28
Modeling Chemistry TN Modeling Curriculum Committee Pope John Paul II High School 271 Stoichiometry: Predicting Amounts in Reactions Stoichiometry is the process of determining how much product is made or how much reactant is needed during a chemical reaction. As we know, in chemical reactions atoms are conserved. We show this in a balanced chemical equation. The balanced chemical equation tells us two things: 1. Which substances begin with (reactants) and end with (products) during the rearrangement process. 2. The ratio of particles involved. This ratio can be seen either as a ratio of individual particles OR as a ratio of moles. In the lab it is only practical to work with moles of substances rather than individual atoms or molecules, and so we interpret our equations as a ratio of moles, or a mole ratio. Example: 2 Mg + 1O2 2 MgO means for every 2 moles of Mg burned, 1 mole of O2 is required to produce 2 moles of MgO, or a ratio of 2 moles Mg : 1 mole O2 : 2 moles MgO We can use this mole ratio relationship to make predictions about how much we need of something, or how much we can make from what we have. Making Predictions In every reaction, there are three stages we need to consider to make good predictions: 1. Before: What we have before the reaction takes place. 2. Change: How much of each substance actually changes during the reaction 3. After: How much of each substance is present after the reaction is complete. Some good organization can help us in making good predictions. We have an organizational table that can help us track the BeforeChangeAfter for a reaction. Below is an example of a problem involving a chemical reaction. Sample Problem: Hydrogen sulfide gas, which smells like rotten eggs, burns in air to produce sulfur dioxide and water. How many moles of oxygen gas would be needed to completely burn 2.4 moles of hydrogen sulfide? Step 1 Write and Balance the equation (describe the reaction and its mole ratio) 2H2S +3O2 2 SO2 +2H2O Before: Change After

Stoichiometry: Predicting Amounts in Reactionsjp2hs.org/wp-content/uploads/2014/08/10_Unit-8-Course-Pack.pdf · Basic Stoichiometry 1. ... Lab 1 In this experiment, ... is in its

  • Upload
    doanh

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

271  

Stoichiometry: Predicting Amounts in Reactions  

Stoichiometry  is  the  process  of  determining  how  much  product  is  made  or  how  much  reactant  is  needed  during  a  chemical  reaction.    As  we  know,  in  chemical  reactions  atoms  are  conserved.    We  show  this  in  a  balanced  chemical  equation.    The  balanced  chemical  equation  tells  us  two  things:  

1. Which  substances  begin  with  (reactants)  and  end  with  (products)  during  the  rearrangement  process.  

2. The  ratio  of  particles  involved.    This  ratio  can  be  seen  either  as  a  ratio  of  individual  particles  OR  as  a  ratio  of  moles.  

 In  the  lab  it  is  only  practical  to  work  with  moles  of  substances  rather  than  individual  atoms  or  molecules,  and  so  we  interpret  our  equations  as  a  ratio  of  moles,  or  a  mole  ratio.    Example:       2  Mg       +     1O2       →              2  MgO            means    for  every  2  moles  of  Mg  burned,    1  mole  of  O2  is  required  to  produce  2  moles  of  MgO,      or  a  ratio  of      2  moles  Mg    :      1  mole  O2      :      2  moles  MgO    We  can  use  this  mole  ratio  relationship  to  make  predictions  about  how  much  we  need  of  something,  or  how  much  we  can  make  from  what  we  have.    Making  Predictions  In  every  reaction,  there  are  three  stages  we  need  to  consider  to  make  good  predictions:  

1. Before:  What  we  have  before  the  reaction  takes  place.  2. Change:  How  much  of  each  substance  actually  changes  during  the  reaction  3. After:  How  much  of  each  substance  is  present  after  the  reaction  is  complete.  

 Some  good  organization  can  help  us  in  making  good  predictions.    We  have  an  organizational  table  that  can  help  us  track  the  Before-­‐Change-­‐After  for  a  reaction.      Below  is  an  example  of  a  problem  involving  a  chemical  reaction.    

