107
Speech Processing Speech Coding

Speech Processing

  • Upload
    kaelem

  • View
    82

  • Download
    5

Embed Size (px)

DESCRIPTION

Speech Processing. Speech Coding. Speech Coding. Definition: Speech Coding is a process that leads to the representation of analog waveforms with sequences of binary digits . - PowerPoint PPT Presentation

Citation preview

  • Speech ProcessingSpeech Coding

    Veton Kpuska

  • *Veton Kpuska*Speech CodingDefinition:Speech Coding is a process that leads to the representation of analog waveforms with sequences of binary digits.Even though availability of high-bandwidth communication channels has increased, speech coding for bit reduction has retained its importance.Reduced bit-rates transmissions required for cellular networksVoice over IPCoded speech Is less sensitive than analog signals to transmission noiseEasier to: protect against (bit) errorsEncryptMultiplex, andPacketizeTypical Scenario depicted in next slide (Figure 12.1)

    Veton Kpuska

  • *Veton Kpuska*Digital Telephone Communication System

    Veton Kpuska

  • *Veton Kpuska*Categorization of Speech CodersWaveform Coders:Used to quantize speech samples directly and operate at high-bit rates in the range of 16-64 kbps (bps - bits per second)Hybrid CodersAre partially waveform coders and partly speech model-based coders and operate in the mid bit rate range of 2.4-16 kbps.VocodersLargely model-based and operate at a low bit rate range of 1.2-4.8 kbps.Tend to be of lower quality than waveform and hybrid coders.

    Veton Kpuska

  • *Veton Kpuska*Quality MeasurementsQuality of coding can is viewed as the closeness of the processed speech to the original speech or some other desired speech waveform.NaturalnessDegree of background artifactsIntelligibilitySpeaker identifiabilityEtc.

    Veton Kpuska

  • *Veton Kpuska*Quality MeasurementsSubjective Measurement:Diagnostic Rhyme Test (DRT) measures intelligibility.Diagnostic Acceptability Measure and Mean Opinion Score (MOS) test provide a more complete quality judgment.Objective Measurement:Segmental Signal to Noise Ratio (SNR) average SNR over a short-time segmentsArticulation Index relies on an average SNR across frequency bands.

    Veton Kpuska

  • *Veton Kpuska*Quality MeasurementsA more complete list and definition of subjective and objective measures can be found at:J.R. Deller, J.G. Proakis, and J.H.I Hansen, Discrete-Time Processing of Speech, Macmillan Publishing Co., New York, NY, 1993S.R. Quackenbush, T.P. Barnwell, and M.A. Clements, Objective Measures of Speech Quality. Prentice Hall, Englewood Cliffs, NJ. 1988

    Veton Kpuska

  • Statistical Models

    Veton Kpuska

  • *Veton Kpuska*Statistical ModelsSpeech waveform is viewed as a random process.Various estimates are important from this statistical perspective:Probability DensityMean, Variance and Autocorrelation

    One approach to estimate a probability density function (pdf) of x[n] is through histogram.Count up the number of occurrences of the value of each speech sample in different ranges: for many speech samples over a long time duration.Normalize the area of the resulting curve to unity.

    Veton Kpuska

  • *Veton Kpuska*Statistical ModelsThe histogram of speech (Davenport, Paez & Glisson) was shown to approximate a gamma density: where x is the standard deviation of the pdf.Simpler approximation is given by the Laplacian pdf of the form:

    Veton Kpuska

  • *Veton Kpuska*PDF of Speech

    Veton Kpuska

  • *Veton Kpuska*PDF of Modeled Speech

    Veton Kpuska

  • *Veton Kpuska*PDF of SpeechKnowing pdf of speech is essential in order to optimize the quantization process of analog/continous valued samples.

    Veton Kpuska

  • Quantization of Speech & Audio SignalsScalar QuantizationVector Quantization

    Veton Kpuska

  • *Veton Kpuska*Time Quantization (Sampling) of Analog SignalsAnalog-to-Digital Conversion. Continuous Signal x(t). Sampled signal with sampling period T satisfying Nyquist rate as specified by Sampling Theorem. Digital sequence obtained after sampling and quantization x[n]

    Veton Kpuska

  • *Veton Kpuska*ExampleAssume that the input continuous-time signal is pure periodic signal represented by the following expression:

    where A is amplitude of the signal, 0 is angular frequency in radians per second (rad/sec), is phase in radians, and f0 is frequency in cycles per second measured in Hertz (Hz).

    Assuming that the continuous-time signal x(t) is sampled every T seconds or alternatively with the sampling rate of fs=1/T, the discrete-time signal x[n] representation obtained by t=nT will be:

    Veton Kpuska

  • *Veton Kpuska*Example (cont.)Alternative representation of x[n]:

    reveals additional properties of the discrete-time signal.

