26
Intense Terahertz Sources for Time-resolved Study of Matter Haidan Wen Xray Science Division Argonne National Laboratory

Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Intense Terahertz Sources for Time-resolved Study of Matter

Haidan WenX‐ray Science Division

Argonne National Laboratory

Page 2: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Acknowledgements

Slides credits to:K. Nelson, S. Kaiser, R. Huber, A. Lindenberg, J. Helbing, J. Dai,  D. Xiang, G. Williams. H. Hama, M. Gensch,, A. Fisher, A. Perucchi, S. Biedron, E. Chiadroni, K. Bane, J. A. Fulop, K. Y. Kim,  E. Landahl,J. Byrd, K. J. Kim, A. Zholents, A. Cavalleri, and more …

Workshop on Terahertz Sources for Time Resolved Studies of MatterJuly 30‐31, Argonne National Laboratory

[email protected]

2

Page 3: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Outline

Science drivers Intense THz sources

– Accelerator based sources– Laser based sources

THz pump, X‐ray probe technique Conclusion

[email protected]

3

Page 4: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Electronic excitation

Optical

THz

Motivation: Enabling collective excitation

E

Engineering electronic ground state at ultrafast time scale

Spin

Charge

Lattice

Orbital

[email protected]

4

Page 5: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Science drivers

Impulsive excitation (broad band)– Control electrons in Rydberg atoms– Impact & tunneling  ionization– Driving polarization in polar materials – Magnetic switching– Molecular alignment– Field induced phase transition

Resonant excitation (narrow band)– Excitons, plasmons…– Coherent lattice motion– Coherent spin wave– Superconducting gaps

VO2

Nelson and Averitt groupMetal‐insulator phase transition: 

Liu, Nature, 487, 345 (2012)

La1.675Eu0.2Sr0.125CuO4

Cavelleri groupInduce superconductivityD. Fausti, et al, Science 331, 189 (2011)

Examples:

[email protected]

5

Page 6: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

How intense is intense?

Wish list for intense THz sources (“processed data”):

Broad Band Narrow band

Pulse energy 100uJ 100uJ

Peak field >10MV/cm >1MV/cm

Pulse duration < 1ps ~ ps

Spectrum range: Tunable, 0.1 – 10 THz Tunable, 0.1 – 100THz

Spectrum width: Tunable, 0.1 – 10 THz 1% of the band width

Repetition rate: MHz

Intense enough to drive desired dynamics

[email protected]

6

Page 7: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Intense THz sources

Accelerator based:– Coherent transition radiation – Coherent synchrotron radiation– Wave field acceleration in dielectric structures

– Smith‐Purcell radiation Laser based:

– Optical rectification– Air plasma– Photoconductive switch– Laser wave field 

James Clerk Maxwell

[email protected]

7

Page 8: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

)())(1( 2 fNfNP

Coherent Synchrotron Radiation (CSR) Coherent Transition Radiation (CTR)

e‐ Foil

Accelerator-Based Coherent THz emission

incoherent coherent

Other mechanism: Backward Wave Oscillators, Cerenkov‐FELs, Smith‐Purcell radiation, … 

2/ˆi n z cf e S z dz

[email protected]

8

Page 9: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

CSR Low alpha mode to reduce electron bunch length  Pro: potential high repetition rate for synchronized  X‐ray probe Con: unstable, interdependent on other beamlines

[email protected]

CSR / CTR Easy control of accelerator parameters Pro: high peak current for high THz pulse energy Con: low repetition rate unless superconducting cavity $$$

Implementation:

Storage ring based: 

Single‐pass accelerator based: 

Ex: Sparc_lab@Italy

Ex: Circe@USA, proposal

9

Page 10: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

[email protected]

10

Modulating e‐beam before radiation

Bielawski et al., Nature. Phys, 2008

Xiang, et. al., PRL, 108, 024802 2012

UV laser

Gun

Narrow-band THz from CTR

Conjugate pipe TPIPE, K. Bane

Dielectric Layer Acceleration S. Antipov, et. al.,  PRL 108, 144801 (2012)

Modulating electron bunch 

Modulating photoinjection laserShen, et. al., PRL 107, 204801 (2011)

Modulating e‐beam during radiation

Accelerator

Page 11: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Summary: Accelerator based THz sources

Freq. (THz)

Mechanism Pulse energy

Pulse duration Rep Rate

Single pass accelerator

UCSB, USA 0.12‐10 CSR 1mJ 1‐20us <7.5Hz

Brookhaven, USA 0.1‐2 CTR 80uJ <1ps 2.5Hz

FLASH, Germany 1‐30 CTR/CSR <100uJ ~10ps (micro) 1MHz (micro) 5Hz (macro)

ELBE, Germany 0.1‐3 CTR/CSR 1‐100uJ <ps 100‐500kHz/13MHz

LCLS, USA 0.1‐40 CTR 140uJ <1ps 120Hz

Tera Fermi, Italy (proposal)

0.1‐10 CTR/CSR 10uJ <1ps 30Hz (?)