Sample  Problem:    Hydrogen  sulfide  gas,  which  smells  like  rotten  eggs,  burns  in  air  to  produce  sulfur  dioxide  and  water.  How  many  moles  of  oxygen  gas  would  be  needed  to  completely  burn  2.4  moles  of  hydrogen  sulfide?    

Step  1-­‐  Write  and  Balance  the  equation  (describe  the  reaction  and  its  mole  ratio)                      2  H2S      +  3  O2  →  2  SO2      +    2  H2O     Before:     Change                       After  

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

272  

Step  2:  Fill  in  the  Before  line  with  the  Given  information;  mark  what  you  must  Find  on  the  table  (with  units)         2  H2S        +    3  O2    →    2  SO2      +      2  H2O         Before:                  2.4moles              xs  moles        0  moles            0  moles       Change            __  moles                       After    

NOTE:  Assume  reactants  you  don’t  have  amounts  for  are  present  with  more  than  enough  available  (excess,  or  “xs”)  for  the  reaction  to  be  completed.  

   

Step  3:  Use  ratio  of  coefficients  to  determine  the  Change  made         2  H2S        +    3  O2    →    2  SO2      +      2  H2O         Before:                  2.4moles              xs  moles          0  moles            0  moles       Change:        –2.4  moles    –3.6  moles    +2.4  moles    +2.4  moles                           After    

NOTE:    Reactants  are  consumed/decrease  (-­‐),  products  accumulate/increase  (+)    

 Step  4:  Complete  the  table  for  what  remains  After  the  reaction  is  complete         2  H2S        +    3  O2    →    2  SO2      +      2  H2O         Before:                  2.4  moles            xs  moles          0  moles            0  moles       Change:            –2.4  moles    –3.6  moles    +2.4  moles  +2.4  moles                       After:     0  moles            xs  moles      2.4  moles        2.4  moles    

• In  this  case,  desired  answer  is  in  moles         Answer  (in  moles):    3.6  moles  O2  are  needed  to  burn  2.4  moles  H2S.  

 • If  mass  is  required,  convert  moles  to  grams  in  the  usual  way         3.6moles  O2  *  32  grams    =  115  grams  O2           1  mole  

    Answer  (in  grams):    115  grams  O2  are  needed  to  burn  2.4  moles  H2S.    

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

273  

Name:______________________________________

Veritas:______________________________________

Unit 8, Worksheet 1— Basic Stoichiometry

1. Lead will react with hydrochloric acid to produce lead (II) chloride and

hydrogen gas. How many moles of hydrochloric acid are needed to completely react with 4.0 mole of lead?

Equation: Before:

Change

After

2. How many moles of hydrogen gas will be produced if 2.5 moles of calcium

hydride react according to the following equation? CaH2 + 2 H2O → Ca(OH)2 + 2 H2 Before:

Change

After 3. How many moles of water will be produced if 0.45 mol of oxygen reacts

according to the following equation? 2 C6H6 + 15 O2 → 12 CO2 + 6 H2O?

Before:    Change     After

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

274  

4. How many moles of calcium sulfate will be formed if 2.45 moles of calcium

hydroxide reacts with an excess of sulfuric acid (the second product is water)?

Equation: Before:

Change

After

5. How many moles of barium nitrate will be needed to produce 0.78 moles of

barium phosphate, assuming that you have an excess of lead (IV) phosphate? (Knowing the pattern of double replacement reactions, what is the second product?)

Equation: Before:

Change

After

6. Sodium burns in air to produce sodium oxide. How many moles of oxygen

are needed to completely react with 9.5 moles of sodium? Equation: Before:

Change

After

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

275  

Name:______________________________________

Veritas:______________________________________

Unit 8, Worksheet 2— Basic Stoichiometry Part II

For  each  of  the  problems  below:  a.  Write  the  balanced  chemical  equation  b.  Identify  what  is  given  (with  units)  and  what  you  want  to  find  (with  units)  c.  Use  coefficients  from  balanced  equation  to  determine  mole  ratio.  d.  Show  set  up  (organize  it!).    

