49
Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion 1/24 Stochastic Proximal Algorithms with Applications to Online Image Recovery Patrick Louis Combettes 1 and Jean-Christophe Pesquet 2 1 Mathematics Department, North Carolina State University, Raleigh, USA 2 Center for Visual Computing, CentraleSupelec, University Paris-Saclay, Grande Voie des Vignes, 92295 Chatenay-Malabry, France S 3 Seminar - 24 March 2017

Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

1/24

Stochastic Proximal Algorithms withApplications to Online Image Recovery

Patrick Louis Combettes1 and Jean-Christophe Pesquet2

1 Mathematics Department, North Carolina State University,Raleigh, USA

2 Center for Visual Computing, CentraleSupelec, University Paris-Saclay,Grande Voie des Vignes, 92295 Chatenay-Malabry, France

S3 Seminar - 24 March 2017

Page 2: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

2/24

Outline

1. Introduction

2. Stochastic Forward-Backward

3. Monotone Inclusion Problems

4. Primal-Dual Extension

5. Application

6. Conclusion

Page 3: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

3/24

Context

Need for fast optimization methods over the last decade

Why?

I Interest in nonsmooth cost functions (sparsity)I Need for optimal processing of massive datasets (big data) large number of variables (inverse problems) large number of observations (machine learning)

I Use of more sophisticated data structures(graph signal processing)

Page 4: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

3/24

Context

Need for fast optimization methods over the last decade

Why?

I Interest in nonsmooth cost functions (sparsity)I Need for optimal processing of massive datasets (big data) large number of variables (inverse problems) large number of observations (machine learning)

I Use of more sophisticated data structures(graph signal processing)

Page 5: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

4/24

Variational formulation

GOAL:

minimizex∈H

f(x) + h(x),

where• H: signal space (real Hilbert space)• f ∈ Γ0(H): class of convex lower-semicontinuous functions fromH to ]−∞,+∞] with a nonempty domain• h : H→ R: differentiable convex function such that ∇h isϑ−1-Lipschitz continuous with ϑ ∈ ]0,+∞[

• F = Argmin(f + h) assumed to be nonempty.

Page 6: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

5/24

Algorithm

CLASSICAL SOLUTION [Combettes and Wajs - 2005]

(∀n ∈ N) xn+1 = xn + λn(proxγnf(xn − γn∇h(xn))− xn

),

FORWARD-BACKWARD ALGORITHM

where λn ∈]0, 1], γn ∈ ]0, 2ϑ[, and proxγnf is the proximity operatorof γnf [Moreau - 1965]:

proxγnf : x 7→ argminy∈H

f(y) +1

2γn‖x− y‖2.

SPECIAL CASES: projected gradient method, iterative soft threshold-ing, Landweber algorithm,...

Page 7: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

5/24

Algorithm

CLASSICAL SOLUTION [Combettes and Wajs - 2005]

(∀n ∈ N) xn+1 = xn + λn(proxγnf(xn − γn∇h(xn))− xn

),

FORWARD-BACKWARD ALGORITHM

In the context of online processing and machine learning,what to do if ∇h and f are not known exactly ?

Page 8: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

6/24

Proposed Solution

(∀n ∈ N) xn+1 = xn + λn(proxγnfn(xn − γnun) + an − xn

),

STOCHASTIC FB ALGORITHM

where• λn ∈ ]0, 1] and γn ∈ ]0, 2ϑ[

Page 9: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

6/24

Proposed Solution

(∀n ∈ N) xn+1 = xn + λn(proxγnfn(xn − γnun) + an − xn

),

STOCHASTIC FB ALGORITHM

where• λn ∈ ]0, 1] and γn ∈ ]0, 2ϑ[

• fn ∈ Γ0(H): approximation to f

Page 10: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

6/24

Proposed Solution

(∀n ∈ N) xn+1 = xn + λn(proxγnfn(xn − γnun) + an − xn

),

STOCHASTIC FB ALGORITHM

where• λn ∈ ]0, 1] and γn ∈ ]0, 2ϑ[

• fn ∈ Γ0(H): approximation to f

• un second-order random variable: approximation to ∇h(xn)

Page 11: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

6/24

Proposed Solution

(∀n ∈ N) xn+1 = xn + λn(proxγnfn(xn − γnun) + an − xn

),

STOCHASTIC FB ALGORITHM

where• λn ∈ ]0, 1] and γn ∈ ]0, 2ϑ[

• fn ∈ Γ0(H): approximation to f

• un second-order random variable: approximation to ∇h(xn)

• an second-order random variable: possible additional errorterm.

