21
1 HIGH PERFORMANCE E 2 CMOS ® TECHNOLOGY 5 ns Maximum Propagation Delay — Fmax = 200 MHz 4 ns Maximum from Clock Input to Data Output — UltraMOS ® Advanced CMOS Technology ACTIVE PULL-UPS ON ALL PINS COMPATIBLE WITH STANDARD 22V10 DEVICES Fully Function/Fuse-Map/Parametric Compatible with Bipolar and UVCMOS 22V10 Devices 50% to 75% REDUCTION IN POWER VERSUS BIPOLAR 90mA Typical Icc on Low Power Device 45mA Typical Icc on Quarter Power Device •E 2 CELL TECHNOLOGY Reconfigurable Logic Reprogrammable Cells 100% Tested/Guaranteed 100% Yields High Speed Electrical Erasure (<100ms) 20 Year Data Retention TEN OUTPUT LOGIC MACROCELLS Maximum Flexibility for Complex Logic Designs PRELOAD AND POWER-ON RESET OF REGISTERS 100% Functional Testability APPLICATIONS INCLUDE: DMA Control State Machine Control High Speed Graphics Processing Standard Logic Speed Upgrade ELECTRONIC SIGNATURE FOR IDENTIFICATION DESCRIPTION The GAL22V10C, at 5ns maximum propagation delay time, com- bines a high performance CMOS process with Electrically Eras- able (E 2 ) floating gate technology to provide the highest perform- ance available of any 22V10 device on the market. CMOS cir- cuitry allows the GAL22V10 to consume much less power when compared to bipolar 22V10 devices. E 2 technology offers high speed (<100ms) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently. The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL22V10 is fully function/fuse map/parametric compatible with standard bipolar and CMOS 22V10 devices. Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, Lattice Semiconductor guarantees 100% field programmability and functionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are guaranteed. FUNCTIONAL BLOCK DIAGRAM FEATURES PIN CONFIGURATION GAL22V10 High Performance E 2 CMOS PLD Generic Array Logic™ PROGRAMMABLE AND-ARRAY (132X44) I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I I/CLK I I I I I I I I I I RESET PRESET 8 10 12 14 16 16 14 12 10 8 OLMC OLMC OLMC OLMC OLMC OLMC OLMC OLMC OLMC OLMC Copyright © 1996 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. 1996 Data Book Tel. (503) 681-0118; 1-888-ISP-PLDS; FAX (503) 681-3037; http://www.latticesemi.com GAL22V10 Top View PLCC 1 12 13 24 I/CLK I I I I I I I I I I GND Vcc I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I 6 18 GAL 22V10 2 28 NC I/CLK I I I I I I I I NC NC NC GND I I I I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q Vcc I/O/Q I/O/Q I/O/Q 4 26 25 19 18 21 23 16 14 12 11 9 7 5 DIP 22v10_01

Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

1 1996 Data Book

• HIGH PERFORMANCE E2CMOS® TECHNOLOGY— 5 ns Maximum Propagation Delay— Fmax = 200 MHz— 4 ns Maximum from Clock Input to Data Output— UltraMOS ® Advanced CMOS Technology

• ACTIVE PULL-UPS ON ALL PINS

• COMPATIBLE WITH STANDARD 22V10 DEVICES— Fully Function/Fuse-Map/Parametric Compatible

with Bipolar and UVCMOS 22V10 Devices

• 50% to 75% REDUCTION IN POWER VERSUS BIPOLAR— 90mA Typical Icc on Low Power Device— 45mA Typical Icc on Quarter Power Device

• E2 CELL TECHNOLOGY— Reconfigurable Logic— Reprogrammable Cells— 100% Tested/Guaranteed 100% Yields— High Speed Electrical Erasure (<100ms)— 20 Year Data Retention

• TEN OUTPUT LOGIC MACROCELLS— Maximum Flexibility for Complex Logic Designs

• PRELOAD AND POWER-ON RESET OF REGISTERS— 100% Functional Testability

• APPLICATIONS INCLUDE:— DMA Control— State Machine Control— High Speed Graphics Processing— Standard Logic Speed Upgrade

• ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL22V10C, at 5ns maximum propagation delay time, com-bines a high performance CMOS process with Electrically Eras-able (E2) floating gate technology to provide the highest perform-ance available of any 22V10 device on the market. CMOS cir-cuitry allows the GAL22V10 to consume much less power whencompared to bipolar 22V10 devices. E2 technology offers highspeed (<100ms) erase times, providing the ability to reprogramor reconfigure the device quickly and efficiently.

The generic architecture provides maximum design flexibility byallowing the Output Logic Macrocell (OLMC) to be configured bythe user. The GAL22V10 is fully function/fuse map/parametriccompatible with standard bipolar and CMOS 22V10 devices.

Unique test circuitry and reprogrammable cells allow completeAC, DC, and functional testing during manufacture. As a result,Lattice Semiconductor guarantees 100% field programmabilityand functionality of all GAL products. In addition, 100 erase/writecycles and data retention in excess of 20 years are guaranteed.