    The F0= f0/fs defines normalized frequency, and 0 digital frequency is defined in terms of normalized frequency:

    Veton Kpuska

  • *Veton Kpuska*Reconstruction of Digital SignalsDigital-to-Analog Conversion. Processed digital signal y[n]. Continuous signal representation ya(nT). Low-pass filtered continuous signal y(t).

    Veton Kpuska

  • Scalar Quantization

    Veton Kpuska

  • *Veton Kpuska*Conceptual Representation of ADC This conceptual abstraction allows us to assume that the sequence is obtained with infinite precession. Those values are scalar quantized to a set of finite precision amplitudes denoted here by . Furthermore, quantization allows that this finite-precision set of amplitudes to be represented by corresponding set of (bit) patterns or symbols, . x(t)

    C/DQuantizer Coder

    Veton Kpuska

  • Without loss of generality, it can be assumed that Input signals cover finite range of values defined by minimal, xmin and maximal values xmax respectively. This assumption in turn implies that The set of symbols representing is finite.

    Encoding:The process of representing finite set of values to a finite set of symbols is know as encoding; performed by the coder, as in Figure in previous slide. Mapping: Thus one can view quantization and coding as a mapping of infinite precision value of to a finite precision representation picked from a finite set of symbols.

    *Veton Kpuska*

    Veton Kpuska

  • *Veton Kpuska*Scalar QuantizationQuantization, therefore, is a mapping of a value x[n], xmin x xmax, to. The quantizer operator, denoted by Q(x), is defined by:

    where denotes one of L possible quantization levels where 1 i L and xi represents one of L +1 decision levels.

    The above expression is interpreted as follows; If , then x[n] is quantized to the quantization level and is considered quantized sample of x[n]. Clearly from the limited range of input values and finite number of symbols it follows that quantization is characterized by its quantization step size i defined by the difference of two consecutive decision levels:

    Veton Kpuska

  • *Veton Kpuska*Scalar QuantizationAssume that a sequence x[n] was obtained from speech waveform that has been lowpass-filtered and sampled at a suitable rate with infinite amplitude precision.x[n] samples are quantized to a finite set of amplitudes denoted by .Associated with the quantizer is a quantization step size.Quantization allows the amplitudes to be represented by finite set of bit patterns symbols.Encoding:Mapping of to a finite set of symbols.This mapping yields a sequence of codewords denoted by c[n] (Figure 12.3a in the next slide).Decoding Inverse process whereby transmitted sequence of codewords c[n] is transformed back to a sequence of quantized samples (Figure 12.3b in the next slide).

    Veton Kpuska

  • *Veton Kpuska*Scalar Quantization

    Veton Kpuska

  • *Veton Kpuska*FundamentalsAssume a signal amplitude is quantized into M levels.Quantizer operator is denoted by Q(x); Thus

    Where denotes L possible reconstruction levels quantization levels, and1i Lxi denotes L +1 possible decision levels with 0i LIf xi-1< x[n] < xi, then x[n] is quantized to the reconstruction level is quantized sample of x[n].

    Veton Kpuska

  • *Veton Kpuska*FundamentalsScalar Quantization Example:Assume there L=4 reconstruction levels.Amplitude of the input signal x[n] falls in the range of [0,1]Decision levels and Reconstruction levels are equally spaced:Decision levels are [0,1/4,1/2,3/4,1]Reconstruction levels assumed to be [0,1/8,3/8,5/8,7/8]Figure 12.4 in the next slide.

    Veton Kpuska

  • *Veton Kpuska*Example of Uniform 2-bit Quantizer

    Veton Kpuska

  • *Veton Kpuska*ExampleAssume there are L = 24 = 16 reconstruction levels. Assuming that input values fall within the range [xmin=-1, xmax=1] and that the each value in this range is equally likely. Decision levels and reconstruction levels are equally spaced; =i,= (xmax- xmin)/L i=0, , L-1.,

    Decision Levels:

    Reconstruction Levels:

    Veton Kpuska

  • *Veton Kpuska*16-4bit Level Quantization Example

    Veton Kpuska

  • *Veton Kpuska*Uniform QuantizerA uniform quantizer is one whose decision and reconstruction levels are uniformly spaced. Specifically:

    is the step size equal to the spacing between two consecutive decision levels which is the same spacing between two consecutive reconstruction levels.Each reconstruction level is attached a symbol the codeword. Binary numbers typically used to represent the quantized samples (as in Figure 12.4 in previous slide).

    Veton Kpuska

  • *Veton Kpuska*Uniform QuantizerCodebook: Collection of codewords.In general with B-bit binary codebook there are 2B different quantization (or reconstruction) levels.Bit rate is defined as the number of bits B per sample multiplied by sample rate fs:I=Bfs

    Decoder inverts the coder operation taking the codeword back to a quantized amplitude value (e.g., 01 ).

