22
“ STRESS ANALISIS PADA SISTEM PERPIPAAN DENGAN PROGRAM CAESAR II” Pustandyo Widodo

sresan01

Embed Size (px)

Citation preview

Page 1: sresan01

“ STRESS ANALISIS PADA SISTEM PERPIPAAN DENGAN PROGRAM CAESAR II”

Pustandyo Widodo

Page 2: sresan01

KENAPA KITA PERLU MELAKUKAN ANALISIS TEGANAGAN PIPA ?

Mencegah terjadinya kegagalan pipa / support akibat overstress atau fatique Untuk menjaga agar tegangan di dalam pipa dan fitting memenuhi code yang diijinkan. Untuk menjaga beban pada peralatan yang dipasang memenuhi code yg diijinkan dari pabrik atau sesuai dg standar (spt API 661, API 650 dll) Untuk menghitung design beban/load untuk support dan restraints Untuk menentukan piping displacement. Untuk memecahkan permasalahan dinamik di dalam memasang pipa, yaitu.: mechanical and acoustic vibration , transient flow and relief valve discharge Untuk mengoptimalkan desain perpipaan. Untuk mencegah kebocoran pada flange joint / sambungan pipa.

Page 3: sresan01

Design of Piping Typically piping is categorised:

Hot system , design temp. > 1500F (660C) Cold system, design temp. < 1500F (660C)

Piping loads: Sustained Load, seperti pressure, weight/berat. Expansion Load, seperti thermal expansion, diff. anchor

displacement. Occasional Load, seperti. wind, earthquake

The stresses on the piping: Normal stresses: longitudinal stress, hoop stress, radial

stress Shear stresses, berkaitan dg shear load and torsion.

Page 4: sresan01

+ +

+ +loop

+ +Expansion joint

+ +

DESIGN SISTEM PERPIPAAN MEMPERTIMBANGKAN FLEKSIBILITAS

Page 5: sresan01

Method of Analysis:1. Category 3

Using computer program such as: Caesar II (Coade), Autopipe (Bentley), PIPANL-3 (SSD) etc.

2. Category 4Using approximate methods such as: the Kellogg, Grinnell or Tube Turn methods.

3. Category 5Visual inspection with or without the aid of guided cantilever chart or similar short cut methods.

Ref: KBR Design Manual Subject No: 4100

Pipe Stress Analysis Category

Page 6: sresan01

Where:

σ = Stress (kg/cm2)

ε = Strain

E = Young’s Modulus (kg/cm2) Allowable stress is the yield strength divided by safety factor.

I.E : Carbon Steel Pipe below creep range commonly has allowable stress is 2/3* σy or ¼* σu. For detail see Table A-1 in B31.3

E x ε σ

Page 7: sresan01

Tegangan akibat gaya axial σ = F / A

F = Axial force acting on cross section (kg)A = Cross-sectional of pipe (mm2)

Tegangan akibat bending & Torsi σb = Mb / Zσt = Mt / 2ZMb = Bending moment (kg-mm)Mt = Torsional moment (kg-mm)Z = Section modulus of pipe (mm3)

Tegangan akibat tekanan internal σH = PDi / 2t (Hoop)

σL = PDi / 4t (Longitudinal)P = Design pressure (kg/mm2)Di = Inner diameter (mm)t = Thickness of pipe (mm)

FF

Mt

Mb

σL σH P

Page 8: sresan01

Ekspansi Thermal δ = ΔT x α x L ; (mm) Carbon Steel +/- 1 mm/m for 100oC Stainless Steel +/- 1.35 mm/m for 100oC

Tegangan Thermal σ = ε x Ε = δ/L x E = ΔT x α x E

Reaction ForceF = σ x A

Example: 1meter length of 8” NPS CS Pipe STD at 100oC.

T ambient = 20oC1. δ = (100-20)x12x10-6x1000 = 0.96 mm2. σ = (100-20)x12x10-6x20000 = 19.2 kg/mm2

3. F = 19.2 x π x (2192-2032)/4 = 27.6 ton

δ (Pushed)

Force

Page 9: sresan01

Piping Design Code ASME B31.1 Power Piping ASME B31.3 Process Piping ASME B31.4 Pipeline

(Hydrocarbon) ASME B31.8 Pipeline (Gas) ASME Section III Nuclear

Component Design

ASME: The American Society of Mechanical Engineers

API: American Petroleum Institute

NEMA: National Electrical Manufacturers Association

WRC: Welding Research Council

Related Code for Nozzle Evaluation

API Std 610 Centrifugal Pump API Std 611 Steam Turbines API Std 617 Centrifugal

Compressor API Std 618 Reciprocating

Compressor API Std 650 Welded Steel Tanks API Std 560 Fired Heaters

(Furnace) API STD 661 Air-Cooled Heat

Exchangers (AFC) NEMA SM23 Steam Turbines ASME SEC VIII Pressure Vessel WRC 107, WRC 297 Local Stress