1.    Hydrogen  sulfide  gas,  which  smells  like  rotten  eggs,  burns  in  air  to  produce  sulfur  dioxide  and  water.  How  many  moles  of  oxygen  gas  would  be  needed  to  completely  burn  8  moles  of  hydrogen  sulfide?      Equation:             ___  H2S(g)    +    ___  O2  (g)    →  ___  SO2(g)  +     ___  H2O(g)        Before:            Change                                  After          

2.    Propane,  C3H8,  burns  in  air  to  form  carbon  dioxide  and  water.  If  12  moles  of  carbon  dioxide  are  formed,  how  many  moles  of  propane  were  burned?    Equation:    Before:    Change                              After      3.    Ammonia,  NH3,  for  fertilizer  is  made  by  causing  hydrogen  and  nitrogen  to  react  at  high  temperature  and  pressure.    How  many  moles  of  ammonia  can  be  made  from  0.15  moles  of  nitrogen  gas?    Equation:    Before:    Change                              

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

276  

After    4.  The  poison  gas  phosgene,  COCl2,  reacts  with  water  in  the  lungs  to  form  hydrochloric  acid  and  carbon  dioxide.  How  many  moles  of  hydrochloric  acid  would  be  formed  by  0.835  moles  of  phosgene?    Equation:    Before:    Change                              After    5.  Iron  metal  and  oxygen  combine  to  form  the  magnetic  oxide  of  iron,  Fe3O4.  How  many  moles  of  iron  can  be  converted  to  magnetite  by  8.80  moles  of  pure  oxygen?    (make  your  BCA  table)                  How  many  moles  of  iron  oxide  would  be  produced?   6.  The  recipe  for  Coca-­‐Cola  Classic  is  a  closely  guarded  secret.  Researchers  outside  the  company  believe  the  flavoring  mixture,  known  as  “7X”,  contains  oils  of  orange,  lemon,  nutmeg,  cinnamon,  and  coriander.    The  original  mixture  also  contained  caffeine,  vanilla,  caramel,  lime  juice,  sugar  or  artificial  sweetener,  and  citric  acid.    Over  the  years,  the  recipe  has  changed.    For  example,  the  original  recipe  contained  citric  acid  but  this  was  combined  with  phosphoric  acid  to  cut  production  costs.    Corn  syrup  replaced  sugar  for  the  same  reason.      To  produce  1000  cans  of  Coca-­‐Cola  Classic,  40g  (0.21  moles)  of  caffeine  are  reacted  with  phosphoric  acid  and  other  ingredients.    How  many  moles  of  phosphoric  acid  are  required?  How  many  moles  of  carbon  dioxide  are  required?    (caffeine)                        (phosphoric  acid)                        (potassium  benzoate)  C8H10N4O2    +      4  H3PO4    +      6  CO2        +      other  ingredients  à      C6H5CO2K      +      other  products    

                       

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

277  

Unit 8, Lab 1

In this experiment, a solution of copper (II) chloride will react with aluminum wire. Careful measurements and calculations will allow you to determine mole relationships.

Title:  Purpose/Question:    Procedure: Day 1

1. Obtain a 30-cm length of aluminum wire, a vial of copper (II) chloride, and a dixie cup. Label the cup with the period and group number so you can find it again.

2. Measure out 2.0 g of copper (II) chloride. Record the actual amount used (ex. 2.01 or 2.08). Be sure to use the same balance for all measurements.

3. Record the mass of the aluminum wire. 4. Record the mass of the labeled cup. 5. Clamp a clean test tube to a ring stand. 6. Add 20.0 mL of distilled water to the test tube. 7. Very carefully add the copper (II) chloride from the weigh boat to the test

tube. Stir gently with a glass-stirring rod to dissolve the crystals completely. 8. Coil the aluminum wire by wrapping it around a pencil. Stretch the wire

until it is about 2 cm longer than the test tube. Place the coiled wire into the test tube with the copper (II) chloride solution so that the straightened end is out of the solution.

