55
Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai Mathematical Institute April 25, 2011 Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Embed Size (px)

Citation preview

Page 1: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Spin Glasses and Information Processing

Pavithran S IyerGuide: Prof. V.V Sreedhar

Chennai Mathematical Institute

April 25, 2011

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 2: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

1 Overview

2 Information TheoryCommunication problemError correcting codesShannon Heartely theorem

3 Disordered spin systemsIntroductionReason for correspondenceSpin glass physics

4 Implications of the correspondenceSK ModelREMConvolution Codes

5 Questions

6 Bibliography

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 3: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Outline

Work described - papers by N. Sourlas and a book by NishimoriLooking at:

correspondences

Error correcting code ⇔ Spin Hamiltonian

Signal to noise ⇔ J20J2

Maximum likelihood Decoding ⇔ Find a ground stateError probability per bit ⇔ Ground state magnetizationSequence of most probable symbols ⇔ magnetization at T = 1Convolutional Codes ⇔ One dimentional spin glasses

Viterbi decoding ⇔ T = 0 Transfer matrix algorithmBCJR decoding ⇔ T = 1 Transfer matrix algorithmGallager LDPC codes ⇔ Diluted p-spin ferromagnetsTurbo Codes ⇔ Coupled spin chainsZero error threshold ⇔ Phase transition pointBelief propagation algorithm ⇔ Iterative solution of TAP equations

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 4: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Outline

correspondences

Error correcting code ⇔ Spin Hamiltonian

Signal to noise ⇔ J20J2

Maximum likelihood Decoding ⇔ Find a ground stateError probability per bit ⇔ Ground state magnetizationSequence of most probable symbols ⇔ magnetization at T = 1Convolutional Codes ⇔ One dimentional spin glasses

Viterbi decoding ⇔ T = 0 Transfer matrix algorithmBCJR decoding ⇔ T = 1 Transfer matrix algorithmGallager LDPC codes ⇔ Diluted p-spin ferromagnetsTurbo Codes ⇔ Coupled spin chainsZero error threshold ⇔ Phase transition pointBelief propagation algorithm ⇔ Iterative solution of TAP equations

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 5: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Communication problem

Communication Problem

−→ usual formulation - message from Alice to Bob

Alice transmits encoded input - (gaussian) channel inflicts error - Bob tries to recoverfrom the errorStatistical formulation: Bob’s perspective - given an output, maximizes his guess ofthe input being correct. Maximizing quantity: P

(J in|Jout

)- called the posterior

probability.Maximum Aposteriori Probability or MAP decoding: compute conditional probabilitiesusing baye’s theorem, assign J in

i = 1 if P (Ji = 1|Jout) > P (−1|Jout) and J ini = −1

otherwise. Maximum information about the (Alice) input which can be transmittedacross the channel to Bob = channel capacity C.Input (signal) power S & Noise (power) = N , then

important quantities

SN

= signal to noise ratio and for a gaussian channel, channel capacity

C =1

2log2

(1 +SN

).

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 6: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Communication problem

Communication Problem

−→ usual formulation - message from Alice to Bob

Alice transmits encoded input - (gaussian) channel inflicts error - Bob tries to recoverfrom the errorStatistical formulation: Bob’s perspective - given an output, maximizes his guess ofthe input being correct. Maximizing quantity: P

(J in|Jout

)- called the posterior

probability.Maximum Aposteriori Probability or MAP decoding: compute conditional probabilitiesusing baye’s theorem, assign J in

i = 1 if P (Ji = 1|Jout) > P (−1|Jout) and J ini = −1

otherwise. Maximum information about the (Alice) input which can be transmittedacross the channel to Bob = channel capacity C.Input (signal) power S & Noise (power) = N , then

important quantities

SN

= signal to noise ratio and for a gaussian channel, channel capacity

C =1

2log2

(1 +SN

).

