30
Springer Handbook of Lasers and Optics

Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

  • Upload
    others

  • View
    7

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

Springer Handbookof Lasers and Optics

Page 2: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

Springer Handbooks providea concise compilation of approvedkey information on methods ofresearch, general principles, andfunctional relationships in physi-cal sciences and engineering. Theworld’s leading experts in the fieldsof physics and engineering will beassigned by one or several renownededitors to write the chapters com-prising each volume. The contentis selected by these experts fromSpringer sources (books, journals,online content) and other systematicand approved recent publications ofphysical and technical information.

The volumes are designed to beuseful as readable desk referencebooks to give a fast and comprehen-sive overview and easy retrieval ofessential reliable key information,including tables, graphs, and bibli-ographies. References to extensivesources are provided.

Page 3: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

123

HandbookSpringerof Lasers and Optics

Frank Träger (Ed.)

With CD-ROM, 978 Figures and 136 Tables

Page 4: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

Editor:

Prof. Dr. Frank TrägerUniversity of KasselDepartment of PhysicsHeinrich-Plett-Str. 4034132 KasselGermany

Library of Congress Control Number: 2007920818

ISBN-10: 0-387-95579-8 e-ISBN: 0-387-30420-7ISBN-13: 978-0-387-95579-7 Printed on acid free paper

c© 2007, Springer Science+Business Media, LLC New YorkAll rights reserved. This work may not be translated or copied in whole orin part without the written permission of the publisher (Springer Science+Business Media, LLC New York, 233 Spring Street, New York, NY10013, USA), except for brief excerpts in connection with reviews orscholarly analysis. Use in connection with any form of information storageand retrieval, electronic adaptation, computer software, or by similar ordissimilar methodology now known or hereafter developed is forbidden.The use in this publication of trade names, trademarks, service marks, andsimilar terms, even if they are not identified as such, is not to be taken as anexpression of opinion as to whether or not they are subject to proprietaryrights.

The use of designations, trademarks, etc. in this publication does not imply,even in the absence of a specific statement, that such names are exempt fromthe relevant protective laws and regulations and therefore free for generaluse.

Product liability: The publisher cannot guarantee the accuracy of anyinformation about dosage and application contained in this book. In everyindividual case the user must check such information by consulting therelevant literature.

Production and typesetting: LE-TeX GbR, LeipzigHandbook Manager: Dr. W. Skolaut, HeidelbergTypography and layout: schreiberVIS, SeeheimIllustrations:schreiberVIS, Seeheim & Hippmann GbR, SchwarzenbruckCover design: eStudio Calamar Steinen, BarcelonaCover production: WMXDesign GmbH, HeidelbergPrinting and binding: Stürtz AG, Würzburg

SPIN 10892328 100/3100/YL 5 4 3 2 1 0

Page 5: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

V

Foreword

Prof. Theodor W. HänschNobel Laureate in Physics 2005Department of PhysicsLudwig-Maximilians-Universität (LMU)Munich, Germany

After working for more than four decades in the field of laser science, I am delightedthat Springer-Verlag has devoted one of the first volumes of the new Springer Hand-book series to lasers and optics. The exhilarating pace of technological advances inour field is still accelerating, and lasers and optical techniques are becoming evermore indispensible as enabling tools in almost any field of science or technology.Since no single physicist, engineer, or graduate student can be an expert in all the im-portant subfields of optical science, a concise, balanced, and timely compilation ofbasic principles, key applications, and recent advances, written by leading experts,will make a most valuable desk reference. The chosen readable style and attractive,well-illustrated layout is even inviting to casual studying and browsing. I know that Iwill keep my Springer Handbook of Lasers and Optics close at hand, despite the in-finite amount of information (and misinformation) that is readily accessible via theInternet.

Munich, February 2007 Theodor W. Hänsch

Page 6: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

VII

Preface

Prof. Frank TrägerUniversität KasselExperimentalphysik IGermany

It is often said that the 21st century is the century of the photon. In fact, opticalmethods, materials, and components have reached an advanced state of sophisticationhitherto unknown. Optical techniques, particularly those based on lasers, not only findapplications in the classical fields of physics and engineering but have expanded intomany other disciplines such as medicine, the life sciences, chemistry and environmentalresearch, to mention only a few examples. Nevertheless, progress in optics, photonicmaterials and coherent light sources continues at a rapid pace: new laser materialsare being developed; novel concepts such as optics far beyond the diffraction limit,or nanooptics, are being explored; and coherent light sources generate wavelengths inranges not previously accessible.

In view of the pronounced interdisciplinary nature of optics, the Springer Handbookof Lasers and Optics is designed as a readable desk reference book to provide fast, up-to-date, comprehensive, and authoritative coverage of the field. The handbook chaptersare grouped into four parts covering basic principles and materials; fabrication andproperties of optical components; coherent and incoherent light sources; and, finally,selected applications and special fields such as terahertz photonics, X-ray optics andholography.

I hope that all readers will find this Springer Handbook useful and will enjoy using it.

Kassel, February 2007 Frank Träger

Page 7: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

IX

List of Authors

Andreas AssionFemtolasers Produktions GmbHFernkorngasse 10Vienna, 1100, Austriae-mail: [email protected]

Thomas E. BauerJENOPTIK Polymer Systems GmbHCoating DepartmentAm Sandberg 207819 Triptis, Germanye-mail: [email protected]

Thomas BaumertUniversität KasselInstitut für PhysikHeinrich-Plett-Str. 4034132 Kassel, Germanye-mail: [email protected]

Dietrich BertramPhilips LightingPhilipsstr. 852068 Aachen, Germanye-mail: [email protected]

Klaus BonradSchott Spezialglas AGDivision Luminescence TechnologyHattenbergstr. 1055014 Mainz, Germanye-mail: [email protected]

Matthias BornPhilips Research Laboratories AachenWeisshausstr. 252066 Aachen, Germanye-mail: [email protected]

Annette BorsutzkyTechnische Universität KaiserslauternFachbereich PhysikErwin-Schrödinger-Str. 4967663 Kaiserslautern, Germanye-mail: [email protected]

Hans BrandFriedrich-Alexander-University ofErlangen-Nürnberg LHFTDepartment of Electrical, Electronicand Communication EngineeringCauerstr. 991058 Erlangen, Germanye-mail: [email protected]

Robert P. BreaultBreault Research Organization, Inc.6400 East Grant Road, Suite 350Tucson, AZ 85715, USAe-mail: [email protected]

Matthias BrinkmannUniversity of Applied Sciences DarmstadtMathematics and Natural SciencesSchoefferstr. 364295 Darmstadt, Germanye-mail: [email protected]

Uwe BrinkmannBergfried 1637120 Bovenden, Germanye-mail: [email protected]

Robert BrunnerCarl Zeiss AGCentral Research and TechnologyCarl-Zeiss-Promenade 1007745 Jena, Germanye-mail: [email protected]

Geoffrey W. BurrIBM Almaden Research Center650 Harry RoadSan Jose, CA 95120e-mail: [email protected]

Karsten BuseUniversity of BonnInstitute of PhysicsWegelerstr. 853115 Bonn, Germanye-mail: [email protected]

Page 8: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

X List of Authors

Carol ClickSchott North AmericaRegional Research and Development400 York AvenueDuryea, PA 18642, USAe-mail: [email protected]

Hans Coufal†

IBM Research DivisionSan Jose, CA, USA

Mark J. DavisSchott North AmericaRegional Research and Development400 York AvenueDuryea, PA 18642, USAe-mail: [email protected]

Wolfgang DemtröderTU KaiserslauternDepartment of PhysicsAm Harzhübel 8067663 Kaiserslautern, Germanye-mail: [email protected]

Henrik EhlersLaser Zentrum Hannover e.V.Department of Thin Film TechnologyHollerithallee 830419 Hannover, Germanye-mail: [email protected]

Rainer EngelbrechtFriedrich-Alexander-University ofErlangen-NürnbergDepartment of Electrical, Electronic andCommunication EngineeringCauerstr. 991058 Erlangen, Germanye-mail: [email protected]

Martin FallyUniversity of ViennaFaculty of Physics, Departmentfor Experimental PhysicsBoltzmanngasse 5Vienna, 1090, Austriae-mail: [email protected]