FUNCTIONAL BLOCK DIAGRAMFEATURES

PIN CONFIGURATION

GAL22V10High Performance E 2CMOS PLD

Generic Array Logic™

PR

OG

RA

MM

AB

LE

A

ND

-AR

RA

Y

(132

X44

)

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I

I/CLK

I

I

I

I

I

I

I

I

I

I

RESET

PRESET

8

10

12

14

16

16

14

12

10

8

OLMC

OLMC

OLMC

OLMC

OLMC

OLMC

OLMC

OLMC

OLMC

OLMC

Copyright © 1996 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subjectto change without notice.

LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. 1996 Data BookTel. (503) 681-0118; 1-888-ISP-PLDS; FAX (503) 681-3037; http://www.latticesemi.com

GAL22V10

Top View

PLCC1

12 13

24I/CLK

I

I

I

I

I

I

I

I

I

I

GND

Vcc

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I

6

18

GAL22V10

2 28

NC

I/CL

K

II

I

I

I

I

I

I

NC NC

NC

GN

D

II I

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

Vcc I/O

/Q

I/O/Q

I/O/Q

4 2625

1918

21

23

16141211

9

7

5

DIP

22v10_01

Page 2: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

2 1996 Data Book

)sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP

5 3 4 051 JL5-C01V22LAG CCLPdaeL-82

5.7 5 5.4 041 PL7-C01V22LAG PIDcitsalPniP-42

5.4 5.4 041 JL7-C01V22LAG CCLPdaeL-82

5.6 5 041 PL7-B01V22LAG PIDcitsalPniP-42

041 JL7-B01V22LAG CCLPdaeL-82

01 7 7 031 PL01-C01V22LAG PIDcitsalPniP-42

031 JL01-C01V22LAG CCLPdaeL-82

031 PL01-B01V22LAG PIDcitsalPniP-42

031 JL01-B01V22LAG CCLPdaeL-82

51 01 8 55 PQ51-B01V22LAG PIDcitsalPniP-42

55 JQ51-B01V22LAG CCLPdaeL-82

031 PL51-B01V22LAG PIDcitsalPniP-42

031 JL51-B01V22LAG CCLPdaeL-82

52 51 51 55 PQ52-B01V22LAG PIDcitsalPniP-42

55 JQ52-B01V22LAG CCLPdaeL-82

09 PL52-B01V22LAG PIDcitsalPniP-42

09 JL52-B01V22LAG CCLPdaeL-82

)sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP

5.7 5 5.4 061 IPL7-C01V22LAG PIDcitsalPniP-42

5.4 5.4 061 IJL7-C01V22LAG CCLPdaeL-82

01 7 7 061 IPL01-C01V22LAG PIDcitsalPniP-42

061 IJL01-C01V22LAG CCLPdaeL-82

51 01 8 051 IPL51-B01V22LAG PIDcitsalPniP-42

051 IJL51-B01V22LAG CCLPdaeL-82

02 41 01 051 IPL02-B01V22LAG PIDcitsalPniP-42

051 IJL02-B01V22LAG CCLPdaeL-82

52 51 51 051 IPL52-B01V22LAG PIDcitsalPniP-42

051 IJL52-B01V22LAG CCLPdaeL-82

GAL22V10 ORDERING INFORMATION

Commercial Grade Specifications

PART NUMBER DESCRIPTION

Industrial Grade Specifications

Blank = Commercial I = Industrial

Grade

PackagePowerL = Low Power Q = Quarter Power

Speed (ns)

XXXXXXXX XX X X X

Device Name

_

P = Plastic DIP J = PLCC

GAL22V10C GAL22V10B

Page 3: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

3 1996 Data Book

OUTPUT LOGIC MACROCELL (OLMC)

OUTPUT LOGIC MACROCELL CONFIGURATIONS

GAL22V10 OUTPUT LOGIC MACROCELL (OLMC)

Each of the Macrocells of the GAL22V10 has two primary func-tional modes: registered, and combinatorial I/O. The modes andthe output polarity are set by two bits (SO and S1), which are nor-mally controlled by the logic compiler. Each of these two primarymodes, and the bit settings required to enable them, are describedbelow and on the following page.

REGISTEREDIn registered mode the output pin associated with an individualOLMC is driven by the Q output of that OLMC’s D-type flip-flop.Logic polarity of the output signal at the pin may be selected byspecifying that the output buffer drive either true (active high) orinverted (active low). Output tri-state control is available as an in-dividual product-term for each OLMC, and can therefore be de-fined by a logic equation. The D flip-flop’s /Q output is fed backinto the AND array, with both the true and complement of thefeedback available as inputs to the AND array.

NOTE: In registered mode, the feedback is from the /Q output ofthe register, and not from the pin; therefore, a pin defined asregistered is an output only, and cannot be used for dynamicI/O, as can the combinatorial pins.

