22
Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

  • View
    218

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Statistical Models

A.) Chemical equilibration(Braun-Munzinger, Stachel, Redlich, Tounsi)

B.) Thermal equilibration(Schnedermann, Heinz)

C.) Hydrodynamics(Heinz, Eskola,Ruuskanen, Teaney,Hirano)

Page 2: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Chemical freeze-out

(yields & ratios)

inelastic interactions cease

particle abundances fixed (except maybe resonances)

Thermal freeze-out

(shapes of pT,mT spectra):

elastic interactions cease

particle dynamics fixed

Basic Idea of Statistical Hadronic Models• Assume thermally (constant Tch) and chemically (constant ni)

equilibrated system

• Given Tch and 's (+ system size), ni's can be calculated in a grand canonical ensemble

Page 3: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Particle production:Statistical models do well

We get a chemical freeze-out temperature and a baryochemical potential out of the fit

Page 4: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Ratios that constrain model parameters

Page 5: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Statistical Hadronic Models : Misconceptions

• Model says nothing about how system reaches chemical equilibrium

• Model says nothing about when system reaches chemical equilibrium

• Model makes no predictions of dynamical quantities

• Some models use a strangeness suppression factor, others not

• Model does not make assumptions about a partonic phase; However the model findings can complement other studies of the phase diagram (e.g. Lattice-QCD)

Page 6: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Thermalization in Elementary Collisions ?

Beccatini, Heinz, Z.Phys. C76 (1997) 269Seems to work rather well ?!

Page 7: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Thermalization in Elementary Collisions ? Is a process which leads to multiparticle production thermal?Is a process which leads to multiparticle production thermal? AnyAny mechanism for producing hadrons which evenly populates the free mechanism for producing hadrons which evenly populates the free

particle phase space will mimic a microcanonical ensemble.particle phase space will mimic a microcanonical ensemble. Relative probabilityRelative probability to find a given number of particles is given by the ratio to find a given number of particles is given by the ratio

of the of the phase-spacephase-space volumes P volumes Pnn/P/Pn’n’ = = nn(E)/(E)/n’n’(E) (E) given by statistics only. given by statistics only.

Difference between MCE and CE vanishes as the size of the system N Difference between MCE and CE vanishes as the size of the system N increases.increases.

This type of “thermal” behavior requires no rescattering and no interactions. The collisions simply serve as a mechanism to populate phase space without ever reaching thermal or chemical equilibrium

In RHI we are looking for large collective effects.

Page 8: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Statistics Thermodynamics

Ensemble of events constitutes a statistical ensemble T and µ are simply Lagrange multipliers

“Phase Space Dominance”

A+A We can talk about pressure • T and µ are more than Lagrange multipliers

p+p

Page 9: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Does the thermal model always work ?

Particle ratios well described by Tch = 16010 MeV, B = 24 5 MeV

Resonance ratios change from pp to Au+Au Hadronic Re-scatterings!

Dat

a –

Fit

()

Rat

io

Page 10: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Are thermal models boring ?Good success with thermal models in e+e-, pp, and AA collisions.Thermal models generally maketell us nothing about QGP, but (e.g. PBM et al., nucl-th/0112051):

Elementary particle collisions: canonical description, i.e. local quantum number conservation (e.g.strangeness) over small volume.Just Lagrange multipliers, not indicators of thermalization.Heavy ion collisions: grand-canonical description, i.e. percolation of strangeness over large volumes, most likely in deconfined phase if chemical freeze-out is close to phase boundary.

Page 11: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

T systematics

it looks like Hagedorn was right! it looks like Hagedorn was right! if the resonance mass spectrum grows exponentially (and this if the resonance mass spectrum grows exponentially (and this

seems to be the case), there is a maximum possible temperature seems to be the case), there is a maximum possible temperature for a system of hadronsfor a system of hadrons

indeed, we don’t seem to be able to get a system of hadrons with a indeed, we don’t seem to be able to get a system of hadrons with a temperature beyond Ttemperature beyond Tmaxmax ~ 170 MeV! ~ 170 MeV!

filled: AAopen: elementary

[Satz: Nucl.Phys. A715 (2003) 3c]

Page 12: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

“Thermal” Spectra

TE

TT

Eeddmmdy

dN

dp

NdE /)(

3

3

Invariant spectrum of particles radiated by a thermal source:

where: mT= (m2+pT2)½ transverse mass (Note: requires knowledge of mass)