9. Note the reaction that occurs; record your observations. 10. Allow the reaction to continue for 20 minutes or as long as possible. 11. Shake the copper from the aluminum wire and remove the wire from the test

tube. Using the distilled water bottle, rinse the wire into the weighed, labeled cup. Dip the wire in the acetone located on the stock table, then set it aside to dry.

12. Pour the contents of the test tube into the labeled cup. Use the distilled water wash bottle to rinse the test tube into the beaker.

13. Carefully decant the solution from the copper into another beaker. Rinse the copper with about 10 mL of distilled water, stirring gently with a clean stirring rod. Allow the copper to settle, then decant into the other beaker. Repeat this 3 more times. To minimize error, try not to allow any of the copper to escape during decantation. Discard the liquid from the other beaker into the waste container on the stock table.

14. After the final rinse, place the labeled cup on the stock table. 15. Record the mass of the aluminum wire to the nearest 0.01g, then put the

wire in the designated location on the central stock table. 16. Clean the used beaker and your lab station.

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

278  

Procedure—Day 2 19. When the copper is dry, find the mass of the cup and copper to the nearest 0.01g. Return the cup that contains the copper to your instructor. Data     Construct a data table from the measurements recorded in lab.                            Calculations Show  all  work,  units,  and  appropriate  sig  figs.    

1. Determine the mass (in grams) of Al that reacted during the experiment.

2. Determine the moles of Al reacted.

3. Determine the mass of Cu produced during the experiment.

4. Determine the moles of Cu produced during the experiment.

5. Determine the value of the ratio mol Al: mol Cu. Make sure that this ratio is in its simplest form by dividing each quantity by the smaller of the two. Report the exact ratio.

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

279  

Analysis  4. Because of our deep and abiding belief that atoms react in simple whole

number ratios, what do you suppose is the actual ratio of mol Al: mol Cu? (Note: Your team should use class results to help you decide the correct ratio.)

5. Write a balanced equation for the single replacement reaction between solid

aluminum and aqueous copper (II) nitrate. 6. Complete a BCA table for this chemical reaction. (NOTE: Be sure to enter

the exact number of moles of Al and the exact number of moles of copper (II) sulfate that were present before the reaction began.)

7. How many moles of copper does the BCA Chart predict should be produced in

this chemical reaction? Convert this quantity to grams 8. How many grams of copper were actually recovered at the end of the lab

procedure? 9. Using the actual yield of Cu and the theoretical yield of Cu, determine the

percent yield.

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

280  

Conclusions If your ratio mol  Al:  mol  Cu is greater than the accepted value, then either the moles of Al is too high, or the moles of Cu is too low. If your ratio is lower than the accepted value, then either the moles of Al is too low, or the moles of Cu is too high. Use the % yield to help you decide whether the problem is due to the value you have obtained for the moles of copper. Discuss as many specific experimental errors (minimum 3) that could account for the ratio being too high or too low. (Your lab errors should make sense with your data.)                                                                    

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

281  

 Name:______________________________________

Veritas:______________________________________

Unit 8, Worksheet 3— Stoichiometry with Gram-Mole Conversions

Write  the  balanced  chemical  equation  for  each  problem.    Use  the  information  that  is  given  to  complete  a  BCA  Chart.        Some  conversions  will  be  necessary.    Show  the  math  for  the  conversions  off  to  the  side  of  the  BCA  Chart.    Circle  or  box  in  the  final  answer.          

1.     Solid  aluminum  metal  reacts  with  chlorine  gas  to  produce  solid  aluminum  chloride  crystals.    Assuming  100%  yield,  how  many  grams  of  aluminum  chloride  crystals  will  be  produced  if  there  are  61.5  grams  of  solid  aluminum  available?  