COMBINATORIAL I/OIn combinatorial mode the pin associated with an individual OLMCis driven by the output of the sum term gate. Logic polarity of theoutput signal at the pin may be selected by specifying that theoutput buffer drive either true (active high) or inverted (active low).Output tri-state control is available as an individual product-termfor each output, and may be individually set by the compiler aseither “on” (dedicated output), “off” (dedicated input), or “product-term driven” (dynamic I/O). Feedback into the AND array is fromthe pin side of the output enable buffer. Both polarities (true andinverted) of the pin are fed back into the AND array.

The GAL22V10 has a variable number of product terms perOLMC. Of the ten available OLMCs, two OLMCs have access toeight product terms (pins 14 and 23, DIP pinout), two have tenproduct terms (pins 15 and 22), two have twelve product terms(pins 16 and 21), two have fourteen product terms (pins 17 and20), and two OLMCs have sixteen product terms (pins 18 and 19).In addition to the product terms available for logic, each OLMChas an additional product-term dedicated to output enable control.

The output polarity of each OLMC can be individually programmedto be true or inverting, in either combinatorial or registered mode.This allows each output to be individually configured as eitheractive high or active low.

The GAL22V10 has a product term for Asynchronous Reset (AR)and a product term for Synchronous Preset (SP). These twoproduct terms are common to all registered OLMCs. The Asyn-chronous Reset sets all registers to zero any time this dedicatedproduct term is asserted. The Synchronous Preset sets all reg-isters to a logic one on the rising edge of the next clock pulse afterthis product term is asserted.

NOTE: The AR and SP product terms will force the Q output ofthe flip-flop into the same state regardless of the polarity of theoutput. Therefore, a reset operation, which sets the register outputto a zero, may result in either a high or low at the output pin,depending on the pin polarity chosen.

A R

S P

D

Q

QC L K

4 T O 1M U X

2 T O 1M U X

Page 4: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

4 1996 Data Book

REGISTERED MODE

ACTIVE HIGHACTIVE LOW

COMBINATORIAL MODE

ACTIVE HIGHACTIVE LOW

S0 = 1S1 = 1

S0 = 0S1 = 1

S0 = 0S1 = 0

S0 = 1S1 = 0

A R

S P

D Q

QC L K

A R

S P

D Q

QC L K

Page 5: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

5 1996 Data Book

GAL22V10 LOGIC DIAGRAM / JEDEC FUSE MAP

DIP (PLCC) Package Pinouts1 (2)

22 (26)OLMCS0

5810 S1

5811

0440 . . . .

0880

2 (3)

ASYNCHRONOUS RESET (TO ALL REGISTERS)

0 4 8 12 16 20 24 28 32 36 40

SYNCHRONOUS PRESET (TO ALL REGISTERS)

10 (12)

0000

5764

0044 . . .

039623 (27)S0

5808 S1

5809

21 (25)OLMCS0

5812 S1

5813

0924 . . . . .

1452

3 (4)

4 (5)

5 (6)

20 (24)OLMCS0

5814 S1

5815

1496 . . . . . .

2112

19 (23)OLMC

S0 5816 S1

5817

2156 . . . . . . .

2860

18 (21)OLMC

S0 5818 S1

5819

2904 . . . . . . .

3608

17 (20)OLMCS0

5820 S1

5821

3652 . . . . . .

4268

OLMCS0

5822 S1

5823

4312 . . . . .

4840

8 (10)

16 (19)

15 (18)OLMCS0

5824 S1

5825

4884 . . . .

5324

9 (11)5368

.

.

. 5720

14 (17)OLMCS0

5826 S1

5827

7 (9)

6 (7)

11 (13) 13 (16)

8

10

14

16

12

12

16

14

10

8 OLMC

Electronic Signature 5828, 5829 ... ... 5890, 5891

L S B

M S B

Byte 7 Byte 6 Byte 5 Byte 4 Byte 2 Byte 1 Byte 0Byte 3

Page 6: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

6 1996 Data Book

Specifications GAL22V10C

ABSOLUTE MAXIMUM RATINGS (1)

Supply voltage VCC

....................................... -0.5 to +7V

Input voltage applied ........................... -2.5 to VCC

+1.0VOff-state output voltage applied........... -2.5 to V

CC +1.0V

Storage Temperature.................................. -65 to 150°CAmbient Temperature with

Power Applied ......................................... -55 to 125°C1. Stresses above those listed under the “Absolute Maximum

Ratings” may cause permanent damage to the device. Theseare stress only ratings and functional operation of the deviceat these or at any other conditions above those indicated inthe operational sections of this specification is not implied(while programming, follow the programming specifications).

COMMERCIALICC Operating Power Supply Current VIL = 0.5V VIH = 3.0V L-5 — 90 150 mA

f toggle = 15MHz Outputs Open L-7 — 90 140 mA

L-10 — 90 130 mA

VIL Input Low Voltage Vss – 0.5 — 0.8 V

VIH Input High Voltage 2.0 — Vcc+1 V

IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 µA

IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 µA

VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V

VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V

IOL Low Level Output Current — — 16 mA

IOH High Level Output Current — — –3.2 mA

IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C –30 — –130 mA

RECOMMENDED OPERATING COND.