Yun-Hsing FanUniversity of Central FloridaCollege of Optics and Photonics4000 Central Florida Blvd.Orlando, 32816, USAe-mail: [email protected]

Enrico GeißlerCarl Zeiss AGCentral Research and TechnologyCarl Zeiss Promenade 1007745 Jena, Germanye-mail: [email protected]

Ajoy GhatakIndian Institute of Technology DelhiPhysics DepartmentHauz KhasNew Delhi, 110016, Indiae-mail: [email protected]

Alexander GoushchaSEMICOA333 McCormick AvenueCosta Mesa, CA 92626, USAe-mail: [email protected]

Daniel GrischkowskyOklahoma State UniversityElectrical and Computer EngineeringEngineering South 202Stillwater, OK 74078, USAe-mail: [email protected]

Richard HaglundVanderbilt UniversityDepartment of Physics and Astronomy6301 Stevenson Center LaneNashville, TN 37235-1807, USAe-mail: [email protected]

Stefan HansmannAl Technologies GmbHDeutsche-Telekom-Allee 364295 Darmstadt, Germanye-mail: [email protected]

Page 9: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

List of Authors XI

Joseph HaydenSchott North AmericaRegional Research and Development400 York AvenueDuryea, PA 18642, USAe-mail: [email protected]

Joachim HeinFriedrich-Schiller University JenaInstitute for Optics and Quantum ElectronicsMax-Wien-Platz 107743 Jena, Germanye-mail: [email protected]

Stefan W. HellMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077 Göttingen, Germanye-mail: [email protected]

Jürgen HelmckePhysikalisch-Technische Bundesanstalt (PTB)BraunschweigFormer Head Quantum Optics and Length Unit(retired)Bundesallee 10038116 Braunschweig, Germanye-mail: [email protected]

Hartmut HillmerUniversity of KasselInstitute of Nanostructure Technologies andAnalytics (INA)Heinrich-Plett-Str. 4034128 Kassel, Germanye-mail: [email protected]

Günter HuberUniversität HamburgInstitut für Laser-PhysikDepartment PhysikLuruper Chaussee 14922761 Hamburg, Germanye-mail: [email protected]

Mirco ImlauUniversity of OsnabrückDepartment of PhysicsBarbarastr. 749069 Osnabrück, Germanye-mail: [email protected]

Kuon InoueChitose Institute of Science and TechnologyDepartment of Photonics758-65 Bibi066-8655 Chitose, Japane-mail: [email protected]

Thomas JüstelUniversity of Applied Sciences MünsterStegerwaldstr. 3948565 Steinfurt, Germanye-mail: [email protected]

Jeffrey L. KaiserSpectra-PhysicsDivision of Newport Corporation1335 Terra Bella AvenueMountain View, CA 94043, USAe-mail: [email protected]

Ferenc KrauszMax-Planck-Institut für QuantenoptikHans-Kopfermann-Str. 185748 Garching, Germanye-mail: [email protected]

Eckhard KrätzigUniversity of OsnabrückPhysics DepartmentBarbarastr. 749069 Osnabrück, Germanye-mail: [email protected]

Stefan KückPhysikalisch-Technische BundesanstaltOptics DivisionBundesallee 10038116 Braunschweig, Germanye-mail: [email protected]

Page 10: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

XII List of Authors

Anne L’HuillierUniversity of LundDepartment of PhysicsP.O. Box 11822100 Lund, Swedene-mail: [email protected]

Bruno LengelerAachen University (RWTH)II. Physikalisches InstitutTemplergraben 5552056 Aachen, Germanye-mail: [email protected]

Martin LetzSchott GlasMaterials Science, Central ResearchHattenbergstr. 155014 Mainz, Germanye-mail: [email protected]

Gerd LeuchsUniversity of Erlangen-NurembergInstitute of Optics, Information and PhotonicsGuenther-Scharowsky-Str. 191058 Erlangen, Germanye-mail: [email protected]

Norbert LindleinFriedrich-Alexander University ofErlangen-NürnbergMax-Planck Research GroupInstitute of Optics Information and PhotonicsStaudtstr. 7/B291058 Erlangen, Germanye-mail:[email protected]

Dennis Lo†

The Chinese University of Hong KongHong Kong, P. R. China

Stefano LonghiUniversity of Politecnico di MilanoDepartment of PhysicsPiazza Leonardo da Vinci 3220133 Milano, Italye-mail: [email protected]

Ralf MalzLASOS Lasertechnik GmbHResearch and DevelopmentCarl-Zeiss-Promenade 1007745 Jena, Germanye-mail: [email protected]

Wolfgang MannstadtSchott AGResearch and Technology DevelopmentHattenbergstr. 1055122 Mainz, Germanye-mail: [email protected]

Gerd MarowskyLaser-Laboratorium Göttingen e.V.Hans-Adolf-Krebs-Weg 137077 Göttingen, Germanye-mail: [email protected]

Dietrich MartinCarl Zeiss AGCorporate Research and TechnologyMicrostructured Optics ResearchCarl-Zeiss-Promenade 1007745 Jena, Germanye-mail: [email protected]

Bernhard MesserschmidtGRINTECH GmbHResearch and Development, ManagementSchillerstr. 107745 Jena, Germanye-mail: [email protected]

Katsumi MidorikawaRIKENLaser Technology LaboratoryHirosawa 2-1, Wako351-0198 Saitama, Japane-mail: [email protected]

Gerard J. MilburnThe University of QueenslandCenter for Quantum Computer TechnologySchool of Physical SciencesSt. Lucia, QLD 4072, Australiae-mail: [email protected]

Page 11: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

List of Authors XIII

Kazuo OhtakaChiba UniversityCenter for Frontier SciencePhotonic Crystals1-33 Yayoi263-8522 Chiba, Japane-mail: [email protected]

Motoichi OhtsuDepartment of Electronics EngineeringThe University of Tokyo2-11-16 Yayoi, Bunkyo-ku113-8656 Tokyo, Japane-mail: [email protected]

Roger A. PaquinAdvanced Materials Consultant1842 E. Pole Star PlaceOro Valley, AZ 85737, USAe-mail: [email protected]

Alan B. PetersonSpectra-PhysicsDivision of Newport Corporation1335 Terra Bella AvenueMountain View, CA 94043, USAe-mail: [email protected]

Klaus PfeilstickerUniversität HeidelbergInstitut für UmweltphysikFakultät für Physik und AstronomieIm Neuenheimer Feld 36669121 Heidelberg, Germanye-mail: [email protected]

Ulrich PlattUniversität HeidelbergInstitut für UmweltphysikFakultät für Physik und AstronomieIm Neuenheimer Feld 36669121 Heidelberg, Germanye-mail: [email protected]

Markus PollnauUniversity of TwenteMESA+ Institute for NanotechnologyP.O. Box 2177500 AE, Enschede, The Netherlandse-mail: [email protected]

Steffen ReichelSCHOTT GlasService Division Researchand Technology DevelopmentHattenbergstr. 1055014 Mainz, Germanye-mail: [email protected]

Hans-Dieter ReidenbachUniversity of Applied Sciences CologneInstitute of Communications EngineeringInstitute of Applied Optics and ElectronicsBetzdorfer Str. 250679 Cologne, Germanye-mail: [email protected]

Hongwen RenUniversity of Central FloridaCollege of Optics and PhotonicsCentral Florida Blvd. 162700Orlando, FL 32816, USAe-mail: [email protected]

Detlev RistauLaser Zentrum Hannover e.V.Department of Thin Film TechnologyHollerithallee 830419 Hannover, Germanye-mail: [email protected]

Simone RitterSchott AGDivision Research and Technology DevelopmentMaterial DevelopmentHattenbergstr. 1055122 Mainz, Germanye-mail: [email protected]

Evgeny SaldinDeutsches Elektronen Synchrotron (DESY)Notkestr. 8522607 Hamburg, Germanye-mail: [email protected]

Roland SauerbreyForschungszentrumDresden-Rossendorf e.V.Bautzner Landstr. 12801328 Dresden, Germanye-mail: [email protected]

Page 12: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

XIV List of Authors

Evgeny SchneidmillerDeutsches Elektronen Synchrotron (DESY)Notkestr. 8522607 Hamburg, Germanye-mail: [email protected]

Bianca SchrederSchott GlasDivision Research and Technology DevelopmentMaterial DevelopmentHattenbergstr. 1055122 Mainz, Germanye-mail: [email protected]

