - por ted a s h e l l disease caused by several species o f c h i t i n o c l a s t i c b a c t e r i a i n several crustaceans, i n c l u d i n g stone crabs taken f rom F l o r i d a waters. Menippe mercenaria from F l o r i d a ' s west coast apparent ly are a t tacked by t h i s disease more o f ten than are crabs f rom the east coast. The disease produces dark spot ted areas on the exoskeleton of i t s crustacean hosts. I t apparent ly does no t k i l l the crabs, bu t does reduce the market appeal o f claws.

ENVIRONMENTAL REQUIREMENTS

Temperature

Adu l t stone crabs can be considered eurythermal because they have been found i n ambient temperatures of 8 "-32°C (Bender

1971). A t t he lower temperatures, however, f o r f e d larvae, and a Qlo f o r s u r v i v a l t ime they were u s u a l l y i n a c t i v e and sealed t o be 1.15 among s ta rved la rvae . themselves i n burrows. and a t t h e h iqhe r temperatures t hey sought t he coolnes; o f deeper water.

Temperature has an apparent e f f e c t on t he rep roduc t i on and development o f stone crabs. Noe (1967) found a s i g n i f i - cant p o s i t i v e c o r r e l a t i o n between t h e per - centage o f sample females c a r r y i n g eggs and t h e ambient temperature, across t h e range of 21"-30°C i n Biscayne Bay. Cheung (1969) a l s o repo r ted a c o r r e l a t i o n between ovar ian development and l o c a l water temperature, w i t h an optimum a t about 28°C. S i m i 1 a r l y , S u l l i v a n (1979) noted an inc rease i n spawning d u r i n g March, when temperatures rose above 22"C, and a decrease i n spawning a f t e r t h e temperature dropped i n October. Less than 1% o f t h e females c o l l e c t e d were c a r r y i n g eggs when the water temperature was below 20°C ( S u l l i v a n 1979).

M o l t i n g was a l so favored by t h e op t ima l temperature (28"C), b u t was i n h i b i t e d by spawning (Cheung 1969). The i n te rmo l t i n t e r v a l f o r bo th j u v e n i 1 es (Bender 1971) and a d u l t s (Savage and S u l l i van 1978) was sho r te r a t e leva ted temperatures, a1 though an upper t o l e rance l i m i t was n o t noted.

L a r v a l stone crabs are no t t o l e r a n t o f wide temperature ranges, p a r t i c u l a r l y w i t h reduced s a l i n i t i e s . P o r t e r (1960) suggested t h e zoea may n o t s u r v i v e i n 23"-25°C when s a l i n i t i e s are 27 p p t o r lower. Ong and Costlow (1970) found development a t 20°C o n l y t o the megalops stage across t h e s a l i n i t y range 20-40 pp t . S u r v i v a l of megalopae a t 20°C was l e s s a t 20-25 p p t than a t 30-40 ppt, and a l so l e s s than a t 25" and 3 0 " ~ . S u r v i v a l t o t he f i r s t crab stage a t bo th 25" and 30°C was lower i n 20 p p t than i n h igher s a l i n i t i e s . No l a r vae su rv i ved i n a s a l i n i t y o f 10 ppt . They suggested an op t ima l combinat ion o f temperature and s a l i n i t y a t about 30°C and 30-35 ppt. Anger e t a l . (1981) l a t e r c a l c u l a t e d a Q l o ( t h e f a c t o r by which a r e a c t i o n i s increased w i t h a r i s e o f 10°C) f o r the d u r a t i o n o f development t o be 2.41

