14
P460 - Spin 1 Spin and Magnetic Moments Orbital and intrinsic (spin) angular momentum produce magnetic moments coupling between moments shift atomic energies · Look first at orbital (think of current in a loop) · the “g-factor” is 1 for orbital moments. The Bohr magneton is introduced as natural unit and the “-” sign is due to the electron’s charge L g L mvr L but r area current A I b l l m q r qv 2 2 2 e b m e 2 l b l zl b l l m g l l g l l L ) 1 ( ) 1 ( 2

Spin and Magnetic Moments

Embed Size (px)

DESCRIPTION

Spin and Magnetic Moments. Orbital and intrinsic (spin) angular momentum produce magnetic moments coupling between moments shift atomic energies Look first at orbital (think of current in a loop) - PowerPoint PPT Presentation

Citation preview

Page 1: Spin and Magnetic Moments

P460 - Spin 1

Spin and Magnetic Moments

• Orbital and intrinsic (spin) angular momentum

produce magnetic moments

• coupling between moments shift atomic energies

· Look first at orbital (think of current in a loop)

· the “g-factor” is 1 for orbital moments. The Bohr

magneton is introduced as natural unit and the “-”

sign is due to the electron’s charge

LgL

mvrLbutr

areacurrentAI

b

llmq

rqv

2

22

eb m

e

2

lblzlbll mgllg

llL

)1(

)1(2

Page 2: Spin and Magnetic Moments

P460 - Spin 2

Spin • Particles have an intrinsic angular momentum - called spin

though nothing is “spinning”

• probably a more fundamental quantity than mass

• integer spin --> Bosons half-integer--> Fermions

Spin particle postulated particle

0 pion Higgs, selectron

1/2 electron photino (neutralino)

1 photon

3/2 delta

2 graviton

• relativistic QM uses Klein-Gordon and Dirac equations for spin

0 and 1/2.

• Solve by substituting operators for E,p. The Dirac equation

ends up with magnetic moment terms and an extra degree of

freedom (the spin)

22222 :: mpEDmpEKG

Page 3: Spin and Magnetic Moments

P460 - Spin 3

Spin 1/2 expectation values • similar eigenvalues as orbital angular momentum (but SU(2))

• Dirac equation gives g-factor of 2

• non-diagonal components (x,y) aren’t zero. Just

indeterminate. Can sometimes use Pauli spin matrices to

make calculations easier

• with two eigenstates (eigenspinors)

200232.2

,,

||...||,)1(

21

212

432

23

212

21

22

sSg

s

z

z

g

SSSfor

ssSssS

bs

0

0

01

10

10

01

10

012224

32 2

i

iSSSS yxz

2

2

1

0

0

1

eigenvalueS

eigenvalueS

z

z

Page 4: Spin and Magnetic Moments

P460 - Spin 4

Zeeman Effect • Angular momentum->magnetic moment->energy shifts

• additional terms in S.E. do spin-orbit later. Right now

assume atom in external magnetic field

• look at ground state of H. L=0, S=1/2

dVEVwithVEE

shiftonperturbatiBE

nBnnnnn

B

*

2

21*

BgV

dVSdiagonalS

BSg

BSg

E

bSnn

zZ

Zbsbs

B

Page 5: Spin and Magnetic Moments

P460 - Spin 5

Spin 1/2 expectation values • Let’s assume state in a combination of spin-up and spin-down

states (it isn’t polarized).

• Can calculate some expectation values. Griffiths Ex. 4.2. Z-

component

• x-component

• as normalized, by inspection

1|||| 22

bawithb

aba

322

2

642

2622

2

61

)(

2

1

baS

bSaS

ilet

z

zz

361

2**

2

2

2**

)1(22)1()(

0

0

iiabba

b

abaSS x

tx

31

21

61

65

61

2

65

2

)()(

)(

x

x

Syprobabilit

Syprobabilit

Page 6: Spin and Magnetic Moments

P460 - Spin 6

• Griffiths Prob. 4.28. For the most general normalized spinor

find expectation values:

• just did x and z

• repeat for other

• note x and y component will have non-zero “width” for their

distributions as not diagonalized

222 ,,,,,, zyxzyx SSSSSSfindba

)(0

0

)(10

01

**2

2

2**

**2

**

abbab

abaS

bbaab

abaS

x

z

2

31222

4**

4**

42

**2

2

2**

222

)(01

10

01

10

)(0

0

SSSS

bbaab

abaS

baabb

abaS

zyx

x

ii

i

y

Page 7: Spin and Magnetic Moments

P460 - Spin 7

• Can look at the widths of spin terms if in a given eigenstate

• z picked as diagonal and so

• for off-diagonal

0)11()(

0

1

10

01

10

0101

4

222

442

2

22

zzz

z

SSS

S

Widths

0

1

4

222

442

2

2

2

22

)(

0

1

01

10

01

1001

00

1

0

001

xxx

x

x

SSS

S

S

Page 8: Spin and Magnetic Moments

P460 - Spin 8

• Assume in a given eigenstate

• the direction of the total spin can’t be in the same direction as the z-component

(also true for l>0)

• Example: external magnetic field. Added energy

puts electron in the +state. There is now a torque

which causes a precession about the “z-axis” (defined by the magnetic field)

with Larmor frequency of

Components, directions, precession

0

1

31

232

2

cos

S

S z BS

BE s

BSB bsgs

Bg bs

z

Page 9: Spin and Magnetic Moments

P460 - Spin 9

• Griffiths does a nice derivation of Larmor precession but at the 560 level

• to understand need to solve problem 4.30.

• Construct the matrix representing the component of spin angular

momentum along an arbitrary radial direction r. Find the eigenvalues and

eigenspinors.

• Put components into Pauli spin matrices

• and solve for its eigenvalues

Angles

kjir ˆcosˆsinsinˆcossinˆ

cossinsincossin

sinsincossincos

i

iSr

10|| ISSr

Page 10: Spin and Magnetic Moments

P460 - Spin 10

• Go ahead and solve for eigenspinors.

• Phi phase is arbitrary. gives

• if r in z,x,y-directions

kjir ˆcosˆsinsinˆcossinˆ

cossinsincossin

sinsincossincos

i

iSr

)tan(cos

sin

sin

)cos1(

)sin(cossincos

1

2sincos1

2

2

useeae

ab

aiba

b

aforS

ii

r

2

2

2

2

cos

sin1

sin

cos

i

ri

r efor

e

21

2

2

21

22

21

21

212

1

2

,,:

,0,:

1

0,

0

10:

i

iy

x

z

Page 11: Spin and Magnetic Moments

P460 - Spin 11

Combining Angular Momentum • If have two or more angular momentum, the

combination is also eigenstate(s) of angular momentum. Group theory gives the rules:

• representations of angular momentum have 2 quantum numbers:

• combining angular momentum A+B+C…gives new states G+H+I….each of which satisfies “2 quantum number and number of states” rules

• trivial example. Let J= total angular momentm

stateslllllm

l

12,1...1,

......,1,,0 23

21

221sinsin

,,0 21

21

21

gletdoubletglet

JJSLif

SSLLSLJ

z

ii

Page 12: Spin and Magnetic Moments

P460 - Spin 12

Combining Angular Momentum • Non-trivial example.

• Get maximum J by maximum of L+S. Then all possible combinations of J (going down by 1) to get to minimum value |L-S|

• number of states when combined equals number in each state “times” each other

• the final states will be combinations of initial states. The “coefficiants” (how they are made from the initial states) can be fairly easily determined using group theory (and step-up and step-down operaters). Called Clebsch-Gordon coefficients

2423

,,,

1,0,1,1

21

21

21

23

23

21

21

doubletquartetdoublettriplet

JJANDJJ

SLwithSLif

zz

zz

Page 13: Spin and Magnetic Moments

P460 - Spin 13

• Same example.

• Example of how states “add”:

• Note Clebsch-Gordon coefficients

23

23

21

21

23

21

21

21

23

21

21

21

23

21

21

21

23

21

21

23

23

21

21

1

0

1

1

0

1

JJJSL zzz

21

31

21

32

21

21

21

32

21

31

21

23

, 0 , 1

,

, 0 , 1

,

z z z z

z

z z z z

z

S L S L

J J

S L S L

J J

3

2,

3

1

2 terms

Page 14: Spin and Magnetic Moments

P460 - Spin 14

• Clebsch-Gordon coefficients for different J,L,S