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 7: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Communication problem

Communication Problem

Alice transmits encoded input - (gaussian) channel inflicts error - Bob tries to recoverfrom the errorStatistical formulation: Bob’s perspective - given an output, maximizes his guess ofthe input being correct. Maximizing quantity: P

(J in|Jout

)- called the posterior

probability.Maximum Aposteriori Probability or MAP decoding: compute conditional probabilitiesusing baye’s theorem, assign J in

i = 1 if P (Ji = 1|Jout) > P (−1|Jout) and J ini = −1

otherwise. Maximum information about the (Alice) input which can be transmittedacross the channel to Bob = channel capacity C.Input (signal) power S & Noise (power) = N , then

important quantities

SN

= signal to noise ratio and for a gaussian channel, channel capacity

C =1

2log2

(1 +SN

).

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 8: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Communication problem

Communication Problem

Statistical formulation: Bob’s perspective - given an output, maximizes his guess ofthe input being correct. Maximizing quantity: P

(J in|Jout

)- called the posterior

probability.Maximum Aposteriori Probability or MAP decoding: compute conditional probabilitiesusing baye’s theorem, assign J in

i = 1 if P (Ji = 1|Jout) > P (−1|Jout) and J ini = −1

otherwise. Maximum information about the (Alice) input which can be transmittedacross the channel to Bob = channel capacity C.Input (signal) power S & Noise (power) = N , then

important quantities

SN

= signal to noise ratio and for a gaussian channel, channel capacity

C =1

2log2

(1 +SN

).

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 9: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Communication problem

Communication Problem

Statistical formulation: Bob’s perspective - given an output, maximizes his guess ofthe input being correct. Maximizing quantity: P

(J in|Jout

)- called the posterior

probability.Maximum Aposteriori Probability or MAP decoding: compute conditional probabilitiesusing baye’s theorem, assign J in

i = 1 if P (Ji = 1|Jout) > P (−1|Jout) and J ini = −1

otherwise. Maximum information about the (Alice) input which can be transmittedacross the channel to Bob = channel capacity C.Input (signal) power S & Noise (power) = N , then

important quantities

SN

= signal to noise ratio and for a gaussian channel, channel capacity

C =1

2log2

(1 +SN

).

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 10: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Error correcting codes

Error correcting code

Not all encodings can assure recovery from error - only certain codes called errorcorrecting codes.Crux: add redundant bits to input message - majority of bits are unaffected by error -original message can be retrieved.Redundancy is undesirable - slow rate of information transmission.

Rate of transmission

Rate of information =# bits for encoding (ignoring error)

# bits used for encoding with error

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 11: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Error correcting codes

Error correcting code

Not all encodings can assure recovery from error - only certain codes called errorcorrecting codes.Crux: add redundant bits to input message - majority of bits are unaffected by error -original message can be retrieved.Redundancy is undesirable - slow rate of information transmission.

Rate of transmission

Rate of information =# bits for encoding (ignoring error)

# bits used for encoding with error

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 12: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Error correcting codes

Error correcting code

Not all encodings can assure recovery from error - only certain codes called errorcorrecting codes.Crux: add redundant bits to input message - majority of bits are unaffected by error -original message can be retrieved.Redundancy is undesirable - slow rate of information transmission.

Rate of transmission

Rate of information =# bits for encoding (ignoring error)

# bits used for encoding with error

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 13: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Shannon Heartely theorem

A theorem

Aim: Maximum rate. upperbound ?

Shannon Heartely or Noisy channel coding theorem

The rate of an error correcting code cannot exceeed the channel capacity for noiselesstransmission. R ≤ C.

The aim of every ECC is to go as close to the bound. This bound is a theoreticalmaximum.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 14: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Shannon Heartely theorem

A theorem

Aim: Maximum rate. upperbound ?

Shannon Heartely or Noisy channel coding theorem

The rate of an error correcting code cannot exceeed the channel capacity for noiselesstransmission. R ≤ C.

The aim of every ECC is to go as close to the bound. This bound is a theoreticalmaximum.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 15: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Introduction

A disordered spin system

Ising model H = −J∑

i<j SiSj . For any choice of J - exactly 2 ground states.Bad information storage structures - can only store two units of information. Needplenty of ground states.Spin glass - lot of equilibrium states.