Page 12: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

7/24

Assumptions

Let X = (Xn)n∈N be a sequence of sigma-algebras such that

(∀n ∈ N) σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.

where σ(x0, . . . , xn) is the smallest σ-algebra generated byx0, . . . , xn.

`+(X ): set of sequences of [0,+∞[-valued random variables(ξn)n∈N such that (∀n ∈ N) ξn is Xn-measurable and

`1+(X ) =

{(ξn)n∈N ∈ `+(X )

∣∣∣ ∑n∈N

ξn < +∞ P-a.s.

}

`∞+ (X ) =

{(ξn)n∈N ∈ `+(X )

∣∣∣ supn∈N

ξn < +∞ P-a.s.}.

Page 13: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

7/24

AssumptionsLet X = (Xn)n∈N be a sequence of sigma-algebras such that

(∀n ∈ N) σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.

where σ(x0, . . . , xn) is the smallest σ-algebra generated byx0, . . . , xn.

Assumptions on the gradient approximation:

I∑

n∈N√λn‖E(un |Xn)−∇h(xn)‖ < +∞.

I For every z ∈ F, there exist sequences (τn)n∈N ∈ `+,(ζn(z))n∈N ∈ `∞+ (X ) such that

∑n∈N

√λnζn(z) < +∞

and

(∀n ∈ N) E(‖un − E(un |Xn)‖2 |Xn)

6 τn‖∇h(xn)−∇h(z)‖2 + ζn(z).

Page 14: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

7/24

Assumptions

Let X = (Xn)n∈N be a sequence of sigma-algebras such that

(∀n ∈ N) σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.

where σ(x0, . . . , xn) is the smallest σ-algebra generated byx0, . . . , xn.

Assumptions on the prox approximation:

I There exist sequences (αn)n∈N and (βn)n∈N in [0,+∞[such that

∑n∈N√λnαn < +∞,

∑n∈N λnβn < +∞, and

(∀n ∈ N)(∀x ∈ H) ‖proxγnfnx−proxγnfx‖ 6 αn‖x‖+βn.

I∑

n∈N λn√E(‖an‖2 |Xn) < +∞.

Page 15: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

7/24

Assumptions

Let X = (Xn)n∈N be a sequence of sigma-algebras such that

(∀n ∈ N) σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.

where σ(x0, . . . , xn) is the smallest σ-algebra generated byx0, . . . , xn.

Assumptions on the algorithm parameters:

I infn∈N γn > 0, supn∈N τn < +∞, andsupn∈N(1 + τn)γn < 2ϑ.

I Either infn∈N λn > 0 or[γn ≡ γ,

∑n∈N τn < +∞, and∑

n∈N λn = +∞].

Page 16: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

8/24

Convergence Result

Under the previous assumptions, the sequence (xn)n∈N gen-erated by the algorithm converges weakly a.s. to an F-valuedrandom variable.

REMARKS:? Related works: [Rosasco et al. - 2014, Atchade et al. - 2016]

? Result valid for non vanishing step sizes (γn)n∈N.? We do not need to assume that

(∀n ∈ N) E(un |Xn) = ∇h(xn).

? Proof based on properties of stochastic quasi-Fejer sequences[Combettes and Pesquet – 2015, 2016].

Page 17: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

9/24

Stochastic Quasi-Fejer Sequences

I Let φ : [0,+∞[→ [0,+∞[, φ(t) ↑ +∞ as t→ +∞I Deterministic definition: A sequence (xn)n∈N in H is Fejer

monotone with respect to F if for every z ∈ F,

(∀n ∈ N) φ(‖xn+1 − z‖) 6 φ(‖xn − z‖)

Suppose (xn)n∈N is stochastically quasi-Fejer monotone w.r.t.F. ThenI (∀z ∈ F)

[ ∑n∈N ϑn(z) < +∞ P-a.s.