    Often the goal of speech coding/decoding is to maintain the bit rate as low as possible while maintaining a required level of quality.Because sampling rate is fixed for most applications this goal implies that the bit rate be reduced by decreasing the number of bits per sample

    Veton Kpuska

  • *Veton Kpuska*Uniform QuantizerDesigning a uniform scalar quantizer requires knowledge of the maximum value of the sequence.Typically the range of the speech signal is expressed in terms of the standard deviation of the signal.Specifically, it is often assumed that: -4xx[n]4x where x is signals standard deviation.Under the assumption that speech samples obey Laplacian pdf there are approximately 0.35% of speech samples fall outside of the range: -4xx[n]4x.Assume B-bit binary codebook 2B. Maximum signal value xmax = 4x.

    Veton Kpuska

  • *Veton Kpuska*Uniform QuantizerFor the uniform quantization step size we get:

    Quantization step size relates directly to the notion of quantization noise.

    Veton Kpuska

  • *Veton Kpuska*Quantization NoiseTwo classes of quantization noise:Granular DistortionOverload DistortionGranular Distortion

    x[n] un-quantized signal and e[n] is the quantization noise.For given step size the magnitude of the quantization noise e[n] can be no greater than /2, that is:

    Figure 12.5 depicts this property were:

    Veton Kpuska

  • *Veton Kpuska*Quantization Noise

    Veton Kpuska

  • *Veton Kpuska*ExampleFor the periodic sine-wave signal use 3-bit and 8-bit quantizer values. The input periodic signal is given with the following expression:

    MATLAB fix function is used to simulate quantization. The following figure depicts the result of the analysis.

    Veton Kpuska

  • *Veton Kpuska*L=23=8 & 28= 256 Levels Quantization Plot a) represents sequence x[n] with infinite precision, b) represents quantized version L=8, c) represents quantization error e[n] for B=3 bits (L=8 quantization levels), and d) is quantization error for B=8 bits (L=256 quantization levels).

    Veton Kpuska

  • *Veton Kpuska*Quantization NoiseOverload DistortionMaximum-value constant:xmax = 4x (4xx[n]4x)For Laplacian pdf, 0.35% of the speech samples fall outside the range of the quantizer.Clipped samples incur a quantization error in excess of /2.Due to the small number of clipped samples it is common to neglect the infrequent large errors in theoretical calculations.

    Veton Kpuska

  • *Veton Kpuska*Quantization NoiseStatistical Model of Quantization NoiseDesired approach in analyzing the quantization error in numerous applications.Quantization error is considered an ergodic white-noise random process.The autocorrelation function of such a process is expressed as:

    Veton Kpuska

  • *Veton Kpuska*Quantization ErrorPrevious expression states that the process is uncorrelated.Furthermore, it is also assumed that the quantization noise and the input signal are uncorrelated, i.e.,E(x[n]e[n+m])=0, m.Final assumption is that the pdf of the quantization noise is uniform over the quantization interval:

    Veton Kpuska

  • *Veton Kpuska*Quantization ErrorStated assumptions are not always valid.Consider a slowly varying linearly varying signal then e[n] is also changing linearly and is signal dependent (see Figure in the next slide).Correlated quantization noise can be annoying.When quantization step is small then assumptions for the noise being uncorrelated with itself and the signal are roughly valid when the signal fluctuates rapidly among all quantization levels.Quantization error approaches a white-noise process with an impulsive autocorrelation and flat spectrum.

    One can force e[n] to be white-noise and uncorrelated with x[n] by adding white-noise to x[n] prior to quantization.

    Veton Kpuska

  • *Veton Kpuska*Example of Quantization Error due to CorrelationExample of slowly varying signal that causes quantization error to be correlated. Plot represents sequence x[n] with infinite precision, represents quantized version , represents quantization error e[n] for B=3 bits (L=9 quantization levels), and is quantization error for B=8 bits (L=256 quantization levels). Note reduction in correlation level with increase of number of quantization levels which implies degrease of step size .

    Veton Kpuska

  • *Veton Kpuska*Quantization ErrorProcess of adding white noise is known as Dithering.This decorrelation technique was shown to be useful not only in improving the perceptual quality of the quantization noise but also with image signals.Signal-to-Noise RatioA measure to quantify severity of the quantization noise.Relates the strength of the signal to the strength of the quantization noise.

    Veton Kpuska

  • *Veton Kpuska*Quantization ErrorSNR is defined as:

    Given assumptions forQuantizer range: 2xmax, andQuantization interval: = 2xmax/2B, for a B-bit quantizerUniform pdf, it can be shown that:

    Veton Kpuska

  • *Veton Kpuska*Quantization ErrorThus SNR can be expressed as:

    Or in decibels (dB) as:

    Because xmax = 4x, thenSNR(dB)6B-7.2

    Veton Kpuska

  • *Veton Kpuska*Quantization ErrorPresented quantization scheme is called pulse code modulation (PCM).B-bits per sample are transmitted as a codeword.Advantages of this scheme: It is instantaneous (no coding delay)Independent of the signal content (voice, music, etc.)Disadvantages:It requires minimum of 11 bits per sample to achieve toll quality (equivalent to a typical telephone quality) For 10,000 Hz sampling rate, the required bit rate is: B=(11 bits/sample)x(10000 samples/sec)=110,000 bps=110 kbpsFor CD quality signal with sample rate of 20,000 Hz and 16-bits/sample, SNR(dB) =96-7.2=88.8 dB and bit rate of 320 kbps.