Naively: put Jij = SiSj . J - local to a pair of sites - link variable:

{+1 : Ferro

−1 : Antiferro

Finding ground states of a simple spin glass is difficult[1] - main reason - link variablesare random - frustration causing many degenerate ground states.Note: would not happen if all Jij = some constant.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 16: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Introduction

A disordered spin system

Ising model H = −J∑

i<j SiSj . For any choice of J - exactly 2 ground states.Bad information storage structures - can only store two units of information. Needplenty of ground states.Spin glass - lot of equilibrium states.

Naively: put Jij = SiSj . J - local to a pair of sites - link variable:

{+1 : Ferro

−1 : Antiferro

Finding ground states of a simple spin glass is difficult[1] - main reason - link variablesare random - frustration causing many degenerate ground states.Note: would not happen if all Jij = some constant.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 17: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Introduction

A disordered spin system

Ising model H = −J∑

i<j SiSj . For any choice of J - exactly 2 ground states.Bad information storage structures - can only store two units of information. Needplenty of ground states.Spin glass - lot of equilibrium states.

Naively: put Jij = SiSj . J - local to a pair of sites - link variable:

{+1 : Ferro

−1 : Antiferro

Finding ground states of a simple spin glass is difficult[1] - main reason - link variablesare random - frustration causing many degenerate ground states.Note: would not happen if all Jij = some constant.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 18: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Introduction

A disordered spin system

Ising model H = −J∑

i<j SiSj . For any choice of J - exactly 2 ground states.Bad information storage structures - can only store two units of information. Needplenty of ground states.Spin glass - lot of equilibrium states.

Naively: put Jij = SiSj . J - local to a pair of sites - link variable:

{+1 : Ferro

−1 : Antiferro

Finding ground states of a simple spin glass is difficult[1] - main reason - link variablesare random - frustration causing many degenerate ground states.Note: would not happen if all Jij = some constant.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 19: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Introduction

A disordered spin system

Ising model H = −J∑

i<j SiSj . For any choice of J - exactly 2 ground states.Bad information storage structures - can only store two units of information. Needplenty of ground states.Spin glass - lot of equilibrium states.

Naively: put Jij = SiSj . J - local to a pair of sites - link variable:

{+1 : Ferro

−1 : Antiferro

Finding ground states of a simple spin glass is difficult[1] - main reason - link variablesare random - frustration causing many degenerate ground states.Note: would not happen if all Jij = some constant.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 20: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Reason for correspondence

Interesting correspondance

Going back - maximizing posterior probability P(J in|Jout) - using baye’s theoremrelates it to P(Jout |J in).After some algebra, we find: P(J ij |Jout) = exp

(u∑

n Mnk1...kn

J ink1. . . J in

kn−∑

i hiJini

)→

exponent strikingly similar to the hamiltonian of a spin glass - minimize this ⇒ find aground state of the spin glasswe have a spin glass where

{J ini

}play the role of spins and Mk1...kn contain link

variables for n-spin interactions.Instead of finding ground states, demontrating encoding & decoding, we look at moresimilarities between SG physics and ECC.All the above are only for ising spins.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 21: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Reason for correspondence

Interesting correspondance

Going back - maximizing posterior probability P(J in|Jout) - using baye’s theoremrelates it to P(Jout |J in).After some algebra, we find: P(J ij |Jout) = exp

(u∑

n Mnk1...kn

J ink1. . . J in

kn−∑

i hiJini

)→

exponent strikingly similar to the hamiltonian of a spin glass - minimize this ⇒ find aground state of the spin glasswe have a spin glass where

{J ini

}play the role of spins and Mk1...kn contain link

variables for n-spin interactions.Instead of finding ground states, demontrating encoding & decoding, we look at moresimilarities between SG physics and ECC.All the above are only for ising spins.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 22: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Reason for correspondence

Interesting correspondance

Going back - maximizing posterior probability P(J in|Jout) - using baye’s theoremrelates it to P(Jout |J in).After some algebra, we find: P(J ij |Jout) = exp

(u∑

n Mnk1...kn

J ink1. . . J in

kn−∑

i hiJini

)→

exponent strikingly similar to the hamiltonian of a spin glass - minimize this ⇒ find aground state of the spin glasswe have a spin glass where