]I [W(xn)n∈N ⊂ F P-a.s.]⇔ [(xn)n∈N converges weakly

P-a.s. to an F-valued random variable].

W(xn)n∈N: set of weak sequential cluster points of (xn)n∈N.

Page 18: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

9/24

Stochastic Quasi-Fejer Sequences

I Let φ : [0,+∞[→ [0,+∞[, φ(t) ↑ +∞ as t→ +∞I Stochastic definition 1: A sequence (xn)n∈N of H-valued

random variables is stochastically Fejer monotone withrespect to F if, for every z ∈ F,

(∀n ∈ N) E(φ(‖xn+1 − z‖)| Xn) 6 φ(‖xn − z‖)

Suppose (xn)n∈N is stochastically quasi-Fejer monotone w.r.t.F. ThenI (∀z ∈ F)

[ ∑n∈N ϑn(z) < +∞ P-a.s.

]I [W(xn)n∈N ⊂ F P-a.s.]⇔ [(xn)n∈N converges weakly

P-a.s. to an F-valued random variable].

W(xn)n∈N: set of weak sequential cluster points of (xn)n∈N.

Page 19: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

9/24

Stochastic Quasi-Fejer Sequences

I Let φ : [0,+∞[→ [0,+∞[, φ(t) ↑ +∞ as t→ +∞I Stochastic definition 2: A sequence (xn)n∈N of H-valued

random variables is stochastically quasi-Fejer monotonewith respect to F if, for every z ∈ F, there exist(χn(z))n∈N ∈ `1+(X ), (ϑn(z))n∈N ∈ `+(X ), and(ηn(z))n∈N ∈ `1+(X ) such that

(∀n ∈ N) E(φ(‖xn+1−z‖) |Xn)+ϑn(z) 6 (1+χn(z))φ(‖xn−z‖)+ηn(z)

Suppose (xn)n∈N is stochastically quasi-Fejer monotone w.r.t.F. ThenI (∀z ∈ F)

[ ∑n∈N ϑn(z) < +∞ P-a.s.

]I [W(xn)n∈N ⊂ F P-a.s.]⇔ [(xn)n∈N converges weakly

P-a.s. to an F-valued random variable].

W(xn)n∈N: set of weak sequential cluster points of (xn)n∈N.

Page 20: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

9/24

Stochastic Quasi-Fejer Sequences

I Let φ : [0,+∞[→ [0,+∞[, φ(t) ↑ +∞ as t→ +∞I Stochastic definition 2: A sequence (xn)n∈N of H-valued

random variables is stochastically quasi-Fejer monotonewith respect to F if, for every z ∈ F, there exist(χn(z))n∈N ∈ `1+(X ), (ϑn(z))n∈N ∈ `+(X ), and(ηn(z))n∈N ∈ `1+(X ) such that

(∀n ∈ N) E(φ(‖xn+1−z‖) |Xn)+ϑn(z) 6 (1+χn(z))φ(‖xn−z‖)+ηn(z)

Suppose (xn)n∈N is stochastically quasi-Fejer monotone w.r.t.F. ThenI (∀z ∈ F)

[ ∑n∈N ϑn(z) < +∞ P-a.s.

]I [W(xn)n∈N ⊂ F P-a.s.]⇔ [(xn)n∈N converges weakly

P-a.s. to an F-valued random variable].

W(xn)n∈N: set of weak sequential cluster points of (xn)n∈N.

Page 21: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

10/24

More General ProblemGOAL:

Find x ∈ H such that 0 ∈ Ax + Bx,

where• A : H→ 2H: maximally monotone operator, i.e.

(x, u) ∈ graA ⇔ (∀(y, v) ∈ graA) 〈x− y | u− v〉 > 0.

• If A is maximally monotone, then its resolvent JA = (Id + A)−1 isa firmly nonexpansive operator from H to H.