on Nozzles

Page 10: sresan01

7.2. Code Stress Equations

• 7.2.1. B31.1 Power Piping 7.2.2. B31.3 Process Piping

HoA

sus St

PdZiM.S

4750

)25.125.1( SUSHCAC

EXP SSSfSZ

iMS

HoBA

OCC kSt

PdZiM

ZiMS

475.075.0

Where:MA = Resultant moment due to sustained, kg-mm

SH = Allowable stress at operating temperature, kg/mm2

i = Intensification factor

Mc = Resultant moment due to expansion, kg-mm

SA = Allowable expansion stress, kg/mm2

MB = Resultant moment due to occasional, kg-mm

k = occasional factor

= 1.2 for loads occurring less than 1% of the time

= 1.15 for loads occurring less than 10% of the time

SC = Allowable stress at installation temperature, kg/mm2

Hoooii

m

axsus S

tPd

ZMiMi

AFS

4])()[( 2/122

)25.125.1(]4)()[( 2/122*

2*

SUSHCATooii

EXP SSSfSZ

MMiMiS

HlSUSOCC SSSS 33.1

Where:Fax= Axial force due to sustained, kg

Mi = In-plane bending moment due to sustained, kg-mmMo = Out-plane bending moment due to sustained, kg-mm Mi* = Range of in-plane bending moment due to expansion, kg-mmMo* = Range of out-plane bending moment due to expansion, kg-mmSH = Allowable stress at operating temperature, kg/mm2

ii ,io = In-plane, out-plane intensification factorMT = Torsional moment due to expansion, kg-mmSA = Allowable expansion stress, kg/mm2

SC = Allowable stress at installation temperature, kg/mm2

Sl = Bending stress due to occasional loads such as wind/earthquake f = Stress range reduction factor

Page 11: sresan01

7.2.3. B31.4 Liquid Transportation Piping

Yieldblpsus x S. x .SSS 720750

YieldtbEXP SSSS 72.0)4( 2/122*

YieldSUSEXPHOPE SFSSSvTEaFS 9.0)1(

YieldblpOCC x k x S. x .SSS 720750**

Where:Slp = Longitudinal pressure stress, kg/mm2

Sb = Bending stress due to sustained, kg/mm2

Sb* = Range of bending stress due to expansion, kg/mm2

St = Range of torsional stress due to expansion, kg/mm2

Sb** = Bending stress due occasional, kg/mm2

Syield = Specified minimum yield stress material, kg/mm2

F = 1 (under ground pipeline); 0 (above ground pipeline)

E = Modulus of Elasticity

a = Thermal expansion coefficient

ΔT = Temperature change of pipe from ambient

v = Poisson’s ratio

SH = Hoop stress kg/mm2

k = Occasional load factor

7.2.4. B31.8 Gas Transportation Piping

T S x F x .SSS blpsus 750

SSSS tbEXP 72.0)4( 2/122*

SSSS SUSEXPOPE

x T x k x S x F.SSS b**lpOCC 750

Where:Slp = Longitudinal pressure stress, kg/mm2

Sb = Bending stress due to sustained, kg/mm2

Sb* = Range of bending stress due to expansion, kg/mm2

St = Range of torsional stress due to expansion, kg/mm2

Sb** = Bending stress due occasional, kg/mm2

S = Specified minimum yield stress material, kg/mm2

F = Construction type

T = Temperature derating factor

k = Occasional load factor

Page 12: sresan01

Kriteria Analisis Tegangan 350

300

250

200

150

100

oC

3 4 6 8 10 12 14

Detail calculation required

B

NPS

300

250

200

150

100

80

oC

2 3 4 6 8 10 1412

Calculation not required

Detail calculation required

2 3 4 6 8 10 1412

Calculation not required

Class 600 and higher

Detail calculation required

NPS NPS

Page 13: sresan01

Kriteria Desain Support

Anchor

PadShoe

Spring Hanger Assembly

Eye Bolt

Spring HangerTurnbuckle

Pipe Clamp

Structure

Adjustable Support

Page 14: sresan01

Tiga macam hanger yg biasa digunakan adlh : Rigid support atau rod hanger yang harus dapat menahan setiap

gerakkan sepanjang sumbu hanger. Variabel support atau spring hanger menyediakan gaya support

yang sama dengan hot load dan memungkinkan defleksi. Constant support atau constant effort hangers yang menyediakan

gaya konstan saat terjadinya siklus termal. Idealnya support hanger yang konstan tidak akan meregang saat gerakkan bebas dari system dan tidak akan menimbulkan tegangan pada pipa.

Support Around Control Valve

Control ValveSliding SupportTight Support

Variable Spring Support Adjustable Guide

Spring and Adjustable Support

Page 15: sresan01

Stress Analysis using Caesar II

K-3301A

K-3301B

K-3301C

V-1001

V-1002

Spring Hanger (Typ. 12ea)

Spring Support

Vertical Guide

Trunnion (Typ. 3ea)

Guide (Typ. 3ea)

Required Data:

• Piping Configuration complete with dimension.

• Material Spec. :Size, Thickness, Material Properties, method of bracing, etc.

• LDT (Line Designation Table): Pressure, Temperature, Insulation Thickness, Density etc.

• Equipment Drawing to determine nozzle movement.

• Wind and earthquake loading.

• Standard valve and flange weight.

• Number of operating cycles if any.

• Misc. item drawing such as silencer etc.

Item need to be concerned:

• Boundary Condition.

• Operating Case, i.e: pump, run or stand-by.

• Friction.

Page 16: sresan01

PENGGUNAAN PROGRAM CAESAR II

START

DATA :1. Sistem Proses 2. Gb P & ID 3. Gb Isometric 4. Dok.Kontrak 5. Pipeline List

INPUT / EDIT DATA

PROSES & ANALISIS DG CAESAR II :-Analisis beban, Displacemen, Stress

KRITERIAPENERIMA

AN

Sesuai

Tdk Sesuai

PROSES ULANG *

VALIDASI

SELESAI

Page 17: sresan01

PIPING INPUT DENGAN PROGRAM CAESAR II

Page 18: sresan01

Restraint Summary Static Output

Page 19: sresan01

Displacement Static Output

Page 20: sresan01

Stress Static Output

Page 21: sresan01

PRAKTIKUM DG CAESAR II

LIHAT FILE PRAKTIKUM

Page 22: sresan01