Commercial Devices:Ambient Temperature (T

A) ............................. 0 to +75°C

Supply voltage (VCC

) with Respect to Ground ..................... +4.75 to +5.25V

Industrial Devices:Ambient Temperature (T

A) ............................ -40 to 85°C

Supply voltage (VCC

) with Respect to Ground ..................... +4.50 to +5.50V

DC ELECTRICAL CHARACTERISTICSOver Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL PARAMETER CONDITION MIN. TYP. 3 MAX. UNITS

INDUSTRIAL

ICC Operating Power Supply Current VIL = 0.5V VIH = 3.0V L-7/-10 — 90 160 mA

ftoggle = 15MHz Outputs Open

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by testerground degradation. Guaranteed but not 100% tested.3) Typical values are at Vcc = 5V and TA = 25 °C

Page 7: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

7 1996 Data Book

Specifications GAL22V10C

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

UNITS

1) Refer to Switching Test Conditions section.2) Calculated from fmax with internal feedback. Refer to fmax Description section.3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these

parameters.

PARAMTEST

COND.1DESCRIPTION

SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS

CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V

CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V

*Guaranteed but not 100% tested.

CAPACITANCE (T A = 25°C, f = 1.0 MHz)

tpd A Input or I/O to Combinatorial Output 1 5 1 7.5 1 7.5 3 10 1 10 ns

tco A Clock to Output Delay 1 4 1 4.5 1 4.5 2 7 1 7 ns

tcf2 — Clock to Feedback Delay — 3 — 3 — 3 — 2.5 — 2.5 ns

tsu — Setup Time, Input or Fdbk before Clk↑ 3 — 4.5 — 5 — 7 — 7 — ns

th — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — 0 — ns

A Maximum Clock Frequency with 142.8 — 111 — 105 — 71.4 — 71.4 — MHzExternal Feedback, 1/(tsu + tco)

fmax3 A Maximum Clock Frequency with 166 — 133 — 125 — 105 — 105 — MHzInternal Feedback, 1/(tsu + tcf)

A Maximum Clock Frequency with 200 — 166 — 142.8 — 105 — 105 — MHzNo Feedback

twh — Clock Pulse Duration, High 2.5 — 3 — 3.5 — 4 — 4 — ns

twl — Clock Pulse Duration, Low 2.5 — 3 — 3.5 — 4 — 4 — ns

ten B Input or I/O to Output Enabled 1 6 1 7.5 1 7.5 3 10 1 10 ns

tdis C Input or I/O to Output Disabled 1 6 1 7.5 1 7.5 3 9 1 9 ns

tar A Input or I/O to Asynch. Reset of Reg. 1 5.5 1 9 1 9 3 13 1 13 ns

tarw — Asynch. Reset Pulse Duration 5.5 — 7 — 7 — 8 — 8 — ns

tarr — Asynch. Reset to Clk↑ Recovery Time 4 — 5 — 5 — 8 — 8 — ns

tspr — Synch. Preset to Clk↑ Recovery Time 4 — 5 — 5 — 10 — 10 — ns

-5

MIN. MAX.

COM/INDCOM

-7 (PLCC)

MIN. MAX.

-10

MIN. MAX.

-7 (PDIP)

MIN. MAX.

COMCOM/IND

-10

MIN. MAX.

IND

Page 8: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

8 1996 Data Book

Specifications GAL22V10B

ABSOLUTE MAXIMUM RATINGS (1)

Supply voltage VCC

....................................... -0.5 to +7V

Input voltage applied ........................... -2.5 to VCC

+1.0VOff-state output voltage applied........... -2.5 to V

CC +1.0V

Storage Temperature.................................. -65 to 150°CAmbient Temperature with

Power Applied ......................................... -55 to 125°C1. Stresses above those listed under the “Absolute Maximum

Ratings” may cause permanent damage to the device. Theseare stress only ratings and functional operation of the deviceat these or at any other conditions above those indicated inthe operational sections of this specification is not implied(while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:Ambient Temperature (T

A) ............................. 0 to +75°C

Supply voltage (VCC

) with Respect to Ground ..................... +4.75 to +5.25V

Industrial Devices:Ambient Temperature (T

A) ............................ -40 to 85°C

Supply voltage (VCC

) with Respect to Ground ..................... +4.50 to +5.50V

DC ELECTRICAL CHARACTERISTICSOver Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL PARAMETER CONDITION MIN. TYP. 3 MAX. UNITS

VIL Input Low Voltage Vss – 0.5 — 0.8 V

VIH Input High Voltage 2.0 — Vcc+1 V

IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 µA

IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 µA

VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V

VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V

IOL Low Level Output Current — — 16 mA

IOH High Level Output Current — — –3.2 mA

IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C –30 — –130 mA

COMMERCIAL

ICC Operating Power VIL = 0.5V VIH = 3.0V L-7 — 90 140 mA

Supply Current ftoggle = 15MHz Outputs Open L-10/-15 — 90 130 mA

L-25 — 75 90 mA

Q-15/-25 — 45 55 mA

INDUSTRIAL

ICC Operating Power VIL = 0.5V VIH = 3.0V L-15/-20/-25 — 90 150 mA

Supply Current ftoggle = 15MHz Outputs Open

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by testerground degradation. Guaranteed but not 100% tested.3) Typical values are at Vcc = 5V and TA = 25 °C

Page 9: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

9 1996 Data Book

Specifications GAL22V10B

-10

MIN. MAX.