Page 22: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

10/24

More General ProblemGOAL:

Find x ∈ H such that 0 ∈ Ax + Bx,

where• A : H→ 2H: maximally monotone operator, i.e.

(x, u) ∈ graA ⇔ (∀(y, v) ∈ graA) 〈x− y | u− v〉 > 0.

• B : H→ H: ϑ-cocoercive operator, with ϑ ∈ ]0,+∞[, i.e.

(∀x ∈ H)(∀y ∈ H) 〈x− y | Bx− By〉 > ϑ‖Bx− By‖2,

• F = zer (A + B) assumed to be nonempty.

EXAMPLE: A = ∂f with f ∈ Γ0(H) and B = ∇h with h convex witha ϑ−1-Lipschitzian gradient.

Page 23: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

11/24

Proposed Solution

(∀n ∈ N) xn+1 = xn + λn(JγnAn(xn − γnun) + an − xn

),

STOCHASTIC FB ALGORITHM

where• λn ∈ ]0, 1] and γn ∈ ]0, 2ϑ[

Page 24: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

11/24

Proposed Solution

(∀n ∈ N) xn+1 = xn + λn(JγnAn(xn − γnun) + an − xn

),

STOCHASTIC FB ALGORITHM

where• λn ∈ ]0, 1] and γn ∈ ]0, 2ϑ[

• JγnAn : resolvent of a maximally monotone operatorγnAn : H→ 2H approximating γnA

Page 25: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

11/24

Proposed Solution

(∀n ∈ N) xn+1 = xn + λn(JγnAn(xn − γnun) + an − xn

),

STOCHASTIC FB ALGORITHM

where• λn ∈ ]0, 1] and γn ∈ ]0, 2ϑ[

• JγnAn : resolvent of a maximally monotone operatorγnAn : H→ 2H approximating γnA• un second-order random variable: approximation to Bxn

Page 26: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

11/24

Proposed Solution

(∀n ∈ N) xn+1 = xn + λn(JγnAn(xn − γnun) + an − xn

),

STOCHASTIC FB ALGORITHM

where• λn ∈ ]0, 1] and γn ∈ ]0, 2ϑ[

• JγnAn : resolvent of a maximally monotone operatorγnAn : H→ 2H approximating γnA• un second-order random variable: approximation to Bxn

• an second-order random variable: possible additional errorterm

Page 27: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

12/24

Convergence ConditionsLet X = (Xn)n∈N be a sequence of sigma-algebras such that

(∀n ∈ N) σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.

where σ(x0, . . . , xn) is the smallest σ-algebra generated byx0, . . . , xn.

Assumptions on the approximation to the cocoercive operator:

I∑

n∈N√λn‖E(un |Xn)− Bxn‖ < +∞.

I For every z ∈ F, there exist sequences (τn)n∈N ∈ `+,(ζn(z))n∈N ∈ `∞+ (X ) such that

∑n∈N

√λnζn(z) < +∞

and

(∀n ∈ N) E(‖un − E(un |Xn)‖2 |Xn)

6 τn‖Bxn − Bz‖2 + ζn(z).

Page 28: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

12/24

Convergence Conditions

Let X = (Xn)n∈N be a sequence of sigma-algebras such that

(∀n ∈ N) σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.

where σ(x0, . . . , xn) is the smallest σ-algebra generated byx0, . . . , xn.

Assumptions on the resolvent approximation:

I There exist sequences (αn)n∈N and (βn)n∈N in [0,+∞[such that

∑n∈N√λnαn < +∞,

∑n∈N λnβn < +∞, and

(∀n ∈ N)(∀x ∈ H) ‖JγnAnx − JγnAx‖ 6 αn‖x‖ + βn.

I∑

n∈N λn√E(‖an‖2 |Xn) < +∞.

Page 29: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

12/24

Convergence Conditions

Let X = (Xn)n∈N be a sequence of sigma-algebras such that

(∀n ∈ N) σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.

where σ(x0, . . . , xn) is the smallest σ-algebra generated byx0, . . . , xn.

Assumptions on the algorithm parameters:

I infn∈N γn > 0, supn∈N τn < +∞, andsupn∈N(1 + τn)γn < 2ϑ.

I Either infn∈N λn > 0 or[γn ≡ γ,

∑n∈N τn < +∞, and∑

n∈N λn = +∞].

Page 30: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

13/24

Convergence Result

Under the previous assumptions, the sequence (xn)n∈N gen-erated by the algorithm converges weakly a.s. to an F-valuedrandom variable.

In addition if A or B is demiregular at every z ∈ F, then the se-quence (xn)n∈N generated by the algorithm converges stronglya.s. to an F-valued random variable.

A is demiregular at x ∈ domA if, for every sequence (xn, un)n∈Nin graA and every u ∈ Ax such that xn ⇀ x and un → u, we havexn → x.Example: A strongly monotone, i.e. there exists α ∈ ]0,+∞[such that A− αId is monotone.

Page 31: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

14/24

Primal-Dual Splitting

GOAL:

minimizex∈H

f(x) +

q∑k=1

gk(Lkx) + h(x)

where• H: real Hilbert space• f ∈ Γ0(H)

• h : H→ R: differentiable convex function with ϑ−1-Lipschitzcontinuous gradient• gk ∈ Γ0(Gk) with Gk real Hilbert space• Lk: bounded linear operator from H to Gk

• ∃x ∈ H such that 0 ∈ ∂f(x) +∑q

k=1 L∗k∂gk(Lkx) +∇h(x).

Page 32: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

15/24

Reformulation

LetI K = H⊕ G with G = G1 ⊕ · · · ⊕ GqI g : G→ ]−∞,+∞] : v 7→

∑qk=1 gk(vk)

I L : H→ G : x 7→(Lkx)16k6q

I A : K→ 2K : (x, v) 7→(∂f(x) + L∗v

)×(− Lx + ∂g∗(v)

)I B : K→ K : (x, v) 7→

(∇h(x), 0

)I V : K→ K : (x, v) 7→

(ρ−1x− L∗v,−Lx + U−1v

)with

U = Diag(σ1Id , . . . , σqId ) with (ρ, σ1, . . . , σq) ∈ ]0,+∞[q+1

and ρ∑q

k=1 σk‖Lk‖2 < 1.

In the renormed space (K, ‖ · ‖V), V−1A is maximally monotoneand V−1B is cocoercive. In addition, finding a zero of the sumof these operators is equivalent to finding a pair of primal-dualsolutions.

Page 33: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

16/24

Resulting Algorithm

for n = 0, 1, . . .yn = proxρfn

(xn − ρ

( q∑k=1

L∗kvk,n + un

))+ bn

xn+1 = xn + λn(yn − xn)for k = 1, . . . , q⌊wk,n = proxσkg∗k

(vk,n + σkLk(2yn − xn)

)+ ck,n

vk,n+1 = vk,n + λn(wk,n − vk,n).

STOCHASTIC PRIMAL-DUAL ALGORITHM

where• λn ∈ ]0, 1] with

∑n∈N λn = +∞ and(

ρ−1 −∑q

k=1 σk‖Lk‖2)ϑ > 1/2

Page 34: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

16/24

Resulting Algorithm

for n = 0, 1, . . .yn = proxρfn

(xn − ρ

( q∑k=1

L∗kvk,n + un

))+ bn

xn+1 = xn + λn(yn − xn)for k = 1, . . . , q⌊wk,n = proxσkg∗k

(vk,n + σkLk(2yn − xn)

)+ ck,n

vk,n+1 = vk,n + λn(wk,n − vk,n).

STOCHASTIC PRIMAL-DUAL ALGORITHM

where• fn ∈ Γ0(H): approximation to f

Page 35: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

16/24

Resulting Algorithm

for n = 0, 1, . . .yn = proxρfn

(xn − ρ

( q∑k=1

L∗kvk,n + un

))+ bn

xn+1 = xn + λn(yn − xn)for k = 1, . . . , q⌊wk,n = proxσkg∗k

(vk,n + σkLk(2yn − xn)

)+ ck,n

vk,n+1 = vk,n + λn(wk,n − vk,n).