Christian G. SchroerDresden University of TechnologyInstitute of Structural PhysicsZellescher Weg 1601062 Dresden, Germanye-mail: [email protected]

Markus W. SigristETH Zurich, Institute of Quantum ElectronicsDepartment of PhysicsSchafmattstr. 168093 Zurich, Switzerlande-mail: [email protected]

Glenn T. SincerboxUniversity of ArizonaOptical Sciences1630 East University BoulevardTucson, AZ 85721, USAe-mail: [email protected]

Elisabeth SoergelUniversity of BonnInstitute of PhysicsWegelerstr. 853115 Bonn, Germanye-mail: [email protected]

Steffen SteinbergLASOS Lasertechnik GmbHCarl-Zeiss-Promenade 1007745 Jena, Germanye-mail: [email protected]

Sune SvanbergLund UniversityDivision of Atomic PhysicsP.O. Box 11822100 Lund, Swedene-mail: [email protected]

Orazio SveltoPolitecnico di MilanoDepartment of PhysicsPiazza Leonardo da Vinci 3220133 Milan, Italye-mail: [email protected]

Bernd TabbertSemicoaEngineering Department333 McCormick AvenueCosta Mesa, CA 92626, USAe-mail: [email protected]

K. ThyagarajanIndian Institute of Technology DelhiPhysics DepartmentHauz KhasNew Delhi, 110016, Indiae-mail: [email protected]

Mary G. TurnerEngineering Synthesis Design, Inc.310 S. Williams Blvd.Tucson, AZ 85711, USAe-mail: [email protected]

Giuseppe Della VallePolytechnic Institute of MilanDepartment of PhysicsPiazza Leonardo da Vinci 3220133 Milan, Italye-mail: [email protected]

Michael VollmerUniversity of Applied Sciences BrandenburgDepartment of PhysicsMagdeburger Str. 5014770 Brandenburg, Germanye-mail: [email protected]

Page 13: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

List of Authors XV

Silke WolffSCHOTT Spezialglas AGDepartment of Research & TechnologyDevelopment, Material DevelopmentOptical GlassesHattenbergstr. 1055122 Mainz, Germanye-mail: [email protected]

Matthias WollenhauptUniversität KasselInstitut für PhysikHeinrich-Plett-Str. 4034132 Kassel, Germanye-mail: [email protected]

Shin-Tson WuUniversity of Central FloridaCollege of Optics and PhotonicsCentral Florida Blvd. 162700Orlando, FL 32816, USAe-mail: [email protected]

Helen WächterETH Zurich, Institute of Quantum ElectronicsDepartment of PhysicsSchafmattstr. 168093 Zurich, Switzerlande-mail: [email protected]

Mikhail YurkovDeutsches Elektronen Synchrotron (DESY)Notkestr. 8522607 Hamburg, Germanye-mail: [email protected]

Aleksei ZheltikovM.V. Lomonosov Moscow State UniversityPhysics DepartmentVorobyevy goryMoscow, 119992, Russiae-mail: [email protected]

Page 14: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

XVII

Contents

List of Abbreviations ................................................................................. XXIII

Part A Basic Principles and Materials

1 The Properties of LightRichard Haglund ..................................................................................... 31.1 Introduction and Historical Sketch ................................................. 41.2 Parameterization of Light .............................................................. 61.3 Physical Models of Light ................................................................ 91.4 Thermal and Nonthermal Light Sources .......................................... 141.5 Physical Properties of Light ............................................................ 171.6 Statistical Properties of Light.......................................................... 241.7 Characteristics and Applications of Nonclassical Light ...................... 271.8 Summary ...................................................................................... 29References .............................................................................................. 29

2 Geometrical OpticsNorbert Lindlein, Gerd Leuchs ................................................................... 332.1 The Basics and Limitations of Geometrical Optics ............................ 342.2 Paraxial Geometrical Optics............................................................ 392.3 Stops and Pupils ........................................................................... 602.4 Ray Tracing ................................................................................... 612.5 Aberrations ................................................................................... 672.6 Some Important Optical Instruments .............................................. 72References .............................................................................................. 84

3 Wave OpticsNorbert Lindlein, Gerd Leuchs ................................................................... 873.1 Maxwell’s Equations and the Wave Equation .................................. 883.2 Polarization .................................................................................. 1023.3 Interference .................................................................................. 1083.4 Diffraction .................................................................................... 1233.5 Gaussian Beams ............................................................................ 143References .............................................................................................. 154

4 Nonlinear OpticsAleksei Zheltikov, Anne L’Huillier, Ferenc Krausz ........................................ 1574.1 Nonlinear Polarization and Nonlinear Susceptibilities ..................... 1594.2 Wave Aspects of Nonlinear Optics ................................................... 1604.3 Second-Order Nonlinear Processes ................................................. 1614.4 Third-Order Nonlinear Processes .................................................... 164

Page 15: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

XVIII Contents

4.5 Ultrashort Light Pulses in a Resonant Two-Level Medium:Self-Induced Transparency and the Pulse Area Theorem.................. 178

4.6 Let There be White Light: Supercontinuum Generation .................... 1854.7 Nonlinear Raman Spectroscopy ...................................................... 1934.8 Waveguide Coherent Anti-Stokes Raman Scattering ........................ 2024.9 Nonlinear Spectroscopy with Photonic-Crystal-Fiber Sources ........... 2094.10 Surface Nonlinear Optics, Spectroscopy, and Imaging ...................... 2164.11 High-Order Harmonic Generation .................................................. 2194.12 Attosecond Pulses: Measurement and Application........................... 227References .............................................................................................. 236

5 Optical Materials and Their PropertiesMatthias Brinkmann, Joseph Hayden, Martin Letz, Steffen Reichel,Carol Click, Wolfgang Mannstadt, Bianca Schreder, Silke Wolff,Simone Ritter, Mark J. Davis, Thomas E. Bauer, Hongwen Ren,Yun-Hsing Fan, Shin-Tson Wu, Klaus Bonrad, Eckhard Krätzig,Karsten Buse, Roger A. Paquin ................................................................. 2495.1 Interaction of Light with Optical Materials ...................................... 2505.2 Optical Glass ................................................................................. 2825.3 Colored Glasses ............................................................................. 2905.4 Laser Glass .................................................................................... 2935.5 Glass–Ceramics for Optical Applications .......................................... 3005.6 Nonlinear Materials ....................................................................... 3075.7 Plastic Optics ................................................................................. 3175.8 Crystalline Optical Materials ........................................................... 3235.9 Special Optical Materials ................................................................ 3275.10 Selected Data ................................................................................ 354References .............................................................................................. 360

6 Thin Film Optical CoatingsDetlev Ristau, Henrik Ehlers ...................................................................... 3736.1 Theory of Optical Coatings .............................................................. 3746.2 Production of Optical Coatings ....................................................... 3786.3 Quality Parameters of Optical Coatings............................................ 3886.4 Summary and Outlook ................................................................... 391References .............................................................................................. 393

Part B Fabrication and Properties of Optical Components

7 Optical Design and Stray Light Concepts and PrinciplesMary G. Turner, Robert P. Breault ............................................................. 3997.1 The Design Process ........................................................................ 3997.2 Design Parameters ........................................................................ 4027.3 Stray Light Design Analysis ............................................................. 4107.4 The Basic Equation of Radiation Transfer ........................................ 412

Page 16: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

Contents XIX

7.5 Conclusion .................................................................................... 416References .............................................................................................. 416

8 Advanced Optical ComponentsRobert Brunner, Enrico Geißler, Bernhard Messerschmidt, Dietrich Martin,Elisabeth Soergel, Kuon Inoue, Kazuo Ohtaka, Ajoy Ghatak,K. Thyagarajan........................................................................................ 4198.1 Diffractive Optical Elements ........................................................... 4198.2 Electro-Optic Modulators ............................................................... 4348.3 Acoustooptic Modulator ................................................................. 4388.4 Gradient Index Optical Components ............................................... 4408.5 Variable Optical Components ......................................................... 4498.6 Periodically Poled Nonlinear Optical Components............................ 4598.7 Photonic Crystals ........................................................................... 4638.8 Optical Fibers ................................................................................ 471References .............................................................................................. 494