-25

MIN. MAX.

-20

MIN. MAX.

-15

MIN. MAX.

-7

MIN. MAX.

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

tpd A Input or I/O to Comb. Output 3 7.5 3 10 3 15 3 20 3 25 ns

tco A Clock to Output Delay 2 5 2 7 2 8 2 10 2 15 ns

tcf2 — Clock to Feedback Delay — 2.5 — 2.5 — 2.5 — 8 — 13 ns

tsu1 — Setup Time, Input or Fdbk before Clk↑ 6.5 — 7 — 10 — 14 — 15 — ns

tsu2 — Setup Time, SP before Clock↑ 10 — 10 — 10 — 14 — 15 — ns

th — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — 0 — ns

A Maximum Clock Frequency with 87 — 71.4 — 55.5 — 41.6 — 33.3 — MHzExternal Feedback, 1/(tsu + tco)

fmax3 A Maximum Clock Frequency with 111 — 105 — 80 — 45.4 — 35.7 — MHzInternal Feedback, 1/(tsu + tcf)

A Maximum Clock Frequency with 111 — 105 — 83.3 — 50 — 38.5 — MHzNo Feedback

twh — Clock Pulse Duration, High 4 — 4 — 6 — 10 — 13 — ns

twl — Clock Pulse Duration, Low 4 — 4 — 6 — 10 — 13 — ns

ten B Input or I/O to Output Enabled 3 8 3 10 3 15 3 20 3 25 ns

tdis C Input or I/O to Output Disabled 3 8 3 9 3 15 3 20 3 25 ns

tar A Input or I/O to Asynch. Reset of Reg. 3 13 3 13 3 20 3 25 3 25 ns

tarw — Asynch. Reset Pulse Duration 8 — 8 — 15 — 20 — 25 — ns

tarr — Asynch. Reset to Clk↑ Recovery Time 8 — 8 — 10 — 20 — 25 — ns

tspr — Synch. Preset to Clk↑ Recovery Time 10 — 10 — 10 — 14 — 15 — ns

UNITS

1) Refer to Switching Test Conditions section.2) Calculated from fmax with internal feedback. Refer to fmax Description section.3) Refer to fmax Description section.

SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS

CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V

CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V

*Guaranteed but not 100% tested.

CAPACITANCE (T A = 25°C, f = 1.0 MHz)

PARAM.TEST

COND.1DESCRIPTION

COM COM COM / IND IND COM / IND

Page 10: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

10 1996 Data Book

SWITCHING WAVEFORMS

Input or I/O to Output Enable/Disable

Registered Output

Combinatorial Output

VALID INPUTINPUT orI/O FEEDBACK

t pd

COMBINATORIALOUTPUT

INPUT orI/O FEEDBACK

REGISTEREDOUTPUT

CLK

VALID INPUT

tsu

tco

th

(external fdbk)1/ fmax

t ent dis

INPUT orI/O FEEDBACK

OUTPUT

CLK

(w/o fdbk)

t w h t w l

1 / f m a x

Clock Width

REGISTEREDOUTPUT

CLK

INPUT orI/O FEEDBACK DRIVING SP

tsu th

tco

tspr

R EGIST ER EDO U T P U T

CLK

tarw

tar

tarr

INPUT orI /O FEEDBACKDRIVING AR

fmax with Feedback

Asynchronous ResetSynchronous Preset

CLK

REGISTEREDFEEDBACK

tcf tsu

1/ fmax (internal fdbk)

Page 11: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

11 1996 Data Book

Input Pulse Levels GND to 3.0V

Input Rise and -5 1.5ns 10% – 90%

Fall Times -7/-10 2.0ns 10% – 90%

-15/-20/-25 3ns 10% – 90%

Input Timing Reference Levels 1.5V

Output Timing Reference Levels 1.5V

Output Load See Figure

3-state levels are measured 0.5V from steady-state activelevel.