{J ini

}play the role of spins and Mk1...kn contain link

variables for n-spin interactions.Instead of finding ground states, demontrating encoding & decoding, we look at moresimilarities between SG physics and ECC.All the above are only for ising spins.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 23: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Reason for correspondence

Interesting correspondance

Going back - maximizing posterior probability P(J in|Jout) - using baye’s theoremrelates it to P(Jout |J in).After some algebra, we find: P(J ij |Jout) = exp

(u∑

n Mnk1...kn

J ink1. . . J in

kn−∑

i hiJini

)→

exponent strikingly similar to the hamiltonian of a spin glass - minimize this ⇒ find aground state of the spin glasswe have a spin glass where

{J ini

}play the role of spins and Mk1...kn contain link

variables for n-spin interactions.Instead of finding ground states, demontrating encoding & decoding, we look at moresimilarities between SG physics and ECC.All the above are only for ising spins.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 24: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Reason for correspondence

Interesting correspondance

Going back - maximizing posterior probability P(J in|Jout) - using baye’s theoremrelates it to P(Jout |J in).After some algebra, we find: P(J ij |Jout) = exp

(u∑

n Mnk1...kn

J ink1. . . J in

kn−∑

i hiJini

)→

exponent strikingly similar to the hamiltonian of a spin glass - minimize this ⇒ find aground state of the spin glasswe have a spin glass where

{J ini

}play the role of spins and Mk1...kn contain link

variables for n-spin interactions.Instead of finding ground states, demontrating encoding & decoding, we look at moresimilarities between SG physics and ECC.All the above are only for ising spins.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 25: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Spin glass physics

Physics of spin glass

Spins on a lattice - total energy invariant under local transformations

Simple example: SK model

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 26: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Spin glass physics

Physics of spin glass

Spins on a lattice - total energy invariant under local transformations

Phases: Paramagnetic, Ferromagnetic,Spin glass

Order Parameters:

Phase m q

Ferro > 0 > 0SG 0 > 0

Para 0 0

In SG phase, m = 0 - random alignmentbut q 6= 0 - key difference fromparamagnetic phase. Over large time, spinsat two lattice sites will be correlated[1].

Simple example: SK model

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 27: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Spin glass physics

Physics of spin glass

Phases: Paramagnetic, Ferromagnetic,Spin glass

Order Parameters:

Phase m q

Ferro > 0 > 0SG 0 > 0

Para 0 0

In SG phase, m = 0 - random alignmentbut q 6= 0 - key difference fromparamagnetic phase. Over large time, spinsat two lattice sites will be correlated[1].

Simple example: SK model

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 28: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Spin glass physics

Physics of spin glass

Phases: Paramagnetic, Ferromagnetic,Spin glass

Order Parameters:

Phase m q

Ferro > 0 > 0SG 0 > 0

Para 0 0

In SG phase, m = 0 - random alignmentbut q 6= 0 - key difference fromparamagnetic phase. Over large time, spinsat two lattice sites will be correlated[1].

Information cannot be encoded in paramagnetic phase - high random fluctuationsdestroy spin-spin correlation.

Simple example: SK model

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 29: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Spin glass physics

Physics of spin glass

Aim: Look at SG phase and overlap.Phase transitions in a disordered spin system - using Ginsburg Landau theory -expanding the free energy about critical points (small order parameter).

Simple example: SK model

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 30: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Spin glass physics

Physics of spin glass

Aim: Look at SG phase and overlap.

Simple example: SK model

H =∑

i<j JijSiSj . Distribution of links, Jij - given by

P(Jij) =

√N

2πJ2exp

{− N

2J2

(Jij −

J0N

)2}

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 31: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Spin glass physics

Physics of spin glass

Simple example: SK model

H =∑

i<j JijSiSj . Distribution of links, Jij - given by

P(Jij) =

√N

2πJ2exp

{− N

2J2

(Jij −

J0N

)2}

Free energy: every sample - one realization of disorder - n replicas of the system -average over all values of Jij - gaussian distribution

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 32: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Spin glass physics

Physics of spin glass

Simple example: SK model

After some algebra - free energy ≡ f (m, {qαβ},T , J, J0). Equations of state -determine value for order parameters in terms of J, J0,T .