9 Optical DetectorsAlexander Goushcha, Bernd Tabbert ......................................................... 5039.1 Photodetector Types, Detection Regimes,

and General Figures of Merit .......................................................... 5059.2 Semiconductor Photoconductors .................................................... 5109.3 Semiconductor Photodiodes .......................................................... 5129.4 QWIP Photodetectors ..................................................................... 5279.5 QDIP Photodetectors ...................................................................... 5299.6 Metal–Semiconductor (Schottky Barrier) and

Metal–Semiconductor–Metal Photodiodes ...................................... 5309.7 Detectors with Intrinsic Amplification:

Avalanche Photodiodes (APDs) ....................................................... 5329.8 Detectors with Intrinsic Amplification: Phototransistors .................. 5379.9 Charge Transfer Detectors............................................................... 5399.10 Photoemissive Detectors ................................................................ 5469.11 Thermal Detectors ......................................................................... 5499.12 Imaging Systems ........................................................................... 5539.13 Photography ................................................................................. 555References .............................................................................................. 560

Part C Coherent and Incoherent Light Sources

10 Incoherent Light SourcesDietrich Bertram, Matthias Born, Thomas Jüstel ........................................ 56510.1 Incandescent Lamps ...................................................................... 56510.2 Gas Discharge Lamps ..................................................................... 56610.3 Solid-State Light Sources ............................................................... 57410.4 General Light-Source Survey .......................................................... 581References .............................................................................................. 581

Page 17: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

XX Contents

11 Lasers and Coherent Light SourcesOrazio Svelto, Stefano Longhi, Giuseppe Della Valle, Stefan Kück,Günter Huber, Markus Pollnau, Hartmut Hillmer, Stefan Hansmann,Rainer Engelbrecht, Hans Brand, Jeffrey Kaiser, Alan B. Peterson,Ralf Malz, Steffen Steinberg, Gerd Marowsky, Uwe Brinkmann, Dennis Lo†,Annette Borsutzky, Helen Wächter, Markus W. Sigrist, Evgeny Saldin,Evgeny Schneidmiller, Mikhail Yurkov, Katsumi Midorikawa,Joachim Hein, Roland Sauerbrey, Jürgen Helmcke ..................................... 58311.1 Principles of Lasers ........................................................................ 58411.2 Solid-State Lasers .......................................................................... 61411.3 Semiconductor Lasers .................................................................... 69511.4 The CO2 Laser ................................................................................. 72611.5 Ion Lasers ..................................................................................... 74611.6 The HeNe Laser .............................................................................. 75611.7 Ultraviolet Lasers: Excimers, Fluorine (F2), Nitrogen (N2) .................. 76411.8 Dye Lasers ..................................................................................... 77711.9 Optical Parametric Oscillators ......................................................... 78511.10 Generation of Coherent Mid-Infrared Radiation

by Difference-Frequency Mixing .................................................... 80111.11 Free-Electron Lasers ...................................................................... 81411.12 X-ray and EUV Sources ................................................................... 81911.13 Generation of Ultrahigh Light Intensities

and Relativistic Laser–Matter Interaction........................................ 82711.14 Frequency Stabilization of Lasers ................................................... 841References .............................................................................................. 864

12 Femtosecond Laser Pulses: Linear Properties, Manipulation,Generation and MeasurementMatthias Wollenhaupt, Andreas Assion, Thomas Baumert.......................... 93712.1 Linear Properties of Ultrashort Light Pulses ..................................... 93812.2 Generation of Femtosecond Laser Pulses via Mode Locking .............. 95912.3 Measurement Techniques for Femtosecond Laser Pulses .................. 962References .............................................................................................. 979

Part D Selected Applications and Special Fields

13 Optical and Spectroscopic TechniquesWolfgang Demtröder, Sune Svanberg........................................................ 98713.1 Stationary Methods ....................................................................... 98713.2 Time-Resolved Methods ................................................................ 101213.3 LIDAR ............................................................................................ 1031References .............................................................................................. 1048

14 Quantum OpticsGerard Milburn ........................................................................................ 105314.1 Quantum Fields ............................................................................. 1053

Page 18: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

Contents XXI

14.2 States of Light ............................................................................... 105514.3 Measurement ................................................................................ 105814.4 Dissipation and Noise .................................................................... 106114.5 Ion Traps....................................................................................... 106614.6 Quantum Communication and Computation ................................... 1070References .............................................................................................. 1077

15 NanoopticsMotoichi Ohtsu ........................................................................................ 107915.1 Basics ........................................................................................... 107915.2 Nanophotonics Principles .............................................................. 108015.3 Nanophotonic Devices ................................................................... 108215.4 Nanophotonic Fabrications ............................................................ 108515.5 Extension to Related Science and Technology ................................. 108815.6 Summary ...................................................................................... 1088References .............................................................................................. 1089

16 Optics far Beyond the Diffraction Limit:Stimulated Emission Depletion MicroscopyStefan W. Hell .......................................................................................... 109116.1 Principles of STED Microscopy ......................................................... 109216.2 Nanoscale Imaging with STED ......................................................... 1094References .............................................................................................. 1097

17 Ultrafast THz Photonics and ApplicationsDaniel Grischkowsky ................................................................................ 109917.1 Guided-Wave THz Photonics .......................................................... 110117.2 Freely Propagating Wave THz Photonics .......................................... 1116References .............................................................................................. 1145

18 X-Ray OpticsChristian G. Schroer, Bruno Lengeler ......................................................... 115318.1 Interaction of X-Rays with Matter .................................................. 115418.2 X-Ray Optical Components ............................................................. 1156References .............................................................................................. 1162

19 Radiation and Optics in the AtmosphereUlrich Platt, Klaus Pfeilsticker, Michael Vollmer ......................................... 116519.1 Radiation Transport in the Earth’s Atmosphere ............................... 116619.2 The Radiation Transport Equation .................................................. 116919.3 Aerosols and Clouds....................................................................... 117219.4 Radiation and Climate ................................................................... 117419.5 Applied Radiation Transport:

Remote Sensing of Atmospheric Properties ..................................... 117619.6 Optical Phenomena in the Atmosphere .......................................... 1182References .............................................................................................. 1197

Page 19: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

XXII Contents

20 Holography and Optical StorageMirco Imlau, Martin Fally, Hans Coufal†, Geoffrey W. Burr,Glenn T. Sincerbox ................................................................................... 120520.1 Introduction and History ............................................................... 120620.2 Principles of Holography ................................................................ 120720.3 Applications of Holography ............................................................ 121720.4 Summary and Outlook ................................................................... 122220.5 Optical Data Storage ...................................................................... 122320.6 Approaches to Increased Areal Density ........................................... 122520.7 Volumetric Optical Recording ......................................................... 122720.8 Conclusion .................................................................................... 1239References .............................................................................................. 1239

21 Laser SafetyHans-Dieter Reidenbach .......................................................................... 125121.1 Historical Remarks ......................................................................... 125221.2 Biological Interactions and Effects .................................................. 125321.3 Maximum Permissible Exposure ..................................................... 126021.4 International Standards and Regulations ....................................... 126721.5 Laser Hazard Categories and Laser Classes ....................................... 126821.6 Protective Measures....................................................................... 127021.7 Special Recommendations ............................................................. 1273References .............................................................................................. 1275

Acknowledgements ................................................................................... 1277About the Authors ..................................................................................... 1279Detailed Contents ...................................................................................... 1295Subject Index ............................................................................................. 1313

Page 20: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

XXIII

List of Abbreviations

A

AEL accessible emission limitAFM atomic force microscopeANL Argonne National LaboratoryAOM acoustooptic modulatorAOPDF acoustooptic programmable dispersive

filterAPCVD atmospheric pressure chemical vapor

depositionAR antireflectionARS angle-resolved scatteringASE amplified spontaneous emissionAWG arrayed waveguide

B

BBO β-Barium-BorateBH buried heterostructureBLIP background-limited infrared

photodetectorBZ Brillouin zone

C

C–D Cole–Davidson fractional exponent βCALIPSO Cloud-aerosol lidar and infrared

pathfinder satellite observationsCARS coherent anti-Stokes Raman scatteringCAT coplanar air transmissionCCD charge-coupled deviceCCIS charge-coupled image sensorCCRF capacitively coupled RFCGH computer generated hologramCIPM Comité International des Poids et