SWITCHING TEST CONDITIONS

TEST POINT

C *L

FROM OUTPUT (O/Q) UNDER TEST

+5V

*C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE

R 2

R 1

Output Load Conditions (see figure)

Test Condition R 1 R2 CL

A 300Ω 390Ω 50pF

B Active High ∞ 390Ω 50pF

Active Low 300Ω 390Ω 50pF

C Active High ∞ 390Ω 5pF

Active Low 300Ω 390Ω 5pF

fmax with Internal Feedback 1/( tsu+tcf)

Note: fmax with external feedback is cal-culated from measured tsu and tco.

fmax with External Feedback 1/( tsu+ tco)

Note: tcf is a calculated value, derived by sub-tracting tsu from the period of fmax w/internalfeedback (tcf = 1/fmax - tsu). The value of tcf isused primarily when calculating the delay fromclocking a register to a combinatorial output(through registered feedback), as shown above.For example, the timing from clock to a combi-natorial output is equal to tcf + tpd.

fmax with No Feedback

Note: fmax with no feedback may be lessthan 1/(twh + twl). This is to allow for aclock duty cycle of other than 50%.

REG I S TE RLOGICARR AY

tc ots u

C L K

fmax DESCRIPTIONS

REGISTERLOGICARRAY

CLK

tsu + th

CLK

REGISTER

LOGIC ARRAY

tcf

tpd

Page 12: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

12 1996 Data Book

ELECTRONIC SIGNATURE

An electronic signature (ES) is provided in every GAL22V10device. It contains 64 bits of reprogrammable memory that cancontain user-defined data. Some uses include user ID codes,revision numbers, or inventory control. The signature data isalways available to the user independent of the state of the se-curity cell.

The electronic signature is an additional feature not present inother manufacturers' 22V10 devices. To use the extra feature ofthe user-programmable electronic signature it is necessary tochoose a Lattice Semiconductor 22V10 device type when com-piling a set of logic equations. In addition, many device program-mers have two separate selections for the device, typically aGAL22V10 and a GAL22V10-UES (UES = User Electronic Sig-nature) or GAL22V10-ES. This allows users to maintain compat-ibility with existing 22V10 designs, while still having the option touse the GAL device's extra feature.

The JEDEC map for the GAL22V10 contains the 64 extra fusesfor the electronic signature, for a total of 5892 fuses. However,the GAL22V10 device can still be programmed with a standard22V10 JEDEC map (5828 fuses) with any qualified device pro-grammer.

OUTPUT REGISTER PRELOAD

When testing state machine designs, all possible states and statetransitions must be verified in the design, not just those requiredin the normal machine operations. This is because certain eventsmay occur during system operation that throw the logic into anillegal state (power-up, line voltage glitches, brown-outs, etc.). Totest a design for proper treatment of these conditions, a way mustbe provided to break the feedback paths, and force any desired(i.e., illegal) state into the registers. Then the machine can besequenced and the outputs tested for correct next state conditions.

The GAL22V10 device includes circuitry that allows each regis-tered output to be synchronously set either high or low. Thus, anypresent state condition can be forced for test sequencing. Ifnecessary, approved GAL programmers capable of executing testvectors perform output register preload automatically.

INPUT BUFFERS

GAL22V10 devices are designed with TTL level compatible in-put buffers. These buffers have a characteristically high imped-ance, and present a much lighter load to the driving logic than bi-polar TTL devices.

The input and I/O pins also have built-in active pull-ups. As a re-sult, floating inputs will float to a TTL high (logic 1). However,Lattice Semiconductor recommends that all unused inputs andtri-stated I/O pins be connected to an adjacent active input, Vcc,or ground. Doing so will tend to improve noise immunity andreduce Icc for the device. (See equivalent input and I/O schemat-ics on the following page.)

Typical Input Current

SECURITY CELL

A security cell is provided in every GAL22V10 device to preventunauthorized copying of the array patterns. Once programmed,this cell prevents further read access to the functional bits in thedevice. This cell can only be erased by re-programming thedevice, so the original configuration can never be examined oncethis cell is programmed. The Electronic Signature is always avail-able to the user, regardless of the state of this control cell.

LATCH-UP PROTECTION

GAL22V10 devices are designed with an on-board charge pumpto negatively bias the substrate. The negative bias is of sufficientmagnitude to prevent input undershoots from causing the circuitryto latch. Additionally, outputs are designed with n-channel pullupsinstead of the traditional p-channel pullups to eliminate any pos-sibility of SCR induced latching.

DEVICE PROGRAMMING

GAL devices are programmed using a Lattice Semiconductor-approved Logic Programmer, available from a number of manu-facturers (see the the GAL Development Tools section). Com-plete programming of the device takes only a few seconds. Eras-ing of the device is transparent to the user, and is done automati-cally as part of the programming cycle.

1 . 0 2 . 0 3 . 0 4 . 0 5 . 0- 6 0

0

- 2 0

- 4 0

0

In p u t Vo ltag e (V o lt s)

Inp

ut

Cu

rre

nt

(uA

)

Page 13: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

13 1996 Data Book

POWER-UP RESET

(Vref Typical = 3.2V)

(Vref Typical = 3.2V)

Circuitry within the GAL22V10 provides a reset signal to all reg-isters during power-up. All internal registers will have their Q out-puts set low after a specified time (tpr, 1µs MAX). As a result, thestate on the registered output pins (if they are enabled) will beeither high or low on power-up, depending on the programmedpolarity of the output pins. This feature can greatly simplify statemachine design by providing a known state on power-up. Thetiming diagram for power-up is shown below. Because of the asyn-

chronous nature of system power-up, some conditions must bemet to guarantee a valid power-up reset of the GAL22V10. First,the Vcc rise must be monotonic. Second, the clock input mustbe at static TTL level as shown in the diagram during power up.The registers will reset within a maximum of tpr time. As in nor-mal system operation, avoid clocking the device until all input andfeedback path setup times have been met. The clock must alsomeet the minimum pulse width requirements.