S a l i n i t y

As discussed above, stone c rab l a r v a e are s e n s i t i v e t o lowered s a l i n i t i e s . On the o ther hand, adu l t s cou ld be considered eu ryha l i ne a l though they are t y p i c a l l y found i n s a l i n i t i e s approaching f u l l seawater. Karandeyeva and S i l v a (1973) repo r ted t o l e rance o f gradual s a l i n i t y changes, i.e., over 3-week per iods, t o a low o f 6-7.5 p p t and a h i g h o f 40.5 ppt , w i t h no s i g n i f i c a n t change i n oxygen consumption a t e i t h e r extreme. S i g n i f i c a n t numbers o f crabs died, however ,when suddenly t r a n s f e r r e d f rom normal seawater t o 6 pp t . Ambient s a l i n i t i e s a t stone c rab study s i t e s have been repo r ted as 16.3-32 p p t (Bender 1971) near Cedar Key, F l o r i d a , and 29-38 p p t i n Biscayne Bay (Cheung 1969). Noe (1967) found a s i g n i f i c a n t negat ive c o r r e l a t i o n between t h e number o f m o l t i n g females and s a l i n i t y over t h e range o f 33-37.5 pp t .

D i sso 1 ved Oxygen

A d u l t stone crabs appear t o be t o l e r a n t o f reduced d i sso l ved oxygen, a l though t h e prolonged e f f e c t s on v i a b i 1 i t y and rep roduc t i on a re unknown. Karandeyeva and S i l v a (1973) c la imed crabs would remain a l i v e f o r 17 t o 21 h r i n t h e complete absence o f oxygen, and would recover when rep1 aced i n oxygenated water. They repo r ted a p o s i t i v e c o r r e l a t i o n between t h e q u a n t i t y o f oxygen a v a i l a b l e and t he ex ten t of i t s use. I n v i t r o s tud ies by L e f f l e r (1973) i n d i c a t e d r e 1 a t i v e l y cons tan t metabo l i c r a t e s over t h e range o f oxygen concen t ra t i on f rom 0.8 t o 5.6 ml 0 2 / l i t e r o f water. Ayers (1938) c a l c u l a t e d oxygen consumption o f s tone crabs t o average 0.51 cm3 02/g/hr ( a t Standard Temperature and Pressure3) , among t h e lowest va lues of seven c rab species tes ted .

3 ~ t a n d a r d Temperture and Pressure equals 0°C and 1 atmosphere.

Other Environmental Requirements

Stone c rab burrows have been repo r t ed f rom nearshore. shal low-water Thal ass i a g r a s s f 1 a t s and ad jacen t deeper channels fMcRae 1950; Bender 1971), and B e r t e t a l . (1978) noted t h e use o f sponges, gorgonians, and s h e l l bo t tom hy j u v e n i l e s . Anecdotal accounts abound f o r concentra- t i o n s o f a d u l t s tone crabs among c r e v i c e s o f b r i d g e p i l i n g s and a r t i f i c i a l r e e f rubb le . These s tud ies and accounts suggest

a fundamental requi rement b y M. mercenar i a f o r s u b s t r a t e s u i t a b l e f o r r e f u g e , met e i t h e r by bur row ing i n t o conso l i da ted sand-shel l mix o r b y u s i n g a v a i l a b l e ha rd c o v e r s 4 Expansion o f t h e f i s h e r y t o o f f s h o r e depths g r e a t e r than 8 fathoms (Zuboy and S n e l l 1982) i n d i c a t e s e x p l o i t a b l e s t ocks beyond t h e nearshore grassbed h a b i t a t s . The s p e c i f i c s o f s h e l t e r use by o f f s h o r e s tone c rabs have n o t been explored.

4 ~ e r t and S t e v e l y ( i n prep.) found s i g n i f i c a n t l y g r e a t e r d e n s i t i e s a long l imes tone outcroppings, where crabs ex- cavated ho les beneath rocks, than on ad jacen t seagrass beds.

LITERATURE CITED

Anger, K., R.R. Dawirs, V. Anger, J.W. Goy, and J.D. Costlow. 1981. S t a r v a t i o n res i s t ance i n f i r s t stage zoeae o f brachyuran crabs i n r e l a t i o n t o temperature. J. Crustacean B i o l . l ( 4 ) : 518-525.

Ayers, J.C. 1938. R e l a t i o n s h i p o f h a b i t a t t o oxygen consumption by c e r t a i n es tua r i ne crabs. Ecology 19(4) :523- 527.