MesuresCMOS complementary

metal–oxide–semiconductor detectorCOC cyclic olefin copolymerCOP cyclic olefin polymerCPA chirped-pulse amplificationCRDS cavity-ring-down spectroscopyCRI color rendering indexCTIS charge transfer image sensorCVD chemical vapor depositionCW continuous wave

D

DARPA United States Defense AdvancedResearch Projects Agency

DBF distributed feedbackDBR distributed Bragg reflectorDCF dispersion-compensating fiberDEPFET depleted field effect transistor structureDESY Deutsches Elektronen-SynchrotronDEZn diethylzincDFB distributed feedbackDFG difference-frequency generationDFWM degenerate four-wave mixingDGD differential group delayDIAL differential absorption LIDARDLA direct laser accelerationDOE diffractive optical elementDOM dissolved organic matterDOS density of statesDRO doubly resonant OPO configurationsDRS double Rayleigh scatteringDWDM dense wavelength division multiplexed

E

ECDL extended-cavity diode laserEDFA erbium-doped fiber amplifierEEDF electron energy distribution functionEFDA Er-doped fiber amplifiersEFS equi-frequency surfaceEL electroluminescenceELA excimer laser annealingEM electromagneticEMC electromagnetic compatibilityEMT effective-medium theoryEO electroopticEOM electrooptic modulatorerf error functionESA excited-state absorptionESRF European Synchrotron Radiation FacilityEUV extreme ultravioletEWOD electrowetting on dielectricsErIG erbium iron garnet

F

FBG fiber Bragg gratingFDPM frequency-domain phase measurementFDTD finite-difference time domainFEL free-electron laserFET field effect transistorFIFO first-in first-outFLASH free-electron-laser HamburgFOM figure of meritFOV field of view

Page 21: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

XXIV List of Abbreviations

FP Fabry–PérotFR Faraday rotatorFROG frequency-resolved optical gatingFTS Fourier-transform spectroscopyFWHM full width at half-maximumFWM four-wave mixingFZP Fresnel zone plateFoM figure of merit

G

GAC grating assisted couplerGASMAS gas in scattering media absorption

spectroscopyGC gain-coupledGCF geometrical configuration factorGDD group delay dispersionGLAS geoscience laser altimeter systemGLS sulfide glasses GaLaSGRIN gradient indexGSA ground-state absorptionGTI Gires–Tournois interferometerGVD group velocity dispersion

H

HDPE high-density polyethyleneHDSS holographic data storage systemHHG high-order-harmonic generationHMO heavy metal oxideHOMO highest occupied molecular orbitalHR highly reflectingHVPE hydride-vapor-phase epitaxy

I

IAD ion-assisted depositionIBAD ion-beam-assisted depositionIBS ion-beam sputteringICLAS International Coordination Group for

Laser Atmospheric StudiesICP inductively coupled plasmaIL interference lithographyILRC International Laser Radar ConferencesIR infraredITO indium–tin oxide

K

KB Kirkpatrick–Baez

L

lcp left-circularly polarized lightLC–SLM liquid-crystal spatial light modulator

LCVD laser(-induced) chemical vapor depositionLCoS liquid crystal on siliconLD laser diodeLEAF large effective areaLH left-handedLIBS laser-induced breakdown spectroscopyLIDAR light detecting and rangingLIDT laser-induced damage thresholdLIF laser-induced fluorescenceLMJ laser megajouleLOQC linear optics quantum computingLPCVD low-pressure CVDLPE liquid-phase epitaxyLSHB longitudinal spatial hole burningLSO laser safety officerLT low-temperatureLT-GaAs low-temperature GaAsLTG-GaAs low-temperature-grown GaAsLUMO lowest unoccupied molecular orbitalLWFA laser wakefield acceleration

M

MCP microchannel plateMCVD modified chemical vapor depositionMFD multilayer fluorescent diskMI modulation instabilityMIS metal–insulator–semiconductorMMA methyl methacrylateMOCVD metalorganic chemical vapour epitaxyMOPA master-oscillator power-amplifierMOS metal–oxide–semiconductorMOT magnetooptical trapMPC metallic photonic crystalMPE maximum permissible exposureMPMMA modified poly(methyl methacrylate)MQW multiquantum wellMSR magnetic super-resolutionMTF modulation transfer function

N

NA numerical apertureNCPM noncritical phase matchingNEP noise equivalent powerNFL nanofocusing lensesNGL next-generation lithographyNIF National Ignition FacilityNIM nearly index-matchedNLSE nonlinear Schrödinger equationNLSG nonlinear signal generatorNLTL nonlinear transmission lineNOHD nominal ocular hazard distanceNRI nonresonant intrinsicNSIC National Storage Industry Consortium

Page 22: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

List of Abbreviations XXV

O

OCT optical coherence tomographyOFA optical fibre amplifierOFHC oxygen-free high conductivityOFI optical-field ionizationOLED organic light-emitting deviceOP oriented-patternedOPA optical parametric amplifierOPCPA optical parametric chirped pulse

amplificationOPD optical path differenceOPG optical parametric generationOPL optical path lengthOPO optical parametric oscillatorOPS optically pumped semiconductor laserORMOSIL organically modified silicatesOSNR optical signal-to-noise ratioOTF optical transfer functionOVD outside vapor deposition

P

PA photon avalanchePB photonic bandPBG photonic band gapPBS photonic band structurePBS polarizing beam splitterPC photonic crystalPCB printed circuit boardPCF photonic-crystal fibersPD photodetectorPDH Pound-Drever-Hall techniquePDLC polymer-dispersed liquid crystalPDMS polydimethylsiloxanePECVD plasma-enhanced chemical vapor

depositionPEDT/PSS polyethylenedioxythiophene/

polystyrylsulfonatPESRO pump-enhanced SROPG polarization gatePIC particle-in-cellPICVD plasma impulse CVDPL photoluminescencePLD pulsed-laser depositionPMD polarization mode dispersionPMMA polymethylmethacrylatePMT photomultiplier tubePOLLIWOG polarization-labeled interference versus

wavelength for only a glintPPE personal protective equipmentPPKTP periodically poled potassium titanyl

phosphatePPLN periodically poled lithium niobatePPV poly-para-phenylenevinylenePQ phenanthraquinone

PS polystyrenePSA projected solid anglePSF point spread functionPTV peak-to-valleyPVD physical vapor depositionPWM pulse width modulatorPZT piezoelectric transducer

Q

QC quasicrystalsQCL quantum cascade laserQD quantum dotQDIP quantum-dot infrared photodetectorQND quantum nondemolitionQPM quasi-phase matchingQW quantum wellQWIP quantum well infrared photodetectorQWOT quarter-wave optical thicknessQWP quarter-wave plate

R

RAM residual amplitude modulationrcp right-circularly polarized lightRCWA rigorous coupled wave analysisRDE rotating disc electrodeRDS relative dispersion slopeRE rare-earthRESOLFT reversible saturable optical fluorescence

transitionRF radio frequencyRFA Raman fiber amplifierRGB red, green and blueRIE reactive-ion etchingRIKE Raman-induced Kerr effectRLVIP reactive low-voltage ion platingRMS root-mean-squareRPE retinal pigment epitheliumR/W rewritable

S

SAR synthetic-aperture radarSASE self-amplified spontaneous emissionSBS stimulated Brillouin scatteringSC supercontinuumSCP stretcher–compressor pairSEM scanning electron microscopeSFG sum-frequency generationSG sampled gratingSHG second-harmonic generationsi semiinsulatingSI Système InternationalSIL solid-immersion lensSLAR side-looking airborne radar

Page 23: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

XXVI List of Abbreviations

SLM spatial light modulatorSM-LWFA self-modulated laser wakefield

accelerationSMF single-mode fiberSMSR side-mode suppression ratioSNR signal-to-noise ratioSOA semiconductor optical amplifierSOI silicon-on-insulatorSOS silicon-on-sapphireSPDC spontaneous parametric down conversionSPIDER spectral phase interferometry for direct

electric field reconstructionSPM self-phase modulationSRO singly resonant OPOSRS stimulated Raman scatteringSS stainless-steelSSDL solid-state dye laserSSFS soliton self-frequency shiftSSG superstructure gratingSSI spatial–spectral interferenceSTED stimulated emission depletionSTP standard temperature and pressureSTPA sequential two-photon absorptionSTRUT spectrally temporally resolved

upconversion techniqueSVEA slowly varying envelope approximation

T

TADPOLE temporal analysis by dispersing a pair oflight E-fields

TCE transient collisional excitationTDSE time-dependent Schrödinger equationTEF trap enhanced fieldTEM transverse electric magneticTF thin filmTHG third-harmonic generationTHz-TDS THz time-domain spectroscopyTIP truncated inverted pyramidTIR total internal reflectionTNSA target normal sheath accelerationTOD third-order dispersion