Vcc

PIN

Vcc Vref

Active Pull-up Circuit

ESD ProtectionCircuit

ESD ProtectionCircuit

Vcc

PIN

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Vcc (min.)

tpr

Internal RegisterReset to Logic "0"

Device PinReset to Logic "1"

twl

tsu

Device PinReset to Logic "0"

Vcc

C L K

INTERNAL REGISTER Q - OUTPUT

ACTIVE LOW OUTPUT REGISTER

ACTIVE HIGH OUTPUT REGISTER

Vcc

PIN

VrefTri-StateControl

Active Pull-up Circuit

Feedback(To Input Buffer)

PIN

Feedback

Data Output

Typical Input Typical Output

Page 14: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

14 1996 Data Book

GAL22V10C-5/-7/-10: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Normalized Tpd vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tpd

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

PT H->L

PT L->H

Normalized Tco vs Vcc

Supply Voltage (V)N

orm

aliz

ed T

co

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

RISE

FALL

Normalized Tsu vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tsu

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

PT H->L

PT L->H

Normalized Tpd vs Temp

Temperature (deg. C)

Nor

mal

ized

Tpd

0.7

0.8

0.9

1

1.1

1.2

1.3

-55 -25 0 25 50 75 100 125

PT H->L

PT L->H

Normalized Tco vs Temp

Temperature (deg. C)

Nor

mal

ized

Tco

0.7

0.8

0.9

1

1.1

1.2

1.3

-55 -25 0 25 50 75 100 125

RISE

FALL

Normalized Tsu vs Temp

Temperature (deg. C)N

orm

aliz

ed T

su

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

-55 -25 0 25 50 75 100 125

PT H->L

PT L->H

Delta Tpd vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

pd (

ns)

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

1 2 3 4 5 6 7 8 9 10

RISE

FALL

Delta Tco vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

co (

ns)

-1

-0.75

-0.5

-0.25

0

1 2 3 4 5 6 7 8 9 10

RISE

FALL

Delta Tpd vs Output Loading

Output Loading (pF)

Del

ta T

pd (

ns)

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

RISE

FALL

Delta Tco vs Output Loading

Output Loading (pF)

Del

ta T

co (

ns)

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

RISE

FALL

Page 15: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

15 1996 Data Book

GAL22V10C-5/-7/-10: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Vol vs Iol

Iol (mA)

Vol

(V

)

0

0.5

1

1.5

2

2.5

3

0.00 20.00 40.00 60.00 80.00 100.00

Voh vs Ioh

Ioh(mA)V

oh (

V)

0

1

2

3

4

5

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Voh vs Ioh

Ioh(mA)

Voh

(V

)

3

3.25

3.5

3.75

4

0.00 1.00 2.00 3.00 4.00

Normalized Icc vs Vcc

Supply Voltage (V)

Nor

mal

ized

Icc

0.80

0.90

1.00

1.10

1.20

4.50 4.75 5.00 5.25 5.50

Normalized Icc vs Temp

Temperature (deg. C)

Nor

mal

ized

Icc

0.8

0.9

1

1.1

1.2

-55 -25 0 25 50 75 100 125

Normalized Icc vs Freq.

Frequency (MHz)N

orm

aliz

ed I

cc

0.90

1.00

1.10

1.20

1.30

0 25 50 75 100

Delta Icc vs Vin (1 input)

Vin (V)

Del

ta I

cc (

mA

)

0

2

4

6

8

10

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Input Clamp (Vik)

Vik (V)

Iik (

mA

)

0

10

20

30

40

50

60

70

-2.50 -2.00 -1.50 -1.00 -0.50 0.00

Page 16: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

16 1996 Data Book

GAL22V10B-7/-10/-15/-25L: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Normalized Tpd vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tpd

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

PT H->L

PT L->H

Normalized Tco vs Vcc

Supply Voltage (V)N

orm

aliz

ed T

co

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

RISE

FALL

Normalized Tsu vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tsu

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

PT H->L

PT L->H

Normalized Tpd vs Temp

Temperature (deg. C)

Nor

mal

ized

Tpd

0.7

0.8

0.9

1

1.1

1.2

1.3

-55

-25 0

25

50

75

10

0

12

5

PT H->L

PT L->H

Normalized Tco vs Temp

Temperature (deg. C)

Nor

mal

ized

Tco

0.7

0.8

0.9

1

1.1

1.2

1.3

-55

-25 0

25

50

75

10

0

12

5

RISE

FALL

Normalized Tsu vs Temp

Temperature (deg. C)