 

 

 

 

 

 

2.     15.45  grams  of  solid  potassium  chlorate  decomposes  when  heated  to  form  solid  potassium  chloride  and  oxygen  gas.    Assuming  100%  yield,  how  many  grams  of  solid  potassium  chloride  will  be  produced?            

 

 

 

 

 

 

 

3.     Solid  zinc  and  aqueous  copper  (II)  bromide  react  in  a  single  replacement  reaction  producing  zinc  bromide  and  solid  copper.      How  many  grams  of  solid  zinc  nuggets  must  be  put  into  this  reaction  in  order  to  recover  25.0  grams  of  solid  copper  metal.    (Assume  100%  yield.)  

 

 

 

 

 

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

282  

4.     Solid  iron  (III)  hydroxide  decomposes  when  heated  into  solid  iron  (III)  oxide  and  water  vapor.    

  If  5.25  grams  of  iron  (III)  hydroxide  decomposes  completely  in  this  reaction,  how  many  grams  of  iron  (III)  oxide  will  be  formed?    (Assume  100%  yield.)  

 

 

 

 

 

 

 

 

 

5.     Solid  magnesium  combines  with  fluorine  gas  producing  solid  magnesium  fluoride.    How  much  magnesium  metal  is  required  to  produce  exactly  50.0  grams  of  the  magnesium  fluoride  product?    

 

 

 

 

 

 

 

 

 

 6.   Exactly  100.0  grams  of  solid  calcium  oxide  is  combined  with  exactly  100.0  grams  of  solid  diphosphorus  pentoxide.    This  reaction  produces  solid  calcium  phosphate.    Assuming  100%  yield,  how  many  grams  of  solid  calcium  phosphate  will  be  produced?      

 

   

   

   

 

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

283  

Name:______________________________________

Veritas:______________________________________

Unit 8, Worksheet 4— Stoichiometry with Percent Yield

Write  the  balanced  chemical  equation  for  each  problem.    Use  the  information  that  is  given  to  complete  a  BCA  Chart.        Some  conversions  will  be  necessary.    Show  the  math  for  the  conversions  off  to  the  side  of  the  BCA  Chart.    Circle  or  box  in  the  final  answer.        

1. Using the Hoffman apparatus for electrolysis, a chemist decomposes 36 g of water into its gaseous elements. How many grams of hydrogen gas should she get (theoretical yield)? Equation:    Before:    Change                            After   2. Recall that liquid sodium reacts with chlorine gas to produce sodium chloride. You want to produce 581 g of sodium chloride. How many grams of sodium are needed? 3. You eat 180.0 g of glucose (90 M&Ms). If glucose, C6H12O6, reacts with oxygen gas to produce carbon dioxide and water, how many grams of oxygen will you have to breathe in to burn the glucose? 4. Suppose 4.61 g of zinc was allowed to react with hydrochloric acid to produce zinc chloride and hydrogen gas. How much zinc chloride should you get? Suppose that you actually recovered 8.56 g of zinc chloride. What is your percent yield?

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

284  

5. Determine the mass of carbon dioxide that should be produced in the reaction between 3.74 g of carbon and excess O2. What is the % yield if 11.34 g of CO2 is recovered? 6. In the reaction between excess K(s) and 4.28 g of O2(g), potassium oxide is formed . What mass would you expect to form (theoretical yield)? If 17.36 g of K2O is actually produced, what is the percent yield? 7. Determine the mass of carbon dioxide one could expect to form (and the percent yield) for the reaction between excess CH4 and 11.6 g of O2 if 5.38 g of

carbon dioxide gas is produced along with some water vapor. 8. Determine the mass of water vapor you would expect to form (and the percent yield) in the reaction between 15.8 g of NH3 and excess oxygen to produce water and nitric oxide (NO). The mass of water actually formed is 21.8 g.