TRO triply resonant OPOTS total scatteringTTF TESLA test facilityTTG tunable twin guideTV television

U

UV ultraviolet

V

VC vertical cavityVCSEL vertical-cavity surface-emitting laser

VLSI very large scale integrationVPE vapor-phase epitaxy

W

WDM wavelength division multiplexingWG waveguideWGP wire-grid polarizerWORM write-once, read-many times

X

XFEL X-ray FELSXPM cross-phase modulationXUV extreme ultraviolet (soft X-ray)

Y

YAG yttrium aluminium garnetYAP yttrium aluminium perovskiteYLF yttrium lithium fluorideYSZ yttria-stabilized zirconiaYVO yttrium vanadate

Z

ZAP zero additional phaseZAP-SPIDER zero-additional-phase SPIDER

Page 24: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

1

Basic PrinPart APart A Basic Principles and Materials

1 The Properties of LightRichard Haglund, Nashville, USA

2 Geometrical OpticsNorbert Lindlein, Erlangen, GermanyGerd Leuchs, Erlangen, Germany

3 Wave OpticsNorbert Lindlein, Erlangen, GermanyGerd Leuchs, Erlangen, Germany

4 Nonlinear OpticsAleksei Zheltikov, Moscow, RussiaAnne L’Huillier, Lund, SwedenFerenc Krausz, Garching, Germany

5 Optical Materials and Their PropertiesMatthias Brinkmann, Darmstadt, GermanyJoseph Hayden, Duryea, USAMartin Letz, Mainz, GermanySteffen Reichel, Mainz, GermanyCarol Click, Duryea, USAWolfgang Mannstadt, Mainz, GermanyBianca Schreder, Mainz, GermanySilke Wolff, Mainz, GermanySimone Ritter, Mainz, GermanyMark J. Davis, Duryea, USAThomas E. Bauer, Triptis, GermanyHongwen Ren, Orlando, USAYun-Hsing Fan, Orlando, USAShin-Tson Wu, Orlando, USAKlaus Bonrad, Mainz, GermanyEckhard Krätzig, Osnabrück, GermanyKarsten Buse, Bonn, GermanyRoger A. Paquin, Oro Valley, USA

6 Thin Film Optical CoatingsDetlev Ristau, Hannover, GermanyHenrik Ehlers, Hannover, Germany

Page 25: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

3

The Propertie1. The Properties of Light

The mystery of light has formed the core of cre-ation stories in every culture, and attracted theearnest attentions of philosophers since at leastthe fifth century BCE. Their questions have rangedfrom how and what we see, to the interaction oflight with material bodies, and finally to the na-ture of light itself. This chapter begins with a briefintellectual history of light from ancient Greeceto the end of the 19th century. After introducingthe physical parameterization of light in terms ofstandard units, three concepts of light are intro-duced: light as a wave, light as a quantum particle,and light as a quantum field. After highlightingthe distinctive characteristics of light beams fromvarious sources – thermal radiation, lumines-cence from atoms and molecules, and synchrotronlight sources – the distinctive physical character-istics of light beams are examined in some detail.The chapter concludes with a survey of the sta-tistical and quantum-mechanical properties oflight beams. In the appropriate limits, this treat-ment not only recovers the classical descriptionof light waves and the semiclassical view of lightas a stream of quanta, but also forms a consis-tent description of quantum phenomena – suchas interference phenomena generated by singlephotons – that have no classical analogs.

1.1 Introduction and Historical Sketch ......... 41.1.1 From the Greeks and Romans

to Johannes Kepler ....................... 41.1.2 From Descartes to Newton ............. 41.1.3 Newton and Huygens ................... 51.1.4 The 19th Century:

The Triumph of the Wave Picture .... 5

1.2 Parameterization of Light ..................... 61.2.1 Spectral Regions

and Their Classification ................. 6

1.2.2 Radiometric Units......................... 71.2.3 Photometric Units ........................ 71.2.4 Photon and Spectral Units ............. 8

1.3 Physical Models of Light ........................ 91.3.1 The Electromagnetic Wave Picture .. 91.3.2 The Semiclassical Picture:

Light Quanta................................ 121.3.3 Light as a Quantum Field .............. 13

1.4 Thermal and Nonthermal Light Sources .. 141.4.1 Thermal Light .............................. 151.4.2 Luminescence Light ...................... 161.4.3 Light from Synchrotron Radiation... 17

1.5 Physical Properties of Light ................... 171.5.1 Intensity ..................................... 171.5.2 Velocity of Propagation ................. 181.5.3 Polarization................................. 181.5.4 Energy and Power Transport .......... 201.5.5 Momentum Transport: The Poynting

Theorem and Light Pressure .......... 211.5.6 Spectral Line Shape ...................... 211.5.7 Optical Coherence ........................ 23

1.6 Statistical Properties of Light ................. 241.6.1 Probability Density

as a Function of Intensity .............. 241.6.2 Statistical Correlation Functions ..... 251.6.3 Number Distribution Functions

of Light Sources ........................... 26

1.7 Characteristics and Applicationsof Nonclassical Light ............................. 271.7.1 Bunched Light ............................. 271.7.2 Squeezed Light ............................ 271.7.3 Entangled Light ........................... 28

1.8 Summary ............................................. 29

References .................................................. 29

PartA

1

Page 26: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

4 Part A Basic Principles and Materials

1.1 Introduction and Historical Sketch

1.1.1 From the Greeks and Romansto Johannes Kepler

The history of optics from the fifth century BCE until theearly 17th century CE can be read as a single, prolongedattempt to elucidate, first qualitatively and then quanti-tatively, the nature of light as it is revealed through thephenomena of propagation, reflection and refraction.

The earliest known theories about the nature of lightoriginated with Empedocles of Agrigentum (fifth cen-tury BCE) and his contemporary, Leucippus. To thelatter is attributed the notion that external objects areenveloped by eidola, “a kind of shadow or some ma-terial simulacrum which envelopes the bodies, quiverson the surface and can detach itself from them” in or-der to convey to the soul “the shape, the colors and allthe other qualities of the bodies from which they em-anate” [1.1]. A century later, Plato and his academycharacterized light as a variant of elemental fire and the-orized that seeing results from a conjunction of a rayemitted by the object seen and a “visual ray,” emitted bythe seeing eye [1.2]. This picture was contentious fromthe start: Plato’s pupil Aristotle fumed that “to say, as theAncients did, that colors are emissions and that this ishow we see, is absurd” [1.1]. Nevertheless, the emissiontheory was debated well into the 16th century.

Another of Plato’s pupils, the mathematician Eu-clid, wrote treatises on optics and catoptrics that werestill being translated seven centuries later. Euclid’s workis distinguished from that of his predecessors by conclu-sions deduced from postulates; in the Optics, he adducesa model of ray optics that can be translated into recog-nizable principles of geometrical optics including thelaw of reflection from a plane surface; the concept ofa near point for the eye; and the focusing of light by con-cave surfaces [1.3]. The Roman philosopher Lucretius(early first century BCE) gave to the world in his De Re-rum Natura the most detailed ancient understanding ofnot only the geometry of light propagation, but also theeffects of intensity on the observer.

Two other ancient texts – by Hero (first century CE)and Ptolemy (second century CE), both of Alexandria– are important historically. Hero postulated the lawof reflection in a form strikingly similar to that whichemerged much later as Fermat’s principle of least time.Heros’s countryman Ptolemy produced a text on opticsdistinguished by its use of axiomatics coupled to experi-mental studies of reflection from curved surfaces and anattempt at developing a law of refraction. The data on

refraction are remarkably accurate, [1.4] and his attemptto provide a mathematical model, though unsuccessful,nevertheless stamps the work as modern.