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 33: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Spin glass physics

Physics of spin glass

Simple example: SK model

Infinite range model - H =∑

i1<i2<···<irSi1Si2 · · · Sin .

Similar calculations as SK model yield free energy & existence of spin glass phase atfull RSB.Aim is to demonstrate shannon heartely theorem - take a system for which 1RSB issufficient - calculation convenience.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 34: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Spin glass physics

Physics of spin glass

Simple example: SK model

REM

r →∞ limit of Infinite range model - probability of a state only depends on energy &independent distribution of energy states1 RSB is enough → exact calculations confirm with 1RSB results

Magnetic phases:Phases Condition

P ↔ SG Tc =J

2√

ln 2SG ↔ F j0 = J

√ln 2

P ↔ F j0 =J2

4T+ T ln 2

Calculations for overlap - M=1 inferromagnetic phase -j0/J >

√ln 2. Hence, error free

decoding.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 35: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Implications of this correspondence

Transistion from binary to ±1 since spin & link variables take ±1 values. Symbolu → (−1)u.raw input ⇔ spin orientations, code symbols ⇔ link variables in ground statesignal amplitude ⇔ J0 and noise amplitude ⇔ J.word MAP decoding ⇔ finding ground state.error probability per bit ⇔ ground state magnetization.sequence of most probable bits ⇔ magnetization at T = 1.Error free decoding ⇔ overlap: M = 1Hence we have some correspondances.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 36: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Implications of this correspondence

Transistion from binary to ±1 since spin & link variables take ±1 values. Symbolu → (−1)u.Information processing using Spin glass → raw input ⇔ spin orientations, encoded intocode symbols ⇔ link variables in ground state by introducing interactions.signal amplitude ⇔ J0 and noise amplitude ⇔ J.word MAP decoding ⇔ finding ground state.error probability per bit ⇔ ground state magnetization.sequence of most probable bits ⇔ magnetization at T = 1.Error free decoding ⇔ overlap: M = 1Hence we have some correspondances.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 37: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Implications of this correspondence

raw input ⇔ spin orientations, code symbols ⇔ link variables in ground state

signal amplitude ⇔ J0 and error operationTemp−−−→rise ?

gaussian disorder - variance of J2 -

noise amplitude ⇔ J.word MAP decoding ⇔ finding ground state.error probability per bit ⇔ ground state magnetization.sequence of most probable bits ⇔ magnetization at T = 1.Error free decoding ⇔ overlap: M = 1Hence we have some correspondances.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 38: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Implications of this correspondence

raw input ⇔ spin orientations, code symbols ⇔ link variables in ground statesignal amplitude ⇔ J0 and noise amplitude ⇔ J.State of spin glass corresponding to output has variance J2

0 + J2 in link variables.word MAP decoding ⇔ finding ground state.error probability per bit ⇔ ground state magnetization.sequence of most probable bits ⇔ magnetization at T = 1.Error free decoding ⇔ overlap: M = 1Hence we have some correspondances.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 39: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Implications of this correspondence

raw input ⇔ spin orientations, code symbols ⇔ link variables in ground statesignal amplitude ⇔ J0 and noise amplitude ⇔ J.Decoding ⇒ finding an assignment for J in which maximizes P

(J in|Jout

)- same

assigmnet would minimize − ln P(J in|Jout

)≡ H → ground state

word MAP decoding ⇔ finding ground state.error probability per bit ⇔ ground state magnetization.sequence of most probable bits ⇔ magnetization at T = 1.Error free decoding ⇔ overlap: M = 1Hence we have some correspondances.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 40: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Implications of this correspondence

raw input ⇔ spin orientations, code symbols ⇔ link variables in ground statesignal amplitude ⇔ J0 and noise amplitude ⇔ J.word MAP decoding ⇔ finding ground state.error probability per bit ⇔ ground state magnetization.sequence of most probable bits ⇔ magnetization at T = 1.Error free decoding ⇔ overlap: M = 1Hence we have some correspondances.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 41: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Implications of this correspondence

raw input ⇔ spin orientations, code symbols ⇔ link variables in ground statesignal amplitude ⇔ J0 and noise amplitude ⇔ J.word MAP decoding ⇔ finding ground state.error probability per bit ⇔ ground state magnetization.Average value of a bit at index i :