    Veton Kpuska

  • *Veton Kpuska*Nonuniform QuantizationUniform quantization may not be optimal (SNR can not be as small as possible for certain number of decision and reconstruction levels)Consider for example speech signal for which x[n] is much more likely to be in one particular region than in other (low values occurring much more often than the high values).This implies that decision and reconstruction levels are not being utilized effectively with uniform intervals over xmax.A Nonuniform quantization that is optimal (in a least-squared error sense) for a particular pdf is referred to as the Max quantizer.Example of a nonuniform quantizer is given in the figure in the next slide.

    Veton Kpuska

  • *Veton Kpuska*Nonuniform Quantization

    Veton Kpuska

  • *Veton Kpuska*Nonuniform QuantizationMax QuantizerProblem Definition: For a random variable x with a known pdf, find the set of M quantizer levels that minimizes the quantization error.Therefore, finding the decision and boundary levels xi and xi, respectively, that minimizes the mean-squared error (MSE) distortion measure:D=E[(x-x)2]E-denotes expected value and x is the quantized version of x.

    It turns out that optimal decision level xk is given by: ^^^

    Veton Kpuska

  • *Veton Kpuska*Nonuniform QuantizationMax Quantizer (cont.)The optimal reconstruction level xk is the centroid of px(x) over the interval xk-1 x xk:

    It is interpreted as the mean value of x over interval xk-1 x xk for the normalized pdf p(x). Solving last two equations for xk and xk is a nonlinear problem in these two variables.Iterative solution which requires obtaining pdf (can be difficult).^~^

    Veton Kpuska

  • *Veton Kpuska*Nonuniform Quantization

    Veton Kpuska

  • CompandingA fixed non-uniform quantizer

    Veton Kpuska

  • *Veton Kpuska*CompandingAlternative to the nonuniform quantizer is companding.It is based on the fact that uniform quantizer is optimal for a uniform pdf. Thus if a nonlinearity is applied to the waveform x[n] to form a new sequence g[n] whose pdf is uniform thenUniform quantizer can be applied to g[n] to obtain g[n], as depicted in the Figure 12.10 in the next slide. ^

    Veton Kpuska

  • *Veton Kpuska*Companding

    Veton Kpuska

  • *Veton Kpuska*CompandingA number of other nonlinear approximations nonlinear transformation that achieves uniform density are used in practice which do not require pdf measurement. Specifically and A-law and law companding.-law coding is give by:

    CCITT international standard coder at 64 kbps is an example application of -law coding.-law transformation followed by 7-bit uniform quantization giving toll quality speech. Equivalent quality of straight uniform quantization achieved by 11 bits.

    Veton Kpuska

  • Ulaw Input-Output Function*Veton Kpuska*

    Veton Kpuska

  • Adaptive Coding

    Veton Kpuska

  • *Veton Kpuska*Adaptive CodingNonuniform quantizers are optimal for a long term pdf of speech signal.However, considering that speech is a highly-time-varying signal, one has to question if a single pdf derived from a long-time speech waveform is a reasonable assumption.Changes in the speech waveform:Temporal and spectral variations due to transitions from unvoiced to voiced speech,Rapid volume changes.Approach: Estimate a short-time pdf derived over 20-40 msec intervals.Short-time pdf estimates are more accurately described by a Gaussian pdf regardless of the speech class.

    Veton Kpuska

  • *Veton Kpuska*Adaptive CodingA pdf (e.g., Gaussian) derived from a short-time speech segment more accurately represents the speech nonstationarity.One approach is to assume a pdf of a specific shape in particular a Gaussian with unknown variance 2.Measure the local variance then adapt a nonuniform quantizer to the resulting local pdf.This approach is referred to as adaptive quantization.For a Gaussian we have:

    Veton Kpuska

  • *Veton Kpuska*Adaptive CodingMeasure the variance x2 of a sequence x[n] and use resulting pdf to design optimal max quantizer.Note that a change in the variance simply scales the time signal:If E(x2[n]) = x2 then E[(x [n])2] = 2 x2 Need to design only one nonuniform quantizer with unity variance and scale decision and reconstruction levels according to a particular variance.Fix the quantizer and apply a time-varying gain to the signal according to the estimated variance (scale the signal to match the quantizer).