Building on the philosophical foundation laid byAristotle, medieval opticians focused primarily on thephenomenon of refraction and made important predic-tions about the nature of light [1.1]. The ninth-centuryBaghdad philosopher Abu Hsuf Yaqub Ibn Is-haz(Alkindi) improved on the concept of the visual ray byrequiring that it should have a physiological effect on theeye. In De Aspectibus, he mounted the first serious at-tack, supported by observations, on the theory of light asa stream of simulacra. Abu Ali al-Hasan ibn al-Haitham– known widely by his Latin name, Alhazen – publishedThe Book of Optics (De aspectibus, or On Vision) in the11th century CE. This text was translated into Latin andused until the early 17th century. His diagrams of the hu-man visual apparatus correct some, though not all, theerrors made by Galen, who worked only from dissec-tions of animals. Because Alhazen understood how theeye lens refracted incoming rays of light, he was ableto show that every point on the surface of an object inthe visual field of the eye maps onto a point on the op-tic nerve to make a faithful, small-scale image of theobject.

By the beginning of the 12th century, western Euro-pean scholars had in their possession both the works ofthe Greeks and those of the Muslim scholars. These cen-turies see a working out of the contradictions inherentin these competing views by late-medieval thinkers inEngland, France and Italy, [1.5] including Robert Gros-seteste and Roger Bacon who were unwilling to acceptthe dogmatism of the Scholastics. In particular, they sawthe phenomenology of the rainbow as a key to the un-derstanding of refraction and reflection. The origin ofthe rainbow was correctly explained for the first time byTheodoric of Freiburg in the 15th century.

1.1.2 From Descartes to Newton

By the time of Johannes Kepler’s death in the mid-17thcentury, the concept of light as a geometrical ray em-anating from an object and collected by the eye wasfirmly established, and the emphasis shifted to theo-retical questions about the mechanisms of refractionand reflection that could only be answered by under-standing the properties of light. Moreover, there wasincreasing emphasis from the mid-17th century onwardon carefully controlled experimentation, not simply ob-

PartA

1.1

Page 27: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

The Properties of Light 1.1 Introduction and Historical Sketch 5

servation. Harmonized with mathematical models, thisexperimental philosophy proved to be the way to es-tablish scientific knowledge of light on the strongestfoundation [1.6].

René Descartes and the Cartesian thinkers who fol-lowed his lead, built a science of light and optics aspart of a more general mathematical theory of physics,with his Dioptrics and the Discourses [1.7]. The Carte-sian theory is distinguished by the concept of light asa vibration in a diaphanous medium that transmits theundulations from object to eye, a tendency to motionin particles of the embedding medium. Robert Hooke,Thomas Hobbes and Christiaan Huygens were like-wise committed to vibrational theories of light. The firstexperimental evidence of what would eventually be con-vincing evidence for the wave theory of light came in1658 with the publication of Grimaldi’s first memoir ondiffraction.

Pierre Fermat (1601–1665) solved one of the prob-lems that the Dioptrics had treated badly, and did soin a way that was characteristic of what Newton wouldlater call “mathematical philosophy.” Fermat’s simpleidea was based on the rectilinear propagation of light,and the postulate that light travels less rapidly in a dense,material medium than in air. From this, he hypothesizedthat a light ray always follows that path that allows it totravel a given trajectory in the shortest time. It is possi-ble to derive Snell’s law of refraction from this principleof least time [1.8].

Fermat based his theory on the assumption that thespeed of light was finite, and that it was slower inmaterial bodies than in air or vacuum – clearly con-tradicting Descartes, who believed the speed of light tobe infinite. The Cartesian postulate was disproved whenCassini (in 1675) and Ole Römer (a year later), meas-ured the time it took light to pass across the earth’sorbit based on observation of the transit time of Jupiter:about 11 minutes. The surveyors – Cassini in Paris andJean Richer in Guyana – were measuring the Earth’sorbit. Christiaan Huygens, court astronomer to LouisXIV, proposed a figure of 12, 000 earth diameters forthe orbital diameter, and thereby arrived in his Treatiseon Light at an estimate of 2.3 × 108 m/s, within 20%of the currently accepted value and very close to thevalue calculated by Newton [1.9]. Grimaldi (1658) haddiscovered the phenomenon of diffraction, the explana-tion of which led in time to the ascendance of the wavetheory. Progress in the science of light during this pe-riod was also aided immensely by the development ofthe differential and integral calculus and by the inven-tion of high-quality clear glass for lenses, prisms and

optical instruments such as telescopes, microscopes andeventually spectrometers [1.10].

1.1.3 Newton and Huygens

The early part of the 18th century saw the rise of the twocompeting theories about the nature of light that wereto dominate the next century and a half. These are em-bodied in the lives and work of the two principals: IsaacNewton (1642–1728) and Christiaan Huygens (1629–1695).

The dispersion of light in a prism was known wellbefore the young Isaac Newton “procured . . . a prismwith which to try the celebrated phenomenon of colors.”Newton’s experimentum crucis was designed to showthat white light could be decomposed into constituentcolors that were dispersed according to a corpuscularmodel [1.11]. However, Newton’s Opticks, when pub-lished in 1710, was a curious admixture of projectile orcorpuscular ideas and crude wave theories. Newton be-lieved in the ether as a required medium to support theprojectiles, and expected that the ether would undulate aslight corpuscles passed through it. However, he was con-vinced on the basis of the corpuscular model that lighttraveled faster in material media, an assumption thatwould not be conclusively disproved until Foucault’sexperiments in 1850.

Challenges to Newton’s corpuscular theory camefrom kinematical theories that viewed light as one oranother kind of vibrational motion: a vibratory motionsupported by an ether (Hooke, 1665); or a propa-gating pulse-like disturbance in the ether (Huygens,1690) [1.12]. Leonhard Euler explained refraction at aninterface based on the vibrational theory, arguing thatdispersion resulted from a variation of vibrational mo-tion with color [1.13]. In Germany at least, Euler wasseen as the originator of a wave model that could replaceNewton’s corpuscular theory. In France, Huygens devel-oped a geometrical construction of secondary waveletsto trace the propagation of a wave in time, laying a con-ceptual foundation for early 19th-century experiments ininterference and diffraction that ultimately underminedthe corpuscular hypothesis.

1.1.4 The 19th Century:The Triumph of the Wave Picture

By the last quarter of the 18th century, it was clearthat Newton’s corpuscular theory could not match theexperimentally measured velocity of light in materials;moreover, experiments by Malus and Arago had shown

PartA

1.1

Page 28: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

6 Part A Basic Principles and Materials

that light has a new property, which came to be calledpolarization, that does not fit within the corpuscularpicture at all. The earliest systematic studies of polariza-tion phenomena associated with the propagation of lightwaves are due to Etienne Malus in 1808, in responseto a prize competition offered by the Paris Academy fora mathematical description of the phenomenon of doublerefraction in Iceland spar (calcite). Malus’s discoveriesled to the recognition that light is a transverse electro-magnetic wave, in which the electric and magnetic fieldsare perpendicular to each other and to the direction ofpropagation. Malus, using his ingenious refractometer,demonstrated in 1807 that the phenomenon of double re-fraction could be explained mathematically by Huygens’construction. Fresnel, a dozen years later, was to win theprize competition for his theory of diffraction, even an-ticipating the objection of Poisson that light diffractedaround a tiny opaque object would produce a bright spotin the middle of the geometrical shadow – to be knownafterwards as Poisson’s spot [1.4]. Moreover, increas-ingly powerful mathematical descriptions [1.14] wereapplied to the phenomena of interference and diffractionstudied experimentally by Thomas Young, the Londonpolymath, and Fresnel. It was at last becoming clearthat light constituted a qualitatively new kind of wavein which the vibrations were transverse to the directionof propagation of the light [1.15]. Indeed, the transversecharacter of the vibrations was first suggested by Youngin a letter to Arago in 1812, thus hinting that Youngwas already reinterpreting his interference experimentsin a way that differed sharply from previous thinkingbased on analogies with acoustic waves [1.16].

At virtually the same time, Biot and Savart, Ampèreand Faraday were generating the experimental under-pinnings for the eventual unification of optics and

electromagnetism. Galvani’s experiments on the stimu-lus of what was then called animal electricity had shiftedattention from electrostatics, the major preoccupation ofthe eighteenth century, to time-dependent phenomenaassociated with electricity. However, it was AlessandroVolta who successfully showed that this phenomenonwas not due to some vital magnetic force, but that it wasno different from ordinary magnetism. While electro-physiology continued to be of major interest to biologistsand students of medicine, it was thereafter studied byphysicists primarily in relation to other electromag-netic phenomena. Oersted, by showing the deflectionof a compass placed next to a current-carrying wire,demonstrated the interconnection of electrical and mag-netic phenomena. And Faraday, in 1845, showed thatthe polarization of light could be rotated by applyinga strong magnetic field to a medium through which thelight was propagating.