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

285  

Name:______________________________________

Veritas:______________________________________

Unit 8, Worksheet 5— Stoichiometry with Limiting and Excess Reactants

1.    Write  the  balanced  equation  for  the  reaction  between  hydrogen  and  oxygen.    

   Balanced  Equation:               ____________________    Suppose  that  4  molecules  of  hydrogen  gas  and  4  molecules  of  oxygen  gas  react  to  form  water.    Make  a  drawing  that  represents  the  reaction  container  before  and  after  the  reaction.                         Before               After            How  many  molecules  of  water  can  be  produced?            Which  reactant  is  in  excess?    Why?            How  many  molecules  of  excess  reactant  are  there?    Construct  a  Before-­‐Change-­‐After  Table  for  this  reactant  mixture:    

 Bal.  Equation:          _________________________________________________    

    Before:                                    Change:                      _________________________________________________           After:          According  to  the  table  you  just  made,            How  many  molecules  of  water  can  be  produced?            Which  reactant  is  in  excess?    Why?            How  many  molecules  of  excess  reactant  are  there?    Based  on  your  two  methods  of  analysis  above,  what  determines  how  much  product  can  be  made  from  a  particular  reactant  mix?  

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

286  

2.    Write  the  equation  for  the  formation  of  ammonia  from  nitrogen  gas  and  hydrogen  gas.      Balanced  Equation:  _______________________________________________________________________________    

Given  6  molecules  of  nitrogen  and  12  molecules  of  hydrogen,  make  a  drawing  that  represents  the  reaction  container  before  and  after  the  reaction.    

                   

      Before             After            How  many  molecules  of  ammonia  can  be  produced?            Which  reactant  is  in  excess?    Why?            How  many  molecules  of  excess  reactant  are  there?      Construct  a  Before-­‐Change-­‐After  Table  for  this  reactant  mixture:    

Bal.  Equation:          _________________________________________________    

    Before:                                    Change:                      _________________________________________________           After:          According  to  the  table  you  just  made,            How  many  molecules  of  ammonia  can  be  produced?            Which  reactant  is  in  excess?    Why?            How  many  molecules  of  excess  reactant  are  there?      Describe  what  you  must  look  for  in  a  particular  reactant  mixture  to  decide  which  reactant  will  be  in  excess  (have  some  left  over  after  the  reaction):      

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

287  

3.    When  0.50  mole  of  aluminum  reacts  with  0.72  mole  of  iodine  to  form  aluminum  iodide,  how  many  moles  of  the  excess  reactant  will  remain?  How  many  moles  of  aluminum  iodide  will  be  formed?      Equation:    Before:    Change                              After        4.    When  sodium  hydroxide  reacts  with  sulfuric  acid  (H2SO4),  water  and  sodium  sulfate  are  the  products.    Calculate  the  mass  of  sodium  sulfate  produced  when    15.5  g  of  sodium  hydroxide  are  reacted  with  46.7  g  of  sulfuric  acid.        Equation:    Before:    Change                              After            5.    A  14.6  g  sample  of  oxygen  gas  is  placed  in  a  sealed  container  with  2.5  g  of  hydrogen  gas.    The  mixture  is  sparked,  producing  water  vapor.    Calculate  the  mass  of  water  formed.  Calculate  the  number  of  moles  of  the  excess  reactant  remaining.    Equation:    Before:    Change                              After              

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

288  

6.    Neuroscientists  believe  that  the  only  chemical  in  chocolate  that  may  have  a  feel-­‐good  effect  on  the  human  brain  is  phenylethylamine  (PEA).        Although  the  PEA  in  chocolate  occurs  naturally,  PEA  can  be  made  in  the  laboratory  by  the  following  reaction:    How  much  PEA  can  be  made  from  75.0g  of  ammonium  formate  and  125g  of  acetophenone?      What  mass  of  the  excess  reactant  remains?    