    Veton Kpuska

  • *Veton Kpuska*Adaptive Coding

    Veton Kpuska

  • *Veton Kpuska*Adaptive CodingThere are two possible approaches for estimation of a time-varying variance 2[n]:Feed-forward method (shown in Figure 12.11) where the variance (or gain) estimate is obtained from the inputFeedback method where the estimate is obtained from a quantizer output.Advantage no need to transmit extra side information (quantized variance)Disadvantage additional sensitivity to transmission errors in codewords.Adaptive quantizers can achieve higher SNR than the use of law companding.law companding is generally preferred for high-rate waveform coding because of its lower background noise when transmission channel is idle. Why?Adaptive quantization is useful in variety of other coding schemes.

    Veton Kpuska

  • Differential and Residual Quantization

    Veton Kpuska

  • *Veton Kpuska*Differential and Residual QuantizationPresented methods are examples of instantaneous quantization.

    Those approaches do not take advantage of the fact that speech is highly correlated signal:Short-time (10-15 samples), as well asLong-time (over a pitch period)

    In this section methods that exploit short-time correlation will be investigated.

    Veton Kpuska

  • *Veton Kpuska*Differential and Residual QuantizationShort-time Correlation:Neighboring samples are self-similar, that is, not changing too rapidly from one another.Difference of adjacent samples should have a lower variance than the variance of the signal itself.This difference, thus, would make a more effective use of quantization levels:Higher SNR for fixed number of quantization levels.Predicting the next sample from previous ones (finding the best prediction coefficients to yield a minimum mean-squared prediction error same methodology as in Liner Prediction Coefficients - LPC). Two approaches:Have a fixed prediction filter to reflect the average local correlation of the signal.Allow predictor to short-time adapt to the signals local correlation.Requires transmission of quantized prediction coefficients as well as the prediction error.

    Veton Kpuska

  • *Veton Kpuska*Differential and Residual QuantizationIllustration of a particular error encoding scheme presented in the Figure 12.12 of the next slide.In this scheme the following sequences are required:x[n] prediction of the input sample x[n]; This is the output of the predictor P(z) whose input is a quantized version of the input signal x[n], i.e., x[n]r[n] prediction error signal; residualr[n] quantized prediction error signal.

    This approach is sometimes referred to as residual coding.~^^

    Veton Kpuska

  • *Veton Kpuska*Differential and Residual Quantization

    Veton Kpuska

  • *Veton Kpuska*Differential and Residual QuantizationQuantizer in the previous scheme can be of any type:FixedAdaptiveUniformNonuniformWhatever the case is, the parameter of the quantizer are determined so that to match variance of r[n].Differential quantization can also be applied to:Speech signalParameters that represent speech:LPC linear prediction coefficientsCepstral coefficients obtained from Homomorphic filtering.Sinewave parameters, etc.

    Veton Kpuska

  • *Veton Kpuska*Differential and Residual QuantizationConsider quantization error of the quantized residual:

    From Figure 12.12 we express the quantized input x[n] as:^

    Veton Kpuska

  • *Veton Kpuska*Differential and Residual QuantizationQuantized signal samples differ form the input only by the quantization error er[n].Since the er[n] is the quantization error of the residual: if the prediction of the signal is accurate then the variance of r[n] will be smaller than the variance of x[n] A quantizer with a given number of levels can be adjusted to give a smaller quantization error than would be possible when quantizing the signal directly.

    Veton Kpuska

  • *Veton Kpuska*Differential and Residual QuantizationThe differential coder of Figure 12.12 is referred to:Differential PCM (DPCM) when used with a fixed predictor and fixed quantization.Adaptive Differential PCM (ADPCM) when used withAdaptive prediction (i.e., adapting the predictor to local correlation)Adaptive quantization (i.e., adapting the quantizer to the local variance of r[n])ADPCM yields greatest gains in SNR for a fixed bit rate.The international coding standard CCITT, G.721 with toll quality speech at 32 kbps (8000 samples/sec x 4 bits/sample) has been designed based on ADPCM techniques.To achieve higher quality with lower rates it is required to:Rely on speech model-based techniques and The exploiting of long-time prediction, as well as Short-time prediction

    Veton Kpuska

  • *Veton Kpuska*Differential and Residual QuantizationImportant variation of the differential quantization scheme of Figure 12.12.Prediction has assumed an all-pole model (autoregressive model).In this model signal value is predicted from its past samples:Any error in a codeword due to for example bit errors over a degraded channel propagate over considerable time during decoding.Such error propagation is severe when the signal values represent speech model parameters computed frame-by frame (as opposed to sample-by-sample).Alternative approach is to use a finite-order moving-average predictor derived from the residual. One common approach of the use of the moving-average predictor is illustrated in Figure 12.13 in the next slide.