〈τi 〉P =

∑i τiP (τi |Jout)∑i P (τi |Jout)

−−−−−−−−−−−−−−−→P(τi |Jout)=e−H[Jout ,{τi}]

∑i τie

−H[Jout ,{τi}]∑i e−H[Jout ,{τi}]

. Putting ln P ∼ Z ,

we see 〈τi 〉P = magnetization with β = 1.sequence of most probable bits ⇔ magnetization at T = 1.Error free decoding ⇔ overlap: M = 1Hence we have some correspondances.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 42: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Implications of this correspondence

raw input ⇔ spin orientations, code symbols ⇔ link variables in ground statesignal amplitude ⇔ J0 and noise amplitude ⇔ J.word MAP decoding ⇔ finding ground state.error probability per bit ⇔ ground state magnetization.sequence of most probable bits ⇔ magnetization at T = 1.Measuring decoding performance: overlap: overlap of original & decoded message M.Suppose original bit: ξi & MAP decoded bit: ξ̂i = sign〈σi 〉, then:

M = Trξ∑

J P(J)ξsign〈σi 〉 ⇔ Hamming Distance =

{1 both are same

−1 when inverted.

Error free decoding ⇔ overlap: M = 1Hence we have some correspondances.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 43: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Implications of this correspondence

raw input ⇔ spin orientations, code symbols ⇔ link variables in ground statesignal amplitude ⇔ J0 and noise amplitude ⇔ J.word MAP decoding ⇔ finding ground state.error probability per bit ⇔ ground state magnetization.sequence of most probable bits ⇔ magnetization at T = 1.Error free decoding ⇔ overlap: M = 1Hence we have some correspondances.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 44: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

SK Model

SK Model

For SK Model:

Phase diagram - for the SK model.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 45: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

REM

Random Energy Model

Error free decoding in ferromagnetic phasefor T =. Rate: Totally N sites used forencoding and

(Nr

)possible sites. In the

r →∞ limit[?]: R =r !

N r−1 .

Channel Capacity: for a gaussian

channel[?] C −−−→r→∞

j20 r !

2J2N r−1 ln 2. where

we have used[?] J0 = signal amplitude, J= noise amplitude.

Shannon Heartely bound is satisfied for this encoding - interesting result !

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 46: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

REM

Random Energy Model

In the r →∞ limit[?]: R =r !

N r−1 .

Channel Capacity: for a gaussian

channel[?] C −−−→r→∞

j20 r !

2J2N r−1 ln 2. where

we have used[?] J0 = signal amplitude, J= noise amplitude.

Shannon Heartely bound is satisfied for this encoding - interesting result !

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 47: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

REM

Random Energy Model

In the r →∞ limit[?]: R =r !

N r−1 .

Channel Capacity: for a gaussian

channel[?] C −−−→r→∞

j20 r !

2J2N r−1 ln 2. where

we have used[?] J0 = signal amplitude, J= noise amplitude.

Shannon Heartely bound is satisfied for this encoding - interesting result !

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 48: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Convolution Codes

Convolution Codes

A convolution code (CC) is an ECC encoding m bit string to n-bit string with R =m

n.

Consider: CC with R =1

2, encoding:

x1i = ui + ui−1,

x2i = ui + ui−1 + ui−2

, where ui - raw input and

xi - encoded symbol1.Corresponding spin glass: → Ground state - raw input given by spins Si & encoded

bits using link variables given by J(1)i ,i−2 = SiSi−2, J

(2)i ,i−1,i−2 = SiSi−1Si−2 and

hamiltonian[?]: H = −∑

i

(J(1)i ,i−2SkSk−2 + J

(2)i ,i−1,i−2SkSk−1Sk−2

).

Convolution Codes correspond to 1D spin glasses

1All in binaryPavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 49: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Convolution Codes

Convolution Codes

A convolution code (CC) is an ECC encoding m bit string to n-bit string with R =m

n.

