33
DSP First, 2/e Lecture 7C Fourier Series Examples: Common Periodic Signals

SPFirst Lecture #7 - Georgia Institute of Technologydspfirst.gatech.edu/archives/lectures/DSP… · PPT file · Web view · 2016-08-17LECTURE OBJECTIVES. Use the Fourier Series

Embed Size (px)

Citation preview

DSP First, 2/e

Lecture 7CFourier Series Examples: Common Periodic Signals

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 3

READING ASSIGNMENTS This Lecture:

Appendix C, Section C-2 Various Fourier Series

Pulse Waves Triangular Wave Rectified Sinusoids (also in Ch. 3, Sect. 3-5)

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES Use the Fourier Series Integral

Derive Fourier Series coeffs for common periodic signals

Draw spectrum from the Fourier Series coeffs ak is Complex Amplitude for k-th Harmonic

0

0

0

0

)/2(1 )(T

dtetxa tTkjTk

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 5

Harmonic Signal is Periodic

tFkj

kkeatx 02)(

0

00

001or22F

TT

F

Sums of Harmonic complex exponentials are Periodic signals

PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 6

Recall FWRS12

101 is Period)/2sin()( TTTttx

Absolute value flips thenegative lobes of a sine wave

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 7

FWRS Fourier Integral {ak}

0

0

0

)/2(

0

)(1 TktTj

k dtetxT

a

)14(2

2

)sin(

2

0))12)(/((2

)12)(/(

0))12)(/((2

)12)(/(

0

)/2()/()/(

1

0

)/2(1

0

00

00

00

0

0

000

0

0

0

00

ka

ee

dtejee

dteta

k

T

kTjTj

tkTjT

kTjTj

tkTj

TktTj

tTjtTj

T

TktTj

TTk

Full-Wave Rectified Sine

)/sin()(

:

)/2sin()(

0

121

0

1

Tttx

TTPeriod

Tttx

FWRS Fourier Coeffs: ak

ak is a function of k Complex Amplitude for k-th Harmonic

Does not depend on the period, T0

DC value is Aug 2016 © 2003-2016, JH McClellan & RW Schafer 8

)14(22

kak

6336.0/20 a

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 9

Spectrum from Fourier SeriesPlot a for Full-Wave Rectified Sinusoid

0000 2and/1 FTF

)14(22

kak

ka

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 10

Fourier Series Synthesis HOW do you APPROXIMATE x(t) ?

Use FINITE number of coefficients

0

0

0

0

)/2(1 )(T

tkTjTk dtetxa

real is )( when* txaa kk

tFkjN

Nkkeatx 02)(

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 11

Reconstruct From Finite Number of Harmonic ComponentsFull-Wave Rectified Sinusoid

Hz100ms10

0

0

F

T

)/sin()( 0Tttx

6336.0/20 a)14(

22

kak

N

k

tFkjk

tFkjkN eaeaatx

1

220

00)(

?)/sin()( to)( is closeHow 0TttxtxN

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 12

Full-Wave Rectified Sine {ak}

Plots for N=4 and N=9 are shown next Excellent Approximation for N=9

)cos(...)2cos()cos(...

...

)(

valuedreal is)14(

2

0)14(4

0154

0342

215

2215

232

322

2)116(

22)116(

2)14(

2)14(

22

)14(2

2)14(2

2

0000

0000

02

2

tNtteeee

eeee

etx

ka

N

tjtjtjtj

tjtjtjtj

N

Nk

tjkkN

kk

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 13

Reconstruct From Finite Number of Spectrum ComponentsFull-Wave Rectified Sinusoid )/sin()( 0Tttx

Hz100ms10

0

0

F

T

6336.0/20 a

)14(22

kak

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 14

Fourier Series Synthesis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 15

PULSE WAVE SIGNALGENERAL FORM

Defined over one period

2/2/0

2/01)(

0Ttt

tx

Nonzero DC value

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 16

Pulse Wave {ak}

kTkee

eee

dtea

kj

kTjkTj

kj

kTjkTj

kTj

ktTj

T

ktTjTk

)/sin(

)(

1

0)2(

)()/()()/(

)2(

)2/()/2()2/()/2(2/

2/)/2(

)/2(1

2/

2/

)/2(1

00

00

0

0

0

0

0

General PulseWave

2/2/0

2/01)(

0Ttt

tx

2/

2/

))(/2(10

0

0

0)(

T

T

tkTjTk dtetxa

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 17

Pulse Wave {ak} = sinc

000

0

0

221

2/

2/

1

2/

2/

)0)(/2(10

1

1

TTT

tTjT

dt

dtea

PulseWave

,...2,1,0)/sin( 0 kkTkak

0

0

0

)/sin(lim Note,Tk

Tkk

Double check the DC coefficient:

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 18

PULSE WAVE SPECTRA2/0T

4/0T

16/0T

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 19

50% duty-cycle (Square) Wave

Thus, ak=0 when k is odd Phase is zero because x(t) is centered at t=0

different from a previous case

0

,4,20

,3,11

2)1(1

001

)(

210 k

k

kkj

kja

Ttt

txk

k

,...2,1,0)2/sin()/)2/(sin(2/ 000 k

kk

kTTkaT k

PulseWave starting at t=0

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 20

PULSE WAVE SYNTHESISwith first 5 Harmonics

2/0T

4/0T

16/0T

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 21

Triangular Wave: Time Domain

Defined over one period

2/2/for/2)( 000 TtTTttx

Nonzero DC value

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 22

Triangular Wave {ak}

2/

2/

)/2(

0

0

0

0)(1 T

T

ktTjk dtetxT

a

22

0

000022

02

022

022

0

00002

0

0

220

002

0

0

220

002

0

0

02

0

0

02

0

0

0

0

12/2/12112/2/2

0

2/

122/

0

12

0

2/

22/

0

2

2/

2/

)/2(0

0

)(

|/2|1

kkTjTkj

kTkkkTjTkj

T

Tkktjtkj

T

T

kktjtkj

Tk

T

ktjT

Tktj

T

T

T

ktTjk

ee

eea

dtetdtet

dteTtT

a

Triangular Wave

0/2)( Tttx

00 /2 T

220

000 1 integral indefinite theusekktjtkjktj edtet

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 23

Triangular Wave {ak}

0,...3,10,...4,2

21

1

)1(1

)1(4111)1(21

12124

12/2/12112/2/2

22

2222

220

20

22220

20

220

20

20

22

220

20

220

20

220

20

220

000022

02

022

022

0

00002

0

kkk

ee

eea

k

kk

kTkkTkj

kTkj

Tk

kkjkj

Tkkjkj

TkT

kkTjTkj

kTkkkTjTkj

Tk

k

kk

220

20

14

00 2

T

T

212/

0 0

0

Period

AreaDC

TTa

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 24

Triangular Wave {ak}

Spectrum, assuming 50 Hz is the fundamental frequency

0,...3,10,...4,2

21

122

kkk

ak

k

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 25

Triangular Wave Synthesis

Hz50ms20

0

0

F

T

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 26

Full-Wave Rectified Sine {ak}

0

0

0

)/2(

0

)(1 TktTj

k dtetxT

a

0

00

00

00

0

0

0

0

0

0

0

0

000

0

0

0

00

0))12)(/((2

)12)(/(

0))12)(/((2

)12)(/(

0

)12)(/(21

0

)12)(/(21

0

)/2()/()/(

1

0

)/2(1

2

)sin(

T

kTjTj

tkTjT

kTjTj

tkTj

TtkTj

Tj

TtkTj

Tj

TktTj

tTjtTj

T

TktTj

TTk

ee

dtedte

dtejee

dteta

Full-Wave Rectified Sine

121

0

1

:

)/2sin()(

TTPeriod

Tttx

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 27

)14(

21)1(

11

11

22

)14()12(12

)12()12(

1)12()12(

1

)12)(/()12(2

1)12)(/()12(2

1

0))12)(/((2

)12)(/(

0))12)(/((2

)12)(/(

2

0000

0

00

00

00

0

k

ee

ee

eea

kkkk

kjk

kjk

TkTjk

TkTjk

T

kTjTj

tkTjT

kTjTj

tkTj

k

Full-Wave Rectified Sine {ak}

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 28

Half-Wave Rectified Sine

Signal is positive half cycles of sine wave HWRS = Half-Wave Recitified Sine

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 29

Half-Wave Rectified Sine {ak})1()(1 0

0

0

)/2(

0

kdtetxT

aT ktTj

k

2/

0))1)(/2((2

)1)(/2(2/

0))1)(/2((2

)1)(/2(

2/

0

)1)(/2(21

2/

0

)1)(/2(21

2/

0

)/2()/2()/2(

1

2/

0

)/2(21

0

00

00

00

0

0

0

0

0

0

0

0

000

0

00

00

2

)sin(

T

kTjTj

tkTjT

kTjTj

tkTj

TtkTj

Tj

TtkTj

Tj

TktTj

tTjtTj

T

T ktTjTTk

ee

dtedte

dtejee

dteta

Half-Wave Rectified Sine

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 30

even 1?

odd 01)1(

11

11

)1(1

)1(4)1(1

)1()1(4

1)1()1(4

1

2/)1)(/2()1(4

12/)1)(/2()1(4

1

2/

0))1)(/2((2

)1)(/2(2/

0))1)(/2((2

)1)(/2(

2

2

0000

0

00

00

00

0

kkk

ee

ee

eea

k

kkkk

kjk

kjk

TkTjk

TkTjk

T

kTjTj

tkTjT

kTjTj

tkTj

k

Half-Wave Rectified Sine {ak}

41j

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 31

Half-Wave Rectified Sine {ak}

Spectrum, assuming 50 Hz is the fundamental frequency

even

1odd 0

)1(14

2 kkk

a

k

jk

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 32

HWRS Synthesis

Hz50ms20

0

0

F

T

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 33

Fourier Series Demo MATLAB GUI: fseriesdemo

Shows the convergence with more terms One of the demos in: http://dspfirst.gatech.edu/matlab/

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 34

fseriesdemo GUI