    Veton Kpuska

  • *Veton Kpuska*Differential and Residual Quantization

    Veton Kpuska

  • *Veton Kpuska*Differential and Residual QuantizationCoder Stage of the system in Figure 12.13:Residual as the difference of the true value and the value predicted from the moving average of K quantized residuals:

    p[k] coefficients of P(z)Decoder Stage:Predicted value is given by:

    Error propagation is thus limited to only K samples (or K analysis frames for the case of model parameters)

    Veton Kpuska

  • Vector Quantization

    Veton Kpuska

  • *Veton Kpuska*Vector Quantization (VQ)Investigation of scalar quantization techniques was the topic of previous sections.A generalization of scalar quantization referred to as vector quantization is investigated in this section.In vector quantization a block of scalars are coded as a vector rather than individually.An optimal quantization strategy can be derived based on a mean-squared error distortion metric as with scalar quantization.

    Veton Kpuska

  • *Veton Kpuska*Vector Quantization (VQ)MotivationAssume the vocal tract transfer function is characterized by only two resonance's thus requiring four reflection coefficients.Furthermore, suppose that the vocal tract can take on only one of possible four shapes.This implies that there exist only four possible sets of the four reflection coefficients as illustrated in Figure 12.14 in the next slide.Scalar Quantization considers each of the reflection coefficient individually:Each coefficient can take on 4 different values 2 bits required to encode each coefficient.For 4 reflection coefficients it is required 4x2=8 bits per analysis frame to code the vocal tract transfer function.Vector Quantization since there are only four possible vocal tract positions of the vocal tract corresponding to only four possible vectors of reflection coefficients.Scalar values of each vector are highly correlated.Thus 2 bits are required to encode the 4 reflection coefficients. Note: if scalars were independent of each other treating them together as a vector would have no advantage over treating them individually.

    Veton Kpuska

  • *Veton Kpuska*Vector Quantization (VQ)

    Veton Kpuska

  • *Veton Kpuska*Vector Quantization (VQ)Consider a vector of N continuous scalars:

    With VQ, the vector x is mapped into another N-dimensional vector x:

    Vector x is chosen from M possible reconstruction (quantization) levels:^^

    Veton Kpuska

  • *Veton Kpuska*Vector Quantization (VQ)TT

    Veton Kpuska

  • *Veton Kpuska*Vector Quantization (VQ)VQ-vector quantization operatorri-M possible reconstruction levels for 1i
  • *Veton Kpuska*Vector Quantization (VQ)Properties of VQ:P1:In vector quantization a cell can have an arbitrary size and shape. In scalar quantization a cell (region between two decision levels) can have an arbitrary size, but its shape is fixed.P2:Similarly to scalar quantization, distortion measure D(x,x), is a measure of dissimilarity or error between x and x. ^^

    Veton Kpuska

  • *Veton Kpuska*VQ Distortion MeasureVector quantization noise is represented by the vector e:

    The distortion is the average of the sum of squares of scalar components:

    For the multi-dimensional pdf px(x):

    Veton Kpuska

  • *Veton Kpuska*VQ Distortion MeasureGoal to minimize:

    Two conditions formulated by Lim:C1:A vector x must be quantized to a reconstruction level ri that gives the smallest distortion between x and ri. C2:Each reconstruction level ri must be the centroid of the corresponding decision region (cell Ci)

    Condition C1 implies that given the reconstruction levels we can quantize without explicit need for the cell boundaries.To quantize a given vector the reconstruction level is found which minimizes its distortion.This process requires a large search active area of research.Condition C2 specifies how to obtain a reconstruction level from the selected cell.

    Veton Kpuska

  • *Veton Kpuska*VQ Distortion MeasureStated 2 conditions provide the basis for iterative solution of how to obtain VQ codebook.Start with initial estimate of ri.Apply condition 1 by which all the vectors from a set that get quantized by ri can be determined.Apply second condition to obtain a new estimate of the reconstruction levels (i.e., centroid of each cell)Problem with this approach is that it requires estimation of joint pdf of all x in order to compute the distortion measure and the multi-dimensional centroid.Solution: k-means algorithm (Lloyd for 1-D and Forgy for multi-D).

    Veton Kpuska

  • *Veton Kpuska*k-Means AlgorithmCompute the ensemble average D as: xk are the training vectors and xk are the quantized vectors.Pick an initial guess at the reconstruction levels {ri}For each xk select closest ri. Set of all xk nearest to ri forms a cluster (see Figure 12.16) clustering algorithm. Compute the mean of xk in each cluster which gives a new ris. Calculate D.Stop when the change in D over two consecutive interactions is insignificant.

    This algorithm converges to a local minimum of D. ^

    Veton Kpuska

  • *Veton Kpuska*k-Means Algorithm

    Veton Kpuska

  • *Veton Kpuska*Neural Networks Based Clustering AlgorithmsKohonens SOFMTopological Ordering of the SOFMOffers potential for further reduction in bit rate.

    Veton Kpuska

  • *Veton Kpuska*Use of VQ in Speech TransmissionObtain the VQ codebook from the training vectors - all transmitters and receivers must have identical copies of VQ codebook.Analysis procedure generates a vector xi. Transmitter sends the index of the centroid ri of the closest cluster for the given vector xi. This step involves search.Receiving end decodes the information by accessing the codeword of the received index and performing synthesis operation.