= b b + s s grand canonical chem. potentialT temperature of source

Neglect quantum statistics (small effect) and integrating over rapidity gives:

TmT

TmTT

TT

TT emTmKmdmm

dN /1 )/(

R. Hagedorn, Supplemento al Nuovo Cimento Vol. III, No.2 (1965)

TmT

TT

Temdmm

dN /

At mid-rapidity E = mT cosh y = mT and hence:

“Boltzmann”

Page 13: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Identified particle spectra : p, p, K-,+, -,+, K0

s and

Page 14: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Identified Particle Spectra for Au-Au @ 200 GeV

BRAHMS: 10% centralPHOBOS: 10%PHENIX: 5%STAR: 5%

The spectral shape gives us:The spectral shape gives us: Kinetic freeze-out Kinetic freeze-out

temperaturestemperatures Transverse flowTransverse flow

The stronger the flow the less The stronger the flow the less appropriate are simple appropriate are simple exponential fits:exponential fits:

Hydrodynamic models Hydrodynamic models (e.g. Heinz et al., (e.g. Heinz et al., Shuryak et al.) Shuryak et al.)

Hydro-like parameters Hydro-like parameters (Blastwave)(Blastwave)

Blastwave parameterization e.g.:Blastwave parameterization e.g.: Ref. : E.Schnedermann Ref. : E.Schnedermann

et al, PRC48 (1993) et al, PRC48 (1993) 24622462

Explains: spectra, flow & Explains: spectra, flow & HBT HBT

Page 15: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

“Thermal” Spectra (flow aside)

N.B. Constituent quark and parton recombination models yield exponential spectra with partons following a pQCD power-law distribution. (Biro, Müller, hep-ph/0309052) T is not related to actual “temperature” but reflects pQCD parameter p0 and n.

Describes many spectra well over several orders of magnitude with almost uniform slope 1/T

• usually fails at low-pT

( flow)• most certainly will fail at high-pT ( power-law)

T-mT

TT

Temdmm

dN /

Page 16: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

“Thermal” spectra and radial expansion (flow)

• Different spectral shapes for particles of differing mass strong collective radial flow

• Spectral shape is determined by more than a simple T

• at a minimum T, T

mT

1/m

T d

N/d

mT light

heavyT

purely thermalsource

explosivesource

T,

mT1/

mT d

N/d

mT light

heavy

Page 17: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Thermal + Flow: “Traditional” Approach

shift) (blue for

1

1

for 2

mpT

mpmT

TT

T

Tth

TTth

measured

1. Fit Data T 2. Plot T(m) Tth, T

is the transverse expansion velocity. With respect to T use kinetic energy term ½ m 2

This yields a common thermal freezeout temperature and a common .

Assume common flow pattern and commontemperature Tth

Page 18: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Blastwave: a hydrodynamic inspired description of spectra

R

s

Ref. : Schnedermann, Sollfrank & Heinz,PRC48 (1993) 2462

Spectrum of longitudinal and transverse boosted thermal source:

r

n

sr

TTT

TT

R

rr

T

mK

T

pImdrr

dmm

dN

tanh rapidity)(boost angleboost and

)( ondistributi velocity transverse

with

cosh

sinh

1

R

0 10

Static Freeze-out picture,No dynamical evolution to freezeout

Page 19: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

The Blastwave Function

• Increasing T has similar effect on a spectrum as increasing s

• Flow profile (n) matters at lower mT! • Need high quality data down to low-mT

Page 20: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Heavy (strange ?) particles show deviations in basic thermal parametrizations

STAR preliminary

Page 21: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Blastwave fitsSource is assumed to be:

• In local thermal equilibrium• Strongly boosted • , K, p: Common thermal

freeze-out at T~90 MeV and <>~0.60 c

• : Shows different thermal freeze-out behavior:

• Higher temperature• Lower transverse flow

Probe earlier stage of the collision, one at which transverse flow has already developed If created at an early partonic stage it must show significant elliptic flow (v2)

Au+Au sNN=200 GeV

STAR Preliminary

68.3% CL 95.5% CL 99.7% CL

Page 22: Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics

Collective Radial Expansion

r r increases continuouslyincreases continuously

TTthth

saturates around AGS energysaturates around AGS energy

Strong collective radial expansion at RHIC high pressure high rescattering rate Thermalization likely

Slightly model dependenthere: Blastwave model

From fits to , K, p spectra: