24
1 Secure UAS Communications Panel Andrew L. Drozd ANDRO Computational Solutions, LLC Advanced Applied Technology Division Rome, NY 26 October 2015 Unclassified // Distribution A: Unlimited Distribution SPECTRUMSECURE COMMUNICATIONS FOR AUTONOMOUS UAS/UAV PLATFORMS

SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

Embed Size (px)

Citation preview

Page 1: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

1

Secure UAS Communications Panel

Andrew L. DrozdANDRO Computational Solutions, LLCAdvanced Applied Technology Division

Rome, NY

26 October 2015

Unclassified //  Distribution A: Unlimited Distribution

SPECTRUM‐SECURE COMMUNICATIONS FOR AUTONOMOUS UAS/UAV PLATFORMS

Page 2: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

2

Topics• ANDRO Technology Summary

• Background of key technical issues related to UAS/UAV spectrum, safety, security and airspace integration

Potential spectrum contention and management issues

Frequencies Used for Remote Control

A Typical UAV Link

UAS Integration to NAS

Spectrum, Security and RTCA‐228 Relevant Issues

• Conclusion

Page 3: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

3

ANDRO Technology / Application Spaces

C2 (Cross‐layer RF Communications /Cyber Security)

Cyber‐Spectrum Exploitation

(Wireless Anti‐Hacking)

RF Resource  Management &

Dynamic Spectrum Access/Sharing

EMI Avoidance(Coexistence)

SpectrumDetect & Avoid

(Spectral Contention)

Pre‐test M&S

Cyber‐Spectrum Exploitation / Secure Wireless Comms / Cognitive Radio Networking /Trusted Routing Technologies for Autonomous Systems (RF sensor‐edge processing)

Page 4: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

4

BACKGROUND• ANDRO has access to AFRL’s Stockbridge Controllable Contested Environment Facility and Griffiss FAA UAS Test Site Rome, NY for communications up/down‐link experiments with large or small UAS/UAV platforms.

• Member of Northeast UAS Airspace Integration Research Alliance (NUAIR).

• Our overall focus is on assessing, pre‐certifying or assuring the following for C2/CDL, payload data link (VDL) and other future RF comms technologies:

– RF spectrum collision/contention

– Coexistence

– Cyber Security (confidentiality/integrity/availability)

– Safety.

Page 5: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

5

Daily Users of RF Spectrum• Cell phone• Cordless phone• Garage door opener• Car key remote control• Standard time broadcast• Mobile radio• GPS navigation• Microwave oven• Bluetooth• Wifi• Zigbee• Broadcast television and audio• Vehicle‐speed radar, air traffic radar, weather radar• RFID devices such as active badges, passports, wireless gasoline token, no‐contact credit‐cards, and 

product tags• Satellite TV broadcast reception; also backend signal dissemination• Toll‐road payment vehicle transponders• Citizen's band radio and Family Radio Service• Radio control, including Radio‐controlled model aircraft and vehicles• Wireless microphones and musical instrument links

Page 6: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

6

Amateur Radio/Unlicensed Spectrum Bands:Frequencies Generally Used by Amateur UAVs

Page 7: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

7

72 MHz:  aircraft only (channels 21 through 35)

75 MHz:  surface vehicles

53 MHz:  all vehicles, older equipment on 100 kHz spacing

50.8 to 51 MHz:  for all vehicles at 20 kHz spacing

27 MHz:  general use, hobbyists.

2.4 ‐ 2.485 GHz:  Spread Spectrum band for general control

900 MHz, 1.2 GHz, 2.4 GHz, 5.8 GHz:  common for video transmission 

433 MHz or 869 MHz ‐ directional high‐gain antennas for video at increased range

Frequencies for Remote Control (RC) ActivitiesFCC has reserved frequency bands for RC activitieshttp://www.modelaircraft.org/events/frequencies.aspx

Vulnerable to amateur radio repeater stations

NEWer

OLDer

Page 8: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

8

Frequencies for RC Activities (Continued)• Older RC aircraft in the US utilized 72 MHz for comms:

Tx broadcasts using AM or FM with PPM or PCM.

A specific channel is used for each aircraft.

Use of crystals to set the operating channel in the Rx and Tx. 

For an aircraft controlled on channel 35 (72.49 MHz), if someone turns their radio on the same channel, the aircraft's control may be compromised, so when flying at RC airfields, there is normally a board that flags used channels to avoid incidents.

• Latest Rx use synthesizer technology and are 'locked' to the Tx. For synthesized Rx crystal is not needed, full bandwidth can be used (i.e., 35 MHz).

• Newer Tx use spread spectrum technology in the 2.4 GHz frequency for communication allowing pilots to transmit in the same band in proximity to each other with little fear of conflicts, and receivers in this band are virtually immune to most sources of EMI.

Page 9: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

9

UAS / Airport Significant Frequencies

Comms link metrics:

a) Data rate is the amount of data transferred, measured in bits per second (Bps), also called throughput

b) Packet loss is packets received compared to packets sent, expressed as %

UAV control, telemetry, and video frequencies:• 900 MHz,   1.2 GHz,   2.4 GHz,  and   5.8 GHz• 900MHz and 2.4GHz are popular because they have more relaxed FCC 

regulations for transmit power and duty cycle

Other UAV frequencies:• ADS‐B for aircraft below 18,000 feet:   978 MHz   and   1.090 GHz • GPS:  L1 and L2  at   1.2276   and    1.57542  GHz

Airport System frequencies:• Airport air‐to‐ground voice radio, ATM voice radio:  120 – 135 MHz  (VHF radios)• Airport ground radio:  460 MHz• Griffiss Airport Radars

• ASR‐8 (airport ATM radar) is 2.7 – 2.9 GHz, 20 MHz wide• SRC LSTAR is L‐band, 1.5 GHz • Doppler weather are L‐band and S‐band:  1‐2 GHz and 2‐4 GHz

• The 700 MHz Band – between 698 and 806 MHz ‐‐ is public safety groups: police, fire, emergency services

Page 10: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

10

A Typical UAV Link (for RC & Other Data)

Uplink:  Control CommandsDownlink:  Telemetry DataDownlink:  Payload Data

Ground Control System

Uplink is used to control/change flight • Periodic (1‐sec)  to adjust flight parameters

• ~900 MHz datalink• Messages  ~1 kB, 56 kb/sec• Often Spread Spectrum and/or encrypted

Telemetry is aircraft flight data• Usually ~900 MHz datalink• Location, velocity, heading, altitude, battery life

Payload data is typically video (digital)• up to 8 Mbit/sec for high quality video link

• Control Tx & telemetry Rx• Video receiver• Commercial digital video recorder• RSSI indicator 

UAV

Spectrum ManagementSecurity Control

Page 11: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

11

• Minimum Performance Standards for UAS integration into non‐segregated airspace – establish Detect & Avoid (DAA) and C2 Data Link capability:

Provides the C2 function as the primary use of the spectrum.

ITU has identified multiple spectrum band as candidates (L‐Band Terrestrial, C‐Band Terrestrial, SATCOM in multiple bands).

Minimum Operational Performance Standards (MOPS) for C2 Data Link:

Phase I MOPS:  L‐ and C‐Band Terrestrial data links

Phase II MOPS:  SATCOM in multiple bands

Radio Technical Commission for AeronauticsRTCA SC‐228 Phases / Timeline

12/2013SC‐228 WhitepaperReqt’s for C2 Data Link for UAS integration into NAS. 

01/2014 – 06/2015C2 Data Link MOPS for V&V Develop prelim MOPS forL‐Band & C‐Band solutions.

07/2015 – 06/2016C2 Data Link MOPS V&V Conduct V&V Test Program 

SC 228 Development Timeline:

Specify equipment reqt’s for civil UAS; reqt’s in Class A are not part of this TOR; consider reqt’s between the UAS and ground subsystem.

Consider extended UAS operation in Class D, G, and E airspace; Ground taxiing is not part of this TOR.

Page 12: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

12

RTCA SC‐228 ScopeStandards development for civil UAS equipped to operate into Class A airspace under IFR (instrument flight rules)Operational Environment:• UAS transitioning to/from airspace Class A, traversing 

D/E/G• Extended UAS operations in airspace Class D/E/GThe C2 Data Link: standards for Link using• L‐band Terrestrial (960‐1164 MHz) data links

Airport environment, low altitude, wideband‐downlinks960‐977 MHz – assignments for UA at en route cruising altitudes980‐1020 MHz – additional assignments to low‐altitude UA

• C‐band Terrestrial (5030‐5091 MHz) data linksNarrowband uplinks; 300kHz channels and submultiples (25,50,150) AeroMAX (broadband for airports) can be utilized for streaming data from taxiing UA. 

• SATCOM in multiple bands

Need ‐ RF Spectrum for:• Pilot ATC Communications Link (voice, data)• UAS control link (telecom [uplink], telemetry [downlink])

• GPS – determine location • ADS‐B ‐ broadcast position location

Repetition rates for Modes of Operation • Automatic ‐ 10 Hz• Manual ‐ 20 Hz (ITU‐R 643 Report M.2171 Tables 23 and 24).

Page 13: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

13

Key Technical Issues in UAS Integration to NAS

• FAA identified relevant challenge areas:

Communications

Airspace UAS operations

Unmanned Aircraft

Human system integration

Page 14: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

14

Key Issues (Continued)

• The Unmanned Aircraft  State Awareness and Real Time Mission Management:  Negotiate changes in UAS trajectories 

based on aircraft operational state Airframe Certification:  Emphasis on structural analysis and reduction in airframe testing  Precise Location and Navigation:  Alternative to GPS UAS Avionics and Control:  Means to ensure safety and reliability.

• Airspace UAS Operations Separation Concepts:  Collision Avoidance (CA), Self‐Separation (SS), and Separation 

Assurance (SA)  Airspace Integration Safety:  Risks and failure modes of SA/SS/CA integration, including 

Cockpit Display of Traffic Information Sense and Avoid Sensors and Fusion:  Use on/off‐board sensors; radars; fusion of EO/IR, 

radar, SWIR, and ADS‐B Separation Algorithms: Maneuvering algorithms for avoiding other aircraft, weather, wake 

vortices, terrain, etc. Availability of Surveillance Data:  Impact of existing data on intent/trajectory prediction  Terminal Airspace/Surface Operations:  Complex and restrictive environment and 

responsiveness to ATC.

Page 15: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

15

The Spectrum and Airspace Integration• RF spectrum

Protected safety RF spectrum for control communications

Cyber secure RF infrastructure FAA‐UAS‐operator 

Control data link for given spectrum bands.

• SC‐228 relevant issues

Evidence of old technology for link signal/spectrum and their management (narrow band, assigned bands, non‐adaptable, no feedback)

Assumed “equal bandwidth for all” or “bands for thee modes” limits number of users of a frequency band and constraint flexibility of frequency access/usage

Low power spread frequency waveforms not considered at all (will enable control without contention for 100s of systems simultaneously in the same frequency)

Evidence of limited consideration for link routing through relays, and multi‐hop high speed networking.

Page 16: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

16

How to Improve• Good intentions: SC 228 suggests to relegate signals from L band to C band when possible for surface, low‐altitude, downlink uses; allow C in both directions with software‐defined channel widths, support multi‐hop links, networking, etc.

• Can improve with:  Interference analysis Range & Signal Strength prediction and test analysis Real‐time spectrum situational awareness  Spectrum management and interference mitigation  Spectrum sharing technology to address signal collisions: 

‐ in L: Terminal Radar Approach Control (TRACON) signals, radar, etc.,‐ in C: Unlicensed National Information Infrastructure (U‐NII) signals, radar, etc.

Technology preventing link loss‐ Lost Link Preparedness

Spread spectrum and frequency hopping waveforms Different choice for carrier frequency 

‐ Laws of physics favors lower freq. (< 700 MHz), which better penetrate structures, propagate to longer ranges due to lower absorption

Vulnerability analysis (cyber security)

Page 17: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

17

Frequency / Modulation Selection

http://diydrones.com/profiles/blogs/some‐tips‐on‐picking‐frequencies

Spread spectrum and frequency hopping waveforms Different choice for carrier frequency 

Page 18: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

18

Lost Link Preparedness • 3 UAV links:  uplink control, downlink telemetry, downlink payload ‐ any of these 3 links can be interrupted by various forms of interference.

• When links are lost…

• UAVs are programmed to fly in a circular pattern and work to re‐establish or restore the link.  In worst‐case scenarios, they are supposed to return automatically to their launch base.

• UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for more than a few minutes.

• Losses:  ~200 mid‐size and large‐size UAVs lost in 2012‐2015, 25% associated to link loss.

• Loss of communication during operations may result from: 

• Failure of system due to lack of reliability

• Loss of line‐of‐sight (LOS) due to geographic features blocking the signals

• Weakening of received power due to increasing distance to the UAV or UAV mobility (banking, antenna alignment)

• Unpredictable, transient fades due to interference or jamming (intentional or inadvertent).

Page 19: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

19

Interference Analysis (Pre‐Flight)

420 – 450 MHz 902 – 928 MHz 1.24 – 1.3 GHz 2.39 – 2.485 GHz 5.47 – 5.825 GHz5.15 – 5.35 GHz

• For any selected UAV controller, one will be in contention with the above potential RF interference signals.

• These may or may not be a concern.

• If a concern is determined, provide recommends to mitigate potential interference or vulnerabilities.

Page 20: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

20

Propagation Characteristics:  Range & Signal Strength

Packet loss and reception over a flight path

• A test site can be either a poor transmitting environment or a positive transmitting environment.

• A UAV’s cruise speed 20 m/sec (48 miles/hour) will carry it 1 mile away in 72 seconds if it were to fly straight line away from the ground station.

• Receive modules lose >50% of their signal at about 1.5 miles from the ground station, and receive sporadic transmissions up to 3 miles away.

• Ground ambient different than altitude ambient.

Page 21: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

21

Link Protection vs. Malicious Intent‐ Cyber Vulnerability Assessment  ‐

• Control uplink mainly requires protection against unauthorized use

• Typical Protection Measures:

128‐bit AES encryption 

Forward Error Correction coding, or similar, to both detect errors and increase decryption complexity

Transmit frequency hopping or other Spread Spectrum signal, where the bandwidth is increased at least 10X, which produces a LPI.

•Malicious Threats:

Information corruption:  Transmit control link signal spoof (gibberish) to disrupt and cause denial‐of‐service or link loss

Masquerade:  Take over as Ground Control Station and gain control or hi‐jack the UAV.

Page 22: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

22

FCC Regulations (Top Level)

• FCC rules and regulations are codified in Title 47 of the Code of Federal Regulations (CFR).  Part 15 of this code applies to RF devices operating at unlicensed frequencies.  (often referred to as FCC Part 15)

• Frequency allocation approval:  Adapt the "J‐12 Process“ 

Joint Frequency Panel of the U.S. Military Communications‐Electronics Board (MCEB) reviews the characteristics for RF equipment.

• $16,000 per day FCC fee for unauthorized transmit in licensed bands.

• The NATO Standard Agreement (“STANAG”) 4586 defines many of the command and control protocols used in military UAVs.

Page 23: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

23

Summary & Benefits of Cyber‐Spectrum Management

Concern BenefitLost Link Preparedness • No surprises during test success

• Flight safety

Interference Analysis: Characterize Test Site as “positive transmitting environment” 

• Improves UAV flight test planning• Ensures compatibility of UAS with 

other existing aeronautical systemsRange & Signal Strength prediction and test analysis

• Improves UAV flight test planning• Helps characterize the UAV range

Vulnerability Analysis • Improves marketability of UAS/UAV

FCC / FAA  Post‐Test Report• Credibility in FAA and FCC domains• Complexities of integrating 

UAS/UAV into congested airspace

Page 24: SPECTRUM SECURE COMMUNICATIONS FOR UAV pilots have told investigators that they were so accustomed to lost links that they tended not to get nervous unless the disruptions lasted for

24

Contact Information:Andrew L. Drozd, President & Chief Scientist

[email protected]

Carmen Luvera, Director of Business [email protected]

ANDRO Computational Solutions, LLCThe Beeches Professional Campus

One Beeches Place7980 Turin Road, Bldg. 1Rome, NY  13440‐1934

(315) 334‐1163www.androcs.com