SPARC, Italy 0.1‐ 5 CTR/CSR 20/ 0.6uJ

0.2ps/ 10Hz

FACET,NLCTA@SLAC, USA

0.5‐ 5 CTR ~500uJ <1ps 10‐30Hz, 1kH

Storage ring  BESSY II, Germany 0.1‐1  CSR <nJ ~ps 1.25MHz ‐500MHz

CIRCE, USA(proposal)

0.03‐ 30 CSR 10uJ ~ps 91.1kHz

t‐ACTS, Japan(construction)

0.1‐ 10 CTR/CSR <5uJ ~20ps (micro) 2us (macro)

2856MHz (micro pulse)10Hz (macro pulse)

Jlab (ERL), USA 0.1‐ 5 CTR/CSR ~1uJ <1ps 75MHz

Partial list

[email protected]

11

Page 12: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

[email protected]

12

Complications: • Interdependence on accelerator• Timing structure• Radial polarization from CTR ‐> 

longitudinal polarized at the focus

Advantages:• High pulse energy, • Potential high repetition rate, • Sync with accelerator based x‐ray source  

Summary: Accelerator based THz sources

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

Ene

rgy

per p

ulse

(uJ)

0.001 0.01 0.1 1

Energy (eV)

0.1 1 10 100

Frequency (THz)

IR FEL's / Undulators

CSRStorage-Rings

J-Lab

CTR, LCLS, FERMI, etc

© Perucchi

FLASH timing structure Radial polarized THz from CTR

Page 13: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Laser based THz sources: Broadband

[email protected]

13

Opitcal pulse

+ ‐J

Nonlinear crystal

Air Plamsa

Photoconductive switch

Break symmetry

THz pulse

Page 14: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Optical rectification technique

[email protected]

14

Organic crystlal: DAST

Large aperture crystal

ZnTe, Diameter 75mm, Pump: 800nm, 70mJ, 100Hz

C. P. Hauri, et. al. Appl. Phys. Lett. 99, 161116 (2011)

Blanchard, IEEE, J. Select. Top. Quan. Electron. 17, 5 (2011)

Pump: 1.2‐ 1.5 um, 900uJ, 100Hz, phase matched

Page 15: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

15

Optical Rectification – Pulse Front tilt

Phase matching!!

~10uJ, Yeh, et. al., APL, 90, 171121 (2007)

ω+δω ‐δ

©R. Huber

©J. Fulop

[email protected]

Page 16: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Optimization of Tilted Pulse Front technique

16

Pump pulse: longer pulse, longer wavelength

Desensitive dispersion Suppress crystal damage Reduce walk‐off

Crystal:  lower temperature optimize the length 

4f imaging: 

Reduce THz absorptionIncrease interaction length

BenefitBenefit

50uJ, Stepanov, et. al., Appl. Phys. B, 101, 11 (2010) 125uJ, Fulop, et. al., OL, 37, 557 (2012)

Better focusing close to diffraction limit

<10uJ, ~1.2MV/cm, Hirori, et. al., APL, 98, 091106 (2011)

©J. Fulop

[email protected]

Page 17: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

e

LensTHz pulse

THz generation in air plasma:

plasma

No Bias: Single color pump : H. Hamster, et al. PRL, 17, 2725 (1993), Plasma, ponderamotive force

DC bias: Electrodes,

Loffler, et. al. APL, 77, 453 (2000); Houard, et. al. PRL 100, 255006 (2008)

AC bias: Two Color pump: D. J. Cook et. al. Opt. Lett. 25, 1210 (2000), First demonstration T. Bartel, et. al. Opt. Lett. 30, 2805 (2005), High field achieved Kim, et. al. OE 15, 4577 (2007), Nat. Photon., 2, 605 (2008), photocurrent model, Karpowicz, PRL 102, 093001 (2009), Quantum model Xie, et. al. PRL 96, 075005 (2006) ;Wen et. al. PRL 103, 023902 (2009) , Dai, et. al. PRL 103, 023001 

(2009), Coherent control Dai, et. al. PRL, 97, 103903 (2006) Ultrabroad band generation and detection. 

SHG

2

E

1uJ, 1MV/cm

∝©K. Kim

©J. Dai

[email protected]

17

Page 18: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

[email protected]

18

Laser based THz sources: Narrow band

©R. Huber

Sell, Opt. Lett. 33, 2767 (2008)

Chen, et. al., APL, 99, 071102 (2011)

©K. Nelson

1) Diff. Freq. Generation 

2) Pulse shaping +O.R.