Barnes, R.H. 1980. I n v e r t e b r a t e z o o l o g y . 4 t h ed. Saunders, Ph i l ade lph ia , Pa.

Bender, E.S. 1971. S tud ies o f t he l i f e h i s - t o r y of t he stone crab, Menippe rnercenaria (Say), i n t h e Cedar Key area. M.S. Thesis. U n i v e r s i t y of F l o r i d a , G a i n e s v i l l e . 110 pp.

Ber t , T.M., R.E. Warner, and L.D. Kess ler . 1978. The b i o l o g y and F l o r i d a f i s h e r y o f the stone crab. mercenaria. J. Morph. 201.

B in fo rd , R. 1913. The germ c e l l s and t he process o f f e r t i l i z a t i o n i n t h e

e mercenaria. J. Morph. M9 24(2) :147-20 . Brown, S.C., S.R. Cassuto, and R.W. Loss.

1979. Biomechanics o f che l ipeds i n some decapod crustaceans. J. Zoo1 . (Lond. ) 188(2) : 143-160.

Cheung, T.S. 1968. Trans-mol t r e t e n t i o n o f sperm i n t he female stone crab, Men ippe mercenar i a (Say). Crustaceana ( L m ( 2 ) : 117-120.

Cheung, T.S. 1969. The envi ronmenta l and hormonal c o n t r o l o f growth and rep ro -

d u c t i o n i n t h e a d u l t female s tone c rab Meni e mercenaria. B i o l . B u l l . (&Hole). 136(3):327-346.

Cheung, T.S. 1973. Experiments on t h e s imul taneous regene ra t i on o f claws i n t h e aged male stone crab, Menippe mercenari a (Say), w i t h spec i a1 re fe rence t o t he t e rm ina l mo l t . B u l l e t i n of t h e I n s t i t u t e of Zoology, Academia S i n i c a ( T a i p e i ) . 12(1 ) :1-11.

Cheung, T.S. 1976. A b i o s t a t i s t i c a l s tudy o f t h e f u n c t i o n a l cons is tency i n t h e reversed claws o f the a d u l t male s tone c rabs Menippe mercenar ia (Say). Crustaceana -= 31(2) : 137-144.

Cos te l l o , T., T.M. Be r t , D. Cartano, G.E. Davis, G. Lyon, C. Rockwood, J.M. Stevely , J. Tashi ro, W.L. T ren t , D. Turgeon, J. Zuboy. 1979. F i s h e r y management p l a n f o r t h e s tone crab f i s h e r y of t h e G u l f o f Mexico. Fed. Reg. 44(65):19445- 19496.

Davis, G.E., D.S. Baughman, J.D. Chapman, D. MacArthur, and A.C. P ie rce . 1978. M o r t a l i t y assoc ia ted w i t h dec law ins stone crabs, Menippe mercenar i a. S: F l a . Res. Cent. Rep. T-522. 23 pp.

Forward, R.B., J r . 1977. Occurrence o f a shadow response among brachyuran la rvae . Mar. B i o l . ( B e r l . ) 39(4) : 331-341.

Guinot-Dumort ier, D., and B. Dumort ier 1960. La s t r i d u l a t i o n chez l e s crabs. Crustaceana (Le iden) 1(2) :1 i7-155.

Hay, W.P., and C.A. Shore. 1918. The de- capod crustaceans o f Beaufor t , N.C., and the surrounding region. B u l l . U.S. Bur. F ish. (1915 and 1916) 35: 369-475.

Hyman, O.W. 1925. Studies on the l a r vae o f crabs o f t he f a m i l y Xanthidae. Proc. U.S. Na t l . Mus. 67(3):1-22.

Iversen, E.S., and G.L. Beardsley. 1976. She l l disease i n crustaceans i n - digenous t o south F l o r i d a U.S.A. Prog. Fish-Cul t. 38(4) : 195-196.

Kaplan, E.H. 1982. A f i e l d guide t o c o r a l r e e f s o f the Caribbean and F l o r i d a i n c l u d i n g Bermuda and t h e Bahamas. Houghton M i f f 1 i n Co., Boston, Mass. 289 pp.

Karandeyeva, O.G., and A. S i l va . 1973. I n - t e n s i t y o f r e s p i r a t i o n and os- moregul a t i o n o f t he cornmerci a1 crab,

e mercenaria (Say) f rom Cuban coasta waters. Pages 292-310 i n 9 I n v e s t i g a t i o n s o f t he ~ e n t r x American seas. Publ. f o r Smithsonian I n s t i t u t i o n and Na t i ona l Science Foundation by the I n d i a n Na t i ona l Sci e n t i f i c Document Center, New Delh i , I nd ia . (Trans l . f rom Russian.)

L e f f l e r , C.W. 1973. Metabo l ic r a t e i n re - l a t i o n t o body s i z e and env i - ronmental oxygen concent ra t ion i n two species o f xan th id crabs. Comp. Biochem. Phys io l . A Comp. Physio l . 44(4) : 1047-1052.

Levinton, J.S. 1982. Mar i ne eco 1 ogy . P r e n t i ce-Hal l , Inc., Englewood C l i f f s , N. J. 526 pp.

Manning, R.B. 1961. Some growth changes i n t he stone crab, Meni e mercenaria (Say) Q. J. e A c a d . Sc i .

McRae, E.J., J r . 1950. An eco log i ca l s tudy o f t he Xanthidae crabs i n t he Cedar Key area. M.S. Thesis. U n i v e r s i t y o f F lo r i da , Ga inesv i l l e . 73 pp.

Menzel, R.W., and F.E. Nichy. 1958. Stud- i e s o f t he d i s t r i b u t i o n and feed ing h a b i t s o f some oys ter predators i n A1 l i g a t o r Harbor, F lo r i da . B u l l . Mar. Sci . Gulf Caribb. 8(2):125- 145.

Merz, R.A. 1979. A s tudy o f the behav io ra l and biomechani c a l defense o f Strombus a la tus , . t he F l o r i d a f i g h t i n g c x M.S. Thesis. U n i v e r s i t y o f F lo r i da , Ga inesv i l l e . 58 PP.

Mootz. C.A.. and C.F. E ~ i f a n i o . 1974. An

Noe, C. 1967. Con t r i bu t i on t o t he l i f e h i s - t o r y of t he stone crab Menippe mercenari a (Say), w i t h emphasis on the reproduc t ion cyc le. M.S. Thesis. U n i v e r s i t y o f Miami , Coral Gables, F la . 56 pp.

Ong, K.S., and J.D. Costlow, J r . 1970. The e f f e c t of s a l i n i t y and temperature on t h e l a r v a l development o f t he stone crab Menippe mercenari a reared i n t he l abo ra to rv . Chesaneake Sci .

Por ter , H. 1960. Zoeal stases o f the stone crab Menippe mercenaria (Say). Chesapeake Sci . -8-171.

Powell, E.H., and G. Gunter. 1967. Obser- va t i ons on t h e stone c rah Meni mercenaria i n t he v i c i n i t y d Aransas, Texas. Gu l f Res. Rep. 2 (3 ) : 285-299.

Prochaska, F.J. 1976. F l o r i d a commercial marine f i s h e r i e s : growth, r e l a t i v e importance, and i n p u t t rends. F la . Sea Grant Rep. No. 11. 50 pp.

Savage, T. 1971. Mat ing of t he stone c rab Menippe mercenaria Decapoda, Brachyura. Crustaceana (Leiden) 20(3) :315-317.

Savage, T., and M.R. McMahan. 1968. Growtk o f e a r l y j u v e n i l e stone crab1

Menippe mercenari a. F l a. S t a t e Board Conserv. Mar. Lab Spec. Sci . Rep. 21:l-17.

Savage, T., and J.R. S u l l i v a n . 1978. Growth and claw reqene ra t i on o f t h e stone crab Menippemercenaria. F la . Mar. Res. Publ. 32:l-23.

Scotto, L.E. 1979. L a r v a l development o f the Cuban stone Meni e nod i f r ons (BrachurarrabXan& under 1 abora to ry c o n d i t i o n s w i t h notes on t he s t a t u s o f t he f a m i l y Menippidae. U.S. N a t l . Mar. F ish. Serv. F ish . B u l l . 77(2) :359-386.

S i n c l a i r , M.E. 1977. A g o n i s t i c behav io r o f t he stone crab, Men i ppe mercenari a (Say). Anim. Behav. 25:193-207.

Su lk in , S.D., and W.F. Van Heukelem. 1980. Eco log i ca l and e v o l u t i o n a r y s i g n i f i - cance o f n u t r i t i o n a l f l e x i b i l i t y i n p l ank t o t r o p h i c 1 arvae of t h e deep sea red crab Ger on guinquedens and + t h e stone c r a e n i e mercenaria. Mar. Ecol . Prog.+2-

Su l l i van . J.R. 1979. The stone crab Meni e mercenar ia i n . t h e southwest & lJ$R f i she r " . F l a . Mar. Res. Publ. No. 36: 1-"37.

Vermei j , G.A. 1978. Biogeography and adapta t ion p a t t e r n s o f mar ine l i f e .

Harvard U n i v e r s i t y Press, Cambridge, Mass. 323 pp.

Wass, M.L. 1955. The decapod crustaceans o f A l l i g a t o r Harbor and adjacent i n - shore areas o f nor thwestern F l o r i d a . Q. J. F l a . Acad. Sci . 18(3):129-176.

W i 11 i ams, A.B. 1965. Mar ine decapod c rus- taceans of t he Carol inas. U.S. F i s h W i l d l . Serv. F ish . B u l l . 65(1) : 1- 298.

Yang, W.T. 1972. Notes on t he successful r ep roduc t i on of s tone crabs, Menippe mercenar i a (Say), r ea red from eggs. Pages 183-184 i n . Proc. 3 rd Annu. Workshop ~ o r l d M a r i c u 1 t u r e Soc., S t . Petersburg, F l a.

Yang, W.T., and G.E. Krantz. 1976. I n - t e n s i v e c u l t u r e o f t he s tone crab. Menippe mercenari a. U n i v e r s i t y o f Miami . Coral Gables. F l a. Sea Grant ~ e c h . - ~ u l l . No. 35.- 15 pp.

Zuboy, J.R., and J.E. S n e l l . 1980. As- sessment of t h e F l o r i d a stone c rab f i s h e r y . NOAA Tech. Memorandum NMFS- SEFC-21. 29 pp.

Zuboy, J.R., and J.E. Sne l l . 1982. As- sessment of t h e F l o r i d a stone crab f i she ry , 1980-1981 season. NOAA Tech. Memorandum, NMFS-SEFC-79. 21 PP-

5 0 2 7 7 -101

REWKT DOCUMENTATION 1. WO. 1 FWS/OBS-82/11.21* 1 2.

PAGE I

Species P r o f i l e s : L i f e H i s t o r i e s and Environmental Requirements o f Coastal Fishes and I n v e r t e b r a t e s (South F l o r i d a ) -- Stone Crab

- - 7. A y l h r(s1 MI 15 lam J. L indberg and Michael J. Marshal 1

9 F e r i o n n l n g Drgr?t:ataon Name anc Addrca5

Sea Grant Mar i ne Advi sory Program School o f Fo res t Resources and Conservat ion and Department of Zoo1 ogy U n i v e r s i t y o f F l o r i d a G a i n e s v i l l e , FL 32611

12. S ~ o n r c r ~ n Organirat8on N a m e a n 6 f ioaresr

~ a t i o n a j Coastal Ecosystems Team U.S. Army Corps o f Engineers F i s h and W i l d l i f e Se rv i ce Waterways Exper iment S t a t i o n U.S. Department o f t h e I n t e r i o r P.O. Box 631 Washington, DC 20240 Vicksburg, MS 39180

3. R e c i l i e n t ' r f icccssion tic

5. R c o a n D a l e

March 1984 6.