Thus the stage was set for the grand synthesis ofclassical electromagnetic theory. The first step was thepublication of James Clerk Maxwell’s theory of elec-tromagnetism in 1869. Maxwell’s theoretical predictionof electromagnetic radiation was verified experimen-tally by Heinrich Hertz in 1888 with the discovery ofHertzian waves in what now would be called the radio-frequency range of the spectrum. The classical theoryof the electron developed by H. A. Lorentz would bethe next step in the creation of a 19th-century theoryof everything. The only clouds on the horizon were theunsolved problems of black-body radiation and the pho-toelectric effect, problems whose solutions would leadto the development of quantum physics and the evolu-tion of a new view of light based on its dual character aswave and particle, and later of its accommodation intoa fully quantum-mechanical field theory.

1.2 Parameterization of Light

The properties of light are parameterized in similar waysin both the classical (wave) and semiclassical (photon)pictures of light. The fundamental physical properties ofan electromagnetic wave are its wavelength λ, frequencyν and polarization state; alternatively, the first two ofthese properties may be stated in the form of a wavenumber k = 2πλ and angular frequency ω= 2πν. Thephoton model associates with individual light quantaa particle-like photon energy Ephoton = ω and momen-tum pphoton = k, where h = 2π is Planck’s constant.Photons are also associated with a helicity (photon spin)of ±1 that can be related to wave polarization.

The properties of light have been defined by in-ternational commissions in four kinds of units nowin general use, depending on what properties are tobe emphasized: radiometric units, based on the phys-ical units, such as energy, and power, are used todescribe the properties of electromagnetic waves orphotons; photometric units, which refer to the prop-erties of light as discerned by the human eye; photonunits analogous to radiometric units that are normalizedto photon energy; and spectral units that parameterizelight in terms of its properties at specific frequencies orwavelength.

PartA

1.2

Page 29: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

The Properties of Light 1.2 Parameterization of Light 7

1.2.1 Spectral Regionsand Their Classification

The electromagnetic spectrum extends over an enor-mous range of frequencies and wavelengths, fromlow-frequency radio wavelength vibrations to extremelyhigh-energy, short-wavelength nuclear gamma radia-tion. Figure 1.1 shows a typical classification scheme,relating wavelengths, frequencies, wave numbers andphoton energies to the common designations of spectralregions of interest in optics, extending from the vacuumultraviolet through the far-infrared. Some of the unitsemployed match the Système International (SI) conven-tion, others are habitually used in specialized science ortechnology communities.

1.2.2 Radiometric Units

Radiometric units measure the properties of light interms of physical units of energy and power, with-out reference to wavelength, and are therefore themost fundamental of the parameters used to describelight [1.19, 20]. The fundamental radiometric units are:radiance, a vector L whose magnitude is the power pass-ing through a surface of unit area into a unit solid angleabout the normal to the surface; irradiance, again a vectorE, defined as the total power per unit spectral inter-val passing through a surface of unit area. As shownin Fig. 1.2, the magnitude of the radiance and irradi-ance depends on the shape of the surface over whichone integrates, that is, over the projected area A⊥ aswell as the solid angle dΩ into which light is emittedand the perpendicular area of the detector. The defini-tion of spectral interval is not uniform; depending onthe resolution or the parameterization desired, it mightbe given in Å, nm, cm−1 (not the same as 1/cm), orHz, as here. To convert any radiometric unit X to thecorresponding spectral radiometric unit Xν, recall thatX = Xν dν for values of the frequency lying between ν

and ν+ dν.

1.2.3 Photometric Units

Photometry refers to the measurement of light as it isperceived by the human eye; thus these units pertainprincipally to light with wavelengths of 380–760 nm. Inastronomy, photometry also refers to the measurementof apparent magnitudes of celestial objects. Since thesequantities depend on the spectral amplitude of light, itis not possible to convert photometric values directlyinto energy values. The photometric units use the same

!

" #$

%&

'

(

)'*

(

+

+

'

Fig. 1.1 Chart showing the wavelengths, frequencies, wave numbersand photon energies of electromagnetic radiation of interest in optics.(After [1.17])

terminology and symbols as the radiometric units, butwith a subscript V for visual.

The four fundamental photometric quantities, listedin Table 1.2, are: luminous intensity, the amount oflight emitted by a source; luminous flux, the quantityof light transmitted in a given direction; illuminance,the measure of light falling on a surface; and lumi-nance, which measures the brightness of a surface

, -

.

/

Fig. 1.2 Geometry used to define radiometric units of ra-diance and irradiance in terms of emitting area, detectingarea and solid angle of emission. The projected surfacearea in a given angular direction Θ is A⊥ = A cosΘ, whilethe solid angle in radiometric units is determined by theprojected detector area Ap perpendicular to the viewingdirection, dΩ = Ap/r2. (After [1.18])

PartA

1.2

Page 30: Springer Handbook of Lasers and Optics€¦ · Klaus Bonrad Schott Spezialglas AG Division Luminescence Technology Hattenbergstr. 10 55014 Mainz, ... Joachim Hein Friedrich-Schiller

8 Part A Basic Principles and Materials

Table 1.1 Radiometric units

Symbol SI unit Definition

Radiant energy Qe J = W s –

Radiant energy density we J/m−3 we = 〈dQe/dV 〉Radiant flux (power) Φe W Φe = 〈dQe/dt〉Radiant exitance Me W m−2 Me = 〈dΦe/dA〉Irradiance Ee W m−2 Ee = 〈dQe/dt〉Radiant intensity Ie W sr−1 Ie = 〈dΦe/dΩ〉Radiance Le W m −2 sr−1 Le = Ie/∆A ≡ 〈d2Φe/dΩ · dA〉

Table 1.2 Photometric units

Symbol SI unit Photometric unit Definition

Luminous energy QV J=W s lm s (talbot) —

Luminous energy density WV J / m3 lm s/m3 wV = dQV/dV

Luminous intensity IV W sr−1 lm sr−1 = candela (cd) IV = dΦV/dΩ

Luminous power ΦV W lm (lumen) ΦV = dQV/dt

Luminous exitance MV W m−2 lm m−2 MV = dΦV/dA

Illuminance EV Wsr−1 lux (lx) = lm m−2 EV = dΦV/dA

Luminance (Apostilb) LV W m−2 sr−1 asb = 1/π cd/m2 LV = d2ΦV/dA · dΩ

considered as a light source. The standard source, orinternational standard candle, is defined as the inten-sity of a black-body radiator with an area of 1/60 cm2

+

01

(

2

'

(

+

3

4

4+(+ + ++ 3 3+ 4

.

2

'

(

+

3

4

5

6

3

35

35+

'4

2+

24(

'(2

(

(5

((5

33

0

7 8 - 9 )

Fig. 1.3 The standard CIE luminous efficacy curve for the humaneye, used as the basis for converting between photometric andradiometric units

heated to the melting point of platinum. Two auxil-iary quantities, luminous energy and luminous energydensity, correspond to the analogous radiometric units.The photometric units carry a subscript V for visual, todistinguish them from their radiometric counterparts;the overbar in the table below signifies an averagedquantity.

The Commission Internationale de l’Eclairage (CIE)has developed a standard luminous efficacy curve forthe human eye, with respect to which the photomet-ric units are referred (Fig. 1.3). The lumen is definedsuch that the peak of the photopic (light-adapted) vi-sion spectrum of an average eye has a luminous efficacyof 683 lm/W.

1.2.4 Photon and Spectral Units

In the photon picture, there is a different set of descrip-tive quantities normalized to photon energy or photonnumber, as shown in Table 1.3. The overbarred quanti-ties denote an average over photon wavelengths as wellas over area and solid angle.

In some cases – for example, when discussing thespectral brightness of laser or synchrotron sources –it is useful to distinguish physical quantities by theirfrequency ν. For example, in most cases involvingspectroscopy or materials processing with lasers, the

PartA

1.2