19uJ@30THz

1uJ

Page 19: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Summary: Laser based source

[email protected]

19

Techniques Freq. (THz) Bandwidth Pulse energy Pulse duration

Rep Rate

Optical Rectification

Pulse front tilt 0.12‐10 Broad <125uJ, 1MV/cm

1‐20us 100Hz

Phase locked narrow band 0.1‐2, or 10‐100

Narrow(10%BW)

1.5uJ@1THz~19uJ@30THz

~1ps 1kHz

Large  crystalBlanchard, et.al. IEEE, J. STQE. 17, 5 (2011)

0.1‐2 Broad <2uJ <1ps 100Hz

Organic DASTC. P. Hauri, et. al. APL, 99, 161116 (2011)

0.1 ‐5 Broad <20uJ <1ps 100Hz

Air plasma Two‐color 0.1‐60 Broad ~1uJ, 1MV/cm <ps 1kHz

Advantages:• Compact• Independent of the accelerator sources• Linearly polarized (most of the case)• Better focusing

Challenges:• High peak field• High repetition rate 

Page 20: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Outline

Science drivers Intense THz sources

– Accelerator based sources– Laser based sources

THz pump, X‐ray probe techniques Conclusion

[email protected]

20

Page 21: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

The need for THz pump, X-ray probe techniques

X‐ray probes structures with atomic resolution and element specificity

sin2d

X-ray Diffraction X-ray Absorption

THz excites structural dynamics

VO2

Metal‐insulator phase transition: Liu, et. al.,  Nature, 487, 345 (2012)

La1.675Eu0.2Sr0.125CuO4

Induce superconductivityD. Fausti, et al, Science 331, 189 (2011)

[email protected]

21

Page 22: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

[email protected]

22

Accelerator based THz-pump, X-ray probeTHz

© J. Byrd

• Same electron bunch for THz and X‐ray generation• THz pump must arrive before X‐ray probe, Delay X‐ray• Long THz transport 10‐100m

• Double bunch scheme • Independent secondary accelerator

Laser• Long transport of the pump beam• Synchronization

Laser based THz-pump, X-ray probe

THz generator

User

Page 23: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

23

Typical user experiments @LCLS

Credit to M. Hoffmann@LCLS

Complications:• Vacuum• Geometric constrain• Timing

LCLS experimentLed by A.Cavalieri, Univ. Hamburg

[email protected]

Page 24: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

THz pump, X-ray diffraction probe at Sec7, APS

[email protected]

24

THz pump, hard X-ray diffraction setup at 7ID-C.

800nm, 50fs, 2mJ

THz pulse, 0.5uJ 10keV, X‐ray

BBO crystal

• Pulse duration: 1‐2 ps• Flux:

1e4 photon / pulse1e11 photons /sec@10ekV, 0.01BW

• Tunability:Hard X‐ray 5‐35keVSoft X‐ray 800eV ‐2keV

• Rep rate: 6.5MHz

World’s first high-repetition rate, widely tunable, polarized short pulse x-ray synchrotron source

APS‐Upgrade (2018)Short Pulse X‐ray facility 

Page 25: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

[email protected]

25

Solution proposed at Argonne

• Match spatially confined excitation• Beautiful match to SPX pulse duration

1ps ‐> 1THz 

2. Near field enhancement

3. Hard x‐ray nanoprobe

1. Intense THz soure

• Enhance THz field by charge concentration• 100nm slit width:1MV/cm ‐>120MV/cm!!! 

Extreme field condition: 100MV/cm, 0.3ps, 100nm

Nature  Liu, et. al. (2012)

Laser‐based THz source: 0.1‐1MV/cm

Nature Photonics, 3, 152 (2009)

Page 26: Stanford University - Intense Terahertz Sources for Time ......How intense is intense? Wish list for intenseTHz sources (“processed data”): Broad Band Narrow band Pulse energy

Conclusion

[email protected]

26

Laser based:  Accelerator based:

Pulse energy:  <125uJ 1‐500uJ

Peak field:  ~1MV/cm ~20MV/cm

Spectrum

broadband 0.1‐60 THz (air plasma) 0.1‐20 THz (50fs bunch)

narrowband 10‐70 THz tunable 30% BW 0.1‐10 THz

Advantages: • Compact• Independent of the 

accelerator sources• Controllable pulse shape and 

polarization• Better focusing

• High pulse energy,• Potential high repetition rate,• Naturally sync . with 

accelerator based x‐ray source  

Challenges: • High pulse energy• High repetition rate

• Interdependence on accelerator

• Timing structure• Radial polarization (CTR)

THz pump X‐ray probe capability is in development for new science