    Veton Kpuska

  • Model-Based CodingLiner Prediction Method (LPC)

    Veton Kpuska

  • *Veton Kpuska*Model-Based CodingThe purpose of model-based speech coding is to increase the bit efficiency to achieve either:Higher quality for the same bit rate orLower bit rate for the same quality.Chronological perspective of model-based coding starting with:All-pole speech representation used for coding:Scalar QuantizationVector QuantizationMixed Excitation Linear Prediction (MELP) coder:Remove deficiencies in binary source representation.Code-excited Linear Prediction (CELP) coder:Does nor require explicit multi-band decision and source characterization as MELP.

    Veton Kpuska

  • *Veton Kpuska*Basic Linear Prediction Coder (LPC)Recall the basic speech production model of the form: where the predictor polynomial is given as:

    Suppose:Linear Prediction analysis performed at 100 frames/s13 parameters are used:10 all-pole spectrum parameters, PitchVoicing decisionGainResulting in 1300 parameters/s.Compared to telephone quality signal:4000 Hz bandwidth 8000 samples/s (8 bit per sample).1300 parameters/s < 8000 samples/s

    Veton Kpuska

  • *Veton Kpuska*Basic Linear Prediction Coder (LPC)Instead of prediction coefficients ai use:Corresponding poles biPartial Correlation Coefficients ki (PARCOR)Reflection Coefficients ri, orOther equivalent representation.Behavior of prediction coefficients is difficult to characterize:Large dynamic range ( large variance)Quantization errors can lead to unstable system function at synthesis (poles may move outside the unit circle).Alternative equivalent representations:Have a limited dynamic rangeCan be easily enforced to give stability because |bi|
  • *Veton Kpuska*Basic Linear Prediction Coder (LPC)Many ways to code linear prediction parameters:Ideally optimal quantization uses the Max quantizer based on known or estimated pdfs of each parameter.Example of 7200 bps coding:Voice/Unvoiced Decision: 1 bit (on or off)Pitch (if voiced): 6 bits (uniform)Gain: 5 bits (nonuniform)Each Pole bi: 10 bits (nonuniform)5 bits for bandwidth 5 bits for center frequency Total of 6 poles

    100 frames/s 1+6+5+6x10=72 bitsQuality limited by simple impulse/noise excitation model.

    Veton Kpuska

  • *Veton Kpuska*Basic Linear Prediction Coder (LPC)Improvements possible based on replacement of poles with PARCOR.Higher order PARCOR have pdfs closer to Gaussian centered around zero nonuniform quantization.Companding is effective with PARCOR:Transformed pdfs close to uniform.Original PARCOR coefficients do not have a good spectral sensitivity (change in spectrum with a change in spectral parameters that is desired to minimize). Empirical finding that a more desirable transformation in this sense is to use logarithm of the vocal tract area function ratio:

    Veton Kpuska

  • *Veton Kpuska*Basic Linear Prediction Coder (LPC)Parameters gi:Have a pdf close to uniformSmaller spectral sensitivity than PARCOR:The all pole spectrum changes less with a change in gi than with a change in kiNote that spectrum changes less with the change in ki than with the change in pole positions.Typically these parameters can be coded at 5-6 bits each (significant improvement over 10 bits):100 frames/sOrder 6 of the predictor (6 poles)(1+6+5+6x6)x100 bps = 4800 bpsSame quality as 7200 bps by coding pole positions for telephone bandwidth speech.

    Veton Kpuska

  • *Veton Kpuska*Basic Linear Prediction Coder (LPC)Government standard for secure communications using 2.4 kbps for about a decade used this basic LPC scheme at 50 frames per second.Demand for higher quality standards opened up research on two primary problems with speech codes base on all-pole linear prediction analysis:Inadequacy of the basic source/filter speech production modelRestrictions of one-dimensional scalar quantization techniques to account for possible parameter correlation.

    Veton Kpuska

  • *Veton Kpuska*A VQ LPC CoderVQ based LPC PARCOR coder.K-means algorithm

    Veton Kpuska

  • *Veton Kpuska*A VQ LPC CoderUse VQ LPC Coder to achieve same quality of speech with lower bit-rate:10bit code book (1024 codewords)800 bps 2400 bps of scalar quantization44.4 frames/s440 bits to code PARCOR coefficients per second.8 bits per frame for: PitchGainVoicing1 bit for frame synchronization per second.

    Veton Kpuska

  • *Veton Kpuska*A VQ LPC CoderMaintain 2400 bps bit rate with a higher quality of speech coding (early 1980):22-bit codebook 222 = 4200000 codewords.Problems: Intractable solution due to computational requirements (large VQ search)Memory (large Codebook size)VQ based spectrum characterized by a wobble due to LPC-based spectrum being quantized:Spectral representation near cell boundary wobble to and from neighboring cells insufficient number of codebooks.Emphasis changed from improved VQ of the spectrum and better excitation models ultimately to a return to VQ on the excitation.

    Veton Kpuska

  • *Veton Kpuska*Mixed Excitation LPC (MELP)Multi-band voicing decision (introduced as a concept in Section 12.5.2 not covered in slides)Addresses shortcomings of conventional linear prediction analysis/synthesis:Realistic excitation signalTime varying vocal tract formant bandwidths Production principles of the anomalous voice.

    Veton Kpuska

  • *Veton Kpuska*Mixed Excitation LPC (MELP)Model:Different mixtures of impulses and noise are generated in different frequency bands (4-10 bands)The impulse train and noise in the MELP model are each passed through time-varying spectral shaping filters and are added together to form a full-band signal.MELP unique components:An auditory-based approach to multi-band voicing estimation for the mixed impulse/noise excitation.Aperiodic impulses due to pitch jitter, the creaky voice, and the diplophonic voice.Time-varying resonance bandwidth within a pitch period accounting for nonlinear source/system interaction and introducing the truncation effects.More accurate shape of the glottal flow velocity source.

    Veton Kpuska

  • *Veton Kpuska*Mixed Excitation LPC (MELP)2.4 kbps coder has been implemented based on the MELP model and has been selected as government standard for secure telephone communications.Original version of MELP uses:34 bits for scalar quantization of the LPC coefficients (Specifically the line spectral frequencies LSFs).8 bits for gain7 bits for pitch and overall voicing Uses autocorrelation technique on the lowpass filtered LPC residual.5-bits to multi-band voicing.1-bit for the jittery state (aperiodic) flag.54 bits per 22.5 ms frame 2.4 bps.In actual 2.4 kbs standard greater efficiency is achieved with vector quantization of LSF coefficients.

    Veton Kpuska

  • *Veton Kpuska*Mixed Excitation LPC (MELP)Line Spectral Frequencies (LSFs)More efficient parameter set for coding the all-pole model of linear prediction.The LSFs for a pth order all-pole model are defined as follows:Two polynomials of order p+1 are created from the pth order inverse filter A(z) according to:

    LSFs can be coded efficiently and stability of the resulting syntheses filter can be guaranteed when they are quantized.Better quantization and interpolation properties than the corresponding PARCOR coefficients.Disadvantage is the fact that solving for the roots of P(z) and Q(z) can be more computationally intensive than the PARCOR coefficients.Polynomial A(z) is easily recovered from the LSFs (Exercise 12.18).

    Veton Kpuska

  • *Veton Kpuska*Code-Excited Linear Prediction (CELP)Concept:Core ideas of CELP:Utilization of long-term as well as short-term linear prediction models for speech synthesis Avoiding the strict voiced/unvoiced classification of LPC coder.Incorporation of an excitation codebook which is searched during encoding to locate the best excitation sequence.

    Code Excited LP comes from the excitation codebook that contains the code to excite the synthesis filters.

    On each frame a codeword is chosen from a codebook of residuals such as to minimize the mean-squared error between the synthesized and original speech waveform.The length of a codeword sequence is determined by the analysis frame length.For a 10 ms frame interval split into 2 inner frames of 5 ms each a codeword sequence is 40 samples in duration for an 8000 Hz sampling rate.The residual and long-term predictor is estimated with twice the time resolution (a 5 ms frame) of the short-term predictor (10 ms frame);Excitation is more nonstationary than the vocal tract.

    Veton Kpuska

  • *Veton Kpuska*Code-Excited Linear Prediction (CELP)Two approach to formation of the codebook:DeterministicStochasticDeterministic codebook It is formed by applying the k-means clustering algorithm to a large set of residual training vectors.Channel mismatchStochastic codebook Histogram of the residual from the long-term predictor follows roughly a Gaussian probability pdf. A valid assumption with exception of plosives and voiced/unvoiced transitions.Cumulative distributions are nearly identical to those for white Gaussian random variables Alternative codebook is constructed of white Gaussian random variables with unit variance.

    Veton Kpuska

  • *Veton Kpuska*CELP CodersVariety of government and International standard coders:1990s Government standard for secure communications at 4.8 kbps at 4000 Hz bandwidth (Fed-Std1016) uses CELP coder:Three bit rates:9.6 kbps (multi-pulse)4.8 kbps (CELP)2.4 kbps (LPC)Short-time predictor: 30 ms frame interval coded with 34 bits per frame.10th order vocal tract spectrum from prediction coefficients transformed to LSFs coded nonuniform quantization.Short-term and long-term predictors are estimated in open-loopResidual codewords are determined in closed-loop form.Current international standards use CELP based coding.G.729G.723.1

    Veton Kpuska

    Digital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit ProcessorDigital Systems: Hardware Organization and DesignDigital Systems: Hardware Organization and Design*Architecture of a Respresentative 32 Bit Processor*Architecture of a Respresentative 32 Bit Processor