         CH5NO2        +                        C8H8O                à      C8H11N            +                CO2        +              H2O     ammonium  formate            acetophenone      phenylethylamine    (PEA)      Before:    Change                              After     7.      2.00g  of  ammonia  is  reacted  with  4.00  g  of  oxygen  to  produce  nitrogen  monoxide  and  water.      How  many  grams  of  water  are  produced?    How  many  grams  of  excess  reactant  is  remaining?    Equation:    Before:    Change                              After     8.    Suppose  456  g  of  carbon  monoxide  and  65.0  g  of  hydrogen  gas  are  mixed  and  allowed  to  react.    What  mass  of  ethanol  (CH3OH)  can  be  produced?    How  many  grams  of  the  excess  reactant  remain?    Equation:    Before:    Change                              After        

phenylethylamine  

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

289  

Name:______________________________________

Veritas:______________________________________

Unit 8 — Extra Practice Problems 1. Calculate the number of moles of potassium chlorate, KClO3 (s), that must

decompose to produce potassium chloride, KCl (s), and 1.8 moles of oxygen gas. Equation:    Before:    Change                              After   2. In a single displacement reaction, magnesium metal reacts with hydrochloric acid to produce magnesium chloride and hydrogen gas. How many moles of hydrochloric acid are needed to completely react with 2.43 g of magnesium?

 Equation:    Before:    Change                              After       3. Ethane, C2H6 reacts with oxygen gas to produce carbon dioxide gas and water

vapor. What mass of oxygen gas is required to react with 2.20 moles of ethane?  Equation:    Before:    Change                              After

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

290  

4. Determine the mass of sodium nitrate produced when 0.73 g of nickel (II) nitrate reacts with sodium hydroxide according to the following equation:  Equation:    Before:    Change                              After 5. In the copper–silver nitrate lab copper metal and silver nitrate solution reacted to produce silver metal and copper(II) nitrate in solution.  A student placed a copper wire with a mass of 2.93 g in the reaction test tube. The silver nitrate solution contained 1.41 g of silver nitrate.  He obtained 0.87 g of silver metal. Calculate the percent yield of silver. Equation:    Before:    Change                              After 6. When hydrochloric acid (HCl) is added to sodium hydrogen carbonate, the products are water, aqueous sodium chloride and carbon dioxide gas. What is the per cent yield if 4.68 g of CO2 are collected when 10.0 g of sodium hydrogen

carbonate reacts with excess HCl? Equation:    Before:    Change                              After

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

291  

7. Phosphorus and bromine react vigorously together to form phosphorus tribromide. If 5.0 g of phosphorus and 35 g of bromine react, how many grams of PBr3 could be produced? Equation:    Before:    Change                              After 8. Zinc sulfide and oxygen gas react to form zinc oxide and sulfur dioxide. Determine the amount of ZnO that should be produced in a reaction between 46.5 g of ZnS and 13.3 g of oxygen. What is the mass of the xs reactant? Equation:    Before:    Change                              After     9. Sodium hydroxide reacts with sulfuric acid, H2SO4, to produce water and sodium sulfate. How many grams of sodium sulfate will be formed if you start with 200. g of sodium hydroxide and you have an excess of sulfuric acid?

Equation:    Before:    Change                              After  

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

292  

10. The combustion of a sample of butane, C4H10 (lighter fluid), produced 2.46 grams of water. Carbon dioxide was also produced. Equation:    Before:    Change                              After  

(a) How many moles of water formed?

(b) How many moles of butane burned?

(b) How many grams of butane burned?

(d) How much oxygen was used up in moles?

(e) How much oxygen was used up in grams?