Consider: CC with R =1

2, encoding:

x1i = ui + ui−1,

x2i = ui + ui−1 + ui−2

, where ui - raw input and

xi - encoded symbol1.Corresponding spin glass: → Ground state - raw input given by spins Si & encoded

bits using link variables given by J(1)i ,i−2 = SiSi−2, J

(2)i ,i−1,i−2 = SiSi−1Si−2 and

hamiltonian[?]: H = −∑

i

(J(1)i ,i−2SkSk−2 + J

(2)i ,i−1,i−2SkSk−1Sk−2

).

Convolution Codes correspond to 1D spin glasses

1All in binaryPavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 50: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Convolution Codes

Convolution Codes

A convolution code (CC) is an ECC encoding m bit string to n-bit string with R =m

n.

Consider: CC with R =1

2, encoding:

x1i = ui + ui−1,

x2i = ui + ui−1 + ui−2

, where ui - raw input and

xi - encoded symbol1.Corresponding spin glass: → Ground state - raw input given by spins Si & encoded

bits using link variables given by J(1)i ,i−2 = SiSi−2, J

(2)i ,i−1,i−2 = SiSi−1Si−2 and

hamiltonian[?]: H = −∑

i

(J(1)i ,i−2SkSk−2 + J

(2)i ,i−1,i−2SkSk−1Sk−2

).

Convolution Codes correspond to 1D spin glasses

1All in binaryPavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 51: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

Convolution Codes

Convolution Codes

A convolution code (CC) is an ECC encoding m bit string to n-bit string with R =m

n.

Consider: CC with R =1

2, encoding:

x1i = ui + ui−1,

x2i = ui + ui−1 + ui−2

, where ui - raw input and

xi - encoded symbol1.Corresponding spin glass: → Ground state - raw input given by spins Si & encoded

bits using link variables given by J(1)i ,i−2 = SiSi−2, J

(2)i ,i−1,i−2 = SiSi−1Si−2 and

hamiltonian[?]: H = −∑

i

(J(1)i ,i−2SkSk−2 + J

(2)i ,i−1,i−2SkSk−1Sk−2

).

Convolution Codes correspond to 1D spin glasses

1All in binaryPavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 52: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

some (open) questions

• Measuring overlap for convolution codes - error free decoding

• r ≥ 3 models - finite range spin-spin interactions - numerical results

• finite size effects

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 53: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

References I

R.B. Ash, Information theory, Dover books on mathematics, Dover Publications,1990.

Tommaso Castellani and Andrea Cavagna, Spin-glass theory for pedestrians,Journal of Statistical Mechanics: Theory and Experiment 2005 (2005), no. 05,P05012.

S F Edwards and P W Anderson, Theory of spin glasses, Journal of Physics F:Metal Physics 5 (1975), no. 5, 965.

Francesco Zamponi, Mean field theory of spin glasses, arxiv cond-mat:1008.4844v1, ( 28 Aug, 2010), no. 5, 965.

M. Mezard, G. Parisi, and M.A. Virasoro, Spin glass theory and beyond, WorldScientific lecture notes in physics, World Scientific, 1987.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 54: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

References II

Ralf .R. Muller, The replica method, Lecture Notes for TT8107: Random MatrixTheory for Wireless Communications.

H. Nishimori, Statistical physics of spin glasses and information processing: anintroduction, International series of monographs on physics, Oxford UniversityPress, 2001.

Giorgio Parisi, On spin glass theory, Physica Scripta 1987 (1987), no. T19A, 27.

Nicolas Sourlas, Statistical mechanics and capacity-approaching error-correctingcodes, Physica A: Statistical Mechanics and its Applications 302 (2001), no. 1-4,14 – 21.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing

Page 55: Spin Glasses and Information Processingpavithra/pavithranHomepage/Notes_Pavithran_S_Iyer... · Spin Glasses and Information Processing Pavithran S Iyer Guide: Prof. V.V Sreedhar Chennai

Outline Overview Information Theory Disordered spin systems Implications of the correspondence Questions Bibliography

My sincere thanks to

Prof. V.V. Sreedhar for helping me through the long calculations.

Nana Siddharth for taking time to help me with mathematica.

... and my friends for thier help and support.

Pavithran S Iyer Guide: Prof. V.V Sreedhar Spin Glasses and Information Processing