11 Con: rsc i lC) or G r a n t l G ) No.

(C,

1G:

*U.S. Army Corps o f Engineers r e p o r t No. TR EL-82-4.

16 Aor;rac: (Llmlt 200 words1

Species p r o f i 1 es a r e 1 i t e r a t u r e summaries on t h e taxonomy, morphology, range, 1 i f e h i s t o r y , and environmental requ i rements o f coas ta l species. They a r e designed t o a s s i s t i n env i ron - mental impact assessment. The stone crab, Meni e mercenar ia, i s among t h e t o p 10 commercial mar ine species i n F l o r i d a , va l ue&.9 m i l 1 i o n i n 1980-81. It a1 so supports a s u b s t a n t i a l s p o r t f i s h e r y . Mat ing occurs p r i m a r i l y i n l a t e autumn; spawning peaks du r ing e a r l y and l a t e summer. Spawning a c t i v i t y i s assoc ia ted w i t h temperatures above 20"-22"C, and i n h i b i t s female m o l t i n g . Larvae a re p l a n k t o n i c and s e n s i t i v e t o t h e combined e f f e c t s o f lower temperature and reduced s a l i n i t y ; optima a re suggested a t about 30°C and 30-35 pp t . Es tuar ine dependence i s n o t d e f i n i t i v e l y e s t a b l i s h e d f o r stone crabs, b u t t h e g r e a t e s t concen t ra t i ons o f a d u l t s a r e ad jacen t t o non -ba r r i e r , marsh o r mangrove c o a s t l i n e s . J u v e n i l e h a b i t a t requirements a re n o t w e l l known. Growth i s most r a p i d f o r j u v e n i l e s , and slows w i t h sexual m a t u r i t y i n yea r 11. A d u l t m o l t f requency, and consequent ly growth, i s favored by temperatures near 28°C and s a l i n i t i e s approaching f u l l seawater. Stone crabs a r e omnivorous and p a r t i c u l a r l y p rey on asso r ted mol lusks .

17. Docunen: f inalyrir a . D c r c r i o ~ o r %

Crabs Spawning Growth L i f e h i s t o r y Feedi ng

! Stone crab Subs t ra te r e o u i rements - -

Venippe mercenar ia H a b i t a t requ i rements Sal i n i t y requirements

c . C O S A T I Fteld/Grouc

2 1 . N o 0' Page, I t . h . a ! I a a i l ~ t y Slmcnicn:

Unl i m i t e d

- -- - 19. Secursty C l a l r (7h15 R C D O ~ , t U n c l a s s i f i e d 2c. 5 t c u - 1 ~ ~ C l a r r I T - . % P a x *

U n c l a s s i f i e d

17 Z : , = r ~ c e

REGION 1 Regional Director U.S. Fish and Wildlife Service Lloyd Five Hundred Building, Suite 1692 500 N.E. Multnornah Street Portland, Oregon 97232

REGION 4 Regional Director U.S. Fish and Wildlife Service Richard B. Russell Building 75 Spring Street, S.W. Atlanta, Georgia 30303

REGION 2 REGION 3 Regional Director Regional Director U.S. Fish and Wildlife Service U.S. Fish and Wildlife Service P.O. Box 1306 Federal Building, Fort Snelling Albuquerque, New Mexico 87 103 Twin Cities, Minnesota 55 1 1 1

REGION 5 REGION 6 Regional Director Regional Director U.S. Fish and Wildlife Service U.S. Fish and Wildlife Service One Gateway Center P.O. Box 25486 Newton Corner, Massachusetts 02158 Denver Federal Center

Denver, Colorado 80225

REGION 7 Regional Director U.S. Fish and Wildlife Service 101 1 E. Tudor Road Anchorage, Alaska 99503

DEPARTMENT OF THE INTERIOR U.S. FISH A I D WILDLIFE SERVICE

As the Nation's principal conservation agency, the Department of the Interior has respon- sibility for most of our.nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving theenvironmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department as- sesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.