11. How many grams of lithium nitrate will be needed to make 250 grams of lithium sulfate, assuming that you have an adequate amount of lead (IV) sulfate to do the reaction? Equation:    Before:    Change                              After  :

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

293  

12. Calculate how many grams of iron can be made from 16.5 grams of iron (III) reacting with an excess of hydrogen gas. (Water is the second product.) Equation:    Before:    Change                              After  :

13. Calculate how many grams of iodine are needed to prepare 28.6 grams of ICl by the following reaction: 2 I2 + KIO3 + 6HCl à 5 ICl + KCl + 3H2O Before:    Change                              After   14. How many grams of KMnO4 are needed to carry out the following reaction with 11.4 grams of KNO2? 5 KNO2 + 2 KMnO4 + 3 H2SO4 ------> 5 KNO3 + 2 MnSO4 + K2SO4 + 3 H2O Before:    Change                              After  

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

294  

15. How many grams of oxygen gas are needed to react with 56.8 grams of ammonia (NH3) to produce nitrogen monoxide and water?  Equation:    Before:    Change                              After  

16. Calculate the number of grams of iodine (I2) that can be made in the following reaction with 16.4 grams of NaIO3. NaIO3 + 6 HI ------------> 3 I2 + NaI + 3 H2O Equation:    Before:    Change                              After   17. A 50.6 g sample of Mg(OH)2 is reacted with 45.0 g of HCl producing magnesium chloride and water. What is the theoretical yield of magnesium chloride? Equation:    Before:    Change                              After  

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

295  

18. Methane, CH4, burns in oxygen to give carbon dioxide and water. In one experiment, a mixture of 0.250 mol of methane was burned in 1.25 mol of oxygen in a sealed steel vessel. Find the limiting reactant, if any, and calculate the theoretical yield, (in moles) of water. Equation:    Before:    Change                              After   19. Chloroform, CHCl3, reacts with chlorine to form carbon tetrachloride and hydrogen chloride. In an experiment 25 grams of chloroform and 25 grams of chlorine were mixed. Which is the limiting reactant? What is the theoretical yield of CCl4 in grams? Equation:    Before:    Change                              After   20. Aluminum chloride can be made by the reaction of aluminum with chlorine. What is the limiting reactant if 20.0 grams of Al and 30.0 grams of Cl2 are used, and how much AlCl3 can theoretically form? Equation:    Before:    Change                              After  

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

296  

21. An organic chemist reacted 10. g CH4 with excess chlorine and obtained 10. g of CH3Cl. What was his percent yield? Equation:    Before:    Change                              After   22. If 20.0 g of aluminum and 30.0 g of chlorine are used, what is the theoretical yield of aluminum chloride? Equation:    Before:    Change                              After   23. If 80.0 grams of I2O5 react with 28.0 g of carbon monoxide, what is the percent yield if 0.160 moles of iodine were actually produced? Equation:    Before:    Change                              After  

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

297  

24. If you start with 45 grams of ethylene (C2H4), how many grams of carbon dioxide will be produced?

C2H4 + 3 O2 à 2 CO2 + 2 H2O

Before:    Change                              After   25. If you start with 5.5 grams of sodium fluoride, how many grams of

magnesium fluoride will be produced?

Mg + 2 NaF à MgF2 + 2 Na Before:    Change                              After   26. If you start with 20 grams of hydrochloric acid, how many grams of sulfuric

acid will be produced?

2 HCl + Na2SO4 à 2 NaCl + H2SO4 Before:    Change                              After      27.     If  you  start  with  10.0  grams  of  lithium  hydroxide,  how  many  grams  of  lithium  

bromide  will  be  produced?    

LiOH  +  HBr  à  LiBr  +  H2O    Before:    Change                              After  

Modeling  Chemistry    TN  Modeling  Curriculum  Committee  Pope  John  Paul  II  High  School                                                                                                        

298  

28. Write the balanced equation for the double replacement reaction of lead (II)

nitrate with sodium iodide. If I start with 25.0 grams of lead (II) nitrate and 15.0 grams of sodium iodide, how many grams of sodium nitrate can be formed?

Equation:    Before:    Change                              After  

What is the limiting reagent?

How many grams of the non-limiting reagent will be left over?    29.  If  I  start  with  5  grams  of  C3H8,  what  is  my  theoretical  yield  of  water?    

C3H8     +                5  O2  à    3  CO2            +                4  H2O      

Before:    Change                              After      

 I  got  a  percent  yield  of  75%    How  many  grams  of  water  did  I  make?