STOCHASTIC PRIMAL-DUAL ALGORITHM

where• un second-order random variable: approximation to ∇h(xn)

Page 36: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

16/24

Resulting Algorithm

for n = 0, 1, . . .yn = proxρfn

(xn − ρ

( q∑k=1

L∗kvk,n + un

))+ bn

xn+1 = xn + λn(yn − xn)for k = 1, . . . , q⌊wk,n = proxσkg∗k

(vk,n + σkLk(2yn − xn)

)+ ck,n

vk,n+1 = vk,n + λn(wk,n − vk,n).

STOCHASTIC PRIMAL-DUAL ALGORITHM

where• bn and cn second-order random variables: possible

additional error terms

Page 37: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

17/24

Resulting Algorithm

for n = 0, 1, . . .yn = proxρfn

(xn − ρ

( q∑k=1

L∗kvk,n + un

))+ bn

xn+1 = xn + λn(yn − xn)for k = 1, . . . , q⌊wk,n = proxσkg∗k

(vk,n + σkLk(2yn − xn)

)+ ck,n

vk,n+1 = vk,n + λn(wk,n − vk,n).

STOCHASTIC PRIMAL-DUAL ALGORITHM

REMARKS:? Extension of the deterministic algorithms in

[Esser et al – 2010] [Chambolle and Pock – 2011] [Vu – 2013] [Condat – 2013]

? Parallel structure? No inversion of operators related to (Lk)16k6q required.

Page 38: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

18/24

Assumptions

Let X = (Xn)n∈N be a sequence of sigma-algebras such that

(∀n ∈ N) σ(xn′ ,vn′

)06n′6n ⊂ Xn ⊂ Xn+1.

Assumptions on the gradient approximation:

I∑

n∈N√λn‖E(un |Xn)−∇h(xn)‖ < +∞.

I For every z ∈ F, there exists (ζn(z))n∈N ∈ `∞+ (X ) suchthat

∑n∈N

√λnζn(z) < +∞ and

(∀n ∈ N) E(‖un − E(un |Xn)‖2 |Xn)

6 τn‖∇h(xn)−∇h(z)‖2 + ζn(z).

Page 39: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

18/24

Assumptions

Let X = (Xn)n∈N be a sequence of sigma-algebras such that

(∀n ∈ N) σ(xn′ ,vn′

)06n′6n ⊂ Xn ⊂ Xn+1.

Assumptions on the prox approximations:

I There exist sequences (αn)n∈N and (βn)n∈N in [0,+∞[such that

∑n∈N√λnαn < +∞,

∑n∈N λnβn < +∞, and

(∀n ∈ N)(∀x ∈ H) ‖proxγnfnx−proxγnfx‖ 6 αn‖x‖+βn.

I∑

n∈N λn√E(‖bn‖2 |Xn) < +∞ and∑

n∈N λn√E(‖cn‖2 |Xn) < +∞.

Page 40: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

19/24

Convergence Result

I F: set of solutions to the primal problemI F∗: set of solutions to the dual problem

Under the previous assumptions, the sequence (xn)n∈Nconverges weakly a.s. to an F-valued random variable and thesequence (vn)n∈N converges weakly a.s. to an F∗-valued ran-dom variable.

Page 41: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

20/24

Online Image Recovery

OBSERVATION MODEL

(∀n ∈ N) zn = Knx + en,

where• x ∈ H = RN : unknown image• Kn: RM×N -valued random matrix• en: RM -valued random noise vector.

OBJECTIVE

recover x from (Kn, zn)n∈N.

Page 42: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

21/24

Application of Primal-Dual Algorithm

FORMULATION

I Mean square error criterion

(∀x ∈ RN ) h(x) =1

2E‖K0x− z0‖2,

assuming that (Kn, zn)n∈N are identically distributedI Statistics of (Kn, zn)n∈N learnt online⇒ Approximation to∇h(xn):

un =1

mn+1

mn+1−1∑n′=0

K>n′(Kn′xn − zn′)

where (mn)n∈N is strictly increasing sequence in NI f and g1 ◦ L1 (q = 1): regularization terms

Page 43: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

21/24

Application of Primal-Dual Algorithm

I Mean square error criterion

(∀x ∈ RN ) h(x) =1

2E‖K0x− z0‖2,

assuming that (Kn, zn)n∈N are identically distributedI Statistics of (Kn, zn)n∈N learnt online⇒ Approximation to∇h(xn):

un =1

mn+1

mn+1−1∑n′=0

K>n′(Kn′xn − zn′)

where (mn)n∈N is strictly increasing sequence in N⇒ recursive computation: un = Rnxn − cn with

Rn =1

mn+1

mn+1−1∑n′=0

K>n′Kn′ =mn

mn+1Rn−1+

1

mn+1

mn+1−1∑n′=mn

K>n′Kn′ .

Page 44: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

21/24

Application of Primal-Dual Algorithm

CONDITIONS FOR CONVERGENCE

I (Kn, en)n∈N is an i.i.d. sequence such that E‖K0‖4 < +∞and E‖e0‖4 < +∞.

I Approximation to ∇h(xn):

un =1

mn+1

mn+1−1∑n′=0

K>n′(Kn′xn − zn′)

where (mn)n∈N is strictly increasing sequence in N suchthat mn = O(n1+δ) with δ ∈ ]0,+∞[.

I λn = O(n−κ), where κ ∈ ]1− δ, 1] ∩ [0, 1].I fn ≡ f and the domain of f is bounded.I bn ≡ 0 and cn ≡ 0.

Page 45: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

22/24

Simulation example

I Grayscale image of size 256× 256 with pixel values in[0, 255]

I Stochastic blur (uniform i.i.d. subsampling of a uniform5× 5 blur performed in the discrete Fourier domain with70% frequency bins set to zero).

I Additive white N (0, 52) noise.I f = ι[0,255]N and g1 ◦ L1 = isotropic total variation.I Parameter choice:

(∀n ∈ N)

{mn = n1.1

λn = (1 + (n/500)0.95)−1.

Page 46: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

22/24

Simulation example

Original image x Restored image (SNR = 28.1 dB)

Degraded image 1 (SNR = 0.14 dB) Degraded image 2 (SNR = 12.0 dB)

Page 47: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

22/24

Simulation example

0 50 100 150 200 250 300

×104

0

0.5

1

1.5

2

2.5

3

3.5

4

‖xn − x∞‖ versus the iteration number n.

Page 48: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

23/24

Conclusion

• Investigation of stochastic variants of Forward-Backwardand Primal-Dual proximal algorithms.

• Stochastic approximations to both smooth and non smoothconvex functions.

• Extension to monotone inclusion problems.

• Theoretical guaranties of convergence.

• Novel application to online image recovery.

Page 49: Stochastic Proximal Algorithms with Applications to Online ... pesquet.pdf · Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application

Introduction Stochastic Forward-Backward Monotone Inclusion Problems Primal-Dual Extension Application Conclusion

24/24

Some referencesP. L. Combettes and V. R. Wajs,Signal recovery by proximal forward-backward splittingMultiscale Model. Simul., vol. 4, pp. 1168–1200, 2005.

P. L. Combettes and J.-C. PesquetProximal splitting methods in signal processingin Fixed-Point Algorithms for Inverse Problems in Science and Engineering,H. H. Bauschke, R. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H.Wolkowicz editors. Springer-Verlag, New York, pp. 185-212, 2011.

P. Combettes and J.-C. PesquetStochastic quasi-Fejer block-coordinate fixed point iterations with randomsweepingSIAM Journal on Optimization, vol. 25, no. 2, pp. 1221-1248, July 2015.

N. Komodakis and J.-C. PesquetPlaying with duality: An overview of recent primal-dual approaches for solvinglarge-scale optimization problemsIEEE Signal Processing Magazine, vol. 32, no 6, pp. 31-54, Nov. 2015.

P. L. Combettes and J.-C. PesquetStochastic approximations and perturbations in forward-backward splitting formonotone operatorsPure and Applied Functional Analysis, vol. 1, no 1, pp. 13-37, Jan. 2016.