Nor

mal

ized

Tsu

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

-55

-25 0

25

50

75

10

0

12

5

PT H->L

PT L->H

Delta Tpd vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

pd (

ns)

-2

-1.5

-1

-0.5

0

1 2 3 4 5 6 7 8 9 10

RISE

FALL

Delta Tco vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

co (

ns)

-2

-1.5

-1

-0.5

0

1 2 3 4 5 6 7 8 9 10

RISE

FALL

Delta Tpd vs Output Loading

Output Loading (pF)

Del

ta T

pd (

ns)

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

RISE

FALL

Delta Tco vs Output Loading

Output Loading (pF)

Del

ta T

co (

ns)

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

RISE

FALL

Page 17: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

17 1996 Data Book

GAL22V10B-7/-10/-15/-25L: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Vol vs Iol

Iol (mA)

Vol

(V

)

0

0.5

1

1.5

2

2.5

3

0.00 20.00 40.00 60.00 80.00 100.00

Voh vs Ioh

Ioh(mA)V

oh (

V)

0

1

2

3

4

5

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Voh vs Ioh

Ioh(mA)

Voh

(V

)

3.5

3.75

4

4.25

4.5

0.00 1.00 2.00 3.00 4.00

Normalized Icc vs Vcc

Supply Voltage (V)

Nor

mal

ized

Icc

0.80

0.90

1.00

1.10

1.20

4.50 4.75 5.00 5.25 5.50

Normalized Icc vs Temp

Temperature (deg. C)

Nor

mal

ized

Icc

0.8

0.9

1

1.1

1.2

-55 -25 0 25 50 75 100 125

Normalized Icc vs Freq.

Frequency (MHz)N

orm

aliz

ed I

cc

0.80

0.90

1.00

1.10

1.20

0 25 50 75 100

Delta Icc vs Vin (1 input)

Vin (V)

Del

ta I

cc (

mA

)

0

2

4

6

8

10

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Input Clamp (Vik)

Vik (V)

Iik (

mA

)

0

10

20

30

40

50

60

70

80

90

100

-2.00 -1.50 -1.00 -0.50 0.00

Page 18: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

18 1996 Data Book

GAL22V10B-15/-25Q: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Normalized Tpd vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tpd

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

Normalized Tco vs Vcc

Supply Voltage (V)N

orm

aliz

ed T

co

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

Normalized Tsu vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tsu

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

Normalized Tpd vs Temp

Temperature (deg. C)

Nor

mal

ized

Tpd

0.7

0.8

0.9

1

1.1

1.2

1.3

-55

-25 0

25

50

75

10

0

12

5

Normalized Tco vs Temp

Temperature (deg. C)

Nor

mal

ized

Tco

0.7

0.8

0.9

1

1.1

1.2

1.3

-55

-25 0

25

50

75

10

0

12

5

Normalized Tsu vs Temp

Temperature (deg. C)

Nor

mal

ized

Tsu

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

-55

-25 0

25

50

75

10

0

12

5

Delta Tpd vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

pd (

ns)

-1

-0.75

-0.5

-0.25

0

1 2 3 4 5 6 7 8 9 10

Delta Tco vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

co (

ns)

-2

-1.5

-1

-0.5

0

1 2 3 4 5 6 7 8 9 10

Delta Tpd vs Output Loading

Output Loading (pF)

Del

ta T

pd (

ns)

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

RISE

FALL

Delta Tco vs Output Loading

Output Loading (pF)

Del

ta T

co (

ns)

-2

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

RISE

FALL

Page 19: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

19 1996 Data Book

GAL22V10B-15/-25Q: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

Vol vs Iol

Iol (mA)

Vol

(V

)

0

0.2

0.4

0.6

0.8

1

0.00 20.00 40.00

Voh vs Ioh

Ioh(mA)V

oh

(V

)

0

1

2

3

4

5

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Voh vs Ioh

Ioh(mA)

Voh

(V

)

3

3.25

3.5

3.75

4

0.00 1.00 2.00 3.00 4.00

Normalized Icc vs Vcc

Supply Voltage (V)

Nor

mal

ized

Icc

0.80

0.90

1.00

1.10

1.20

4.50 4.75 5.00 5.25 5.50

Normalized Icc vs Temp

Temperature (deg. C)

Nor

mal

ized

Icc

0.7

0.8

0.9

1

1.1

1.2

1.3

-55 -25 0 25 75 100 125

Normalized Icc vs Freq.

Frequency (MHz)N

orm

aliz

ed I

cc

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 25 50 75 100

Delta Icc vs Vin (1 input)

Vin (V)

Del

ta I

cc (

mA

)

0

2

4

6

8

10

0.20 0.70 1.20 1.70 2.20 2.70 3.20 3.70

Input Clamp (Vik)

Vik (V)

Iik (

mA

)

0

10

20

30

40

50

60

70

80

90

-2.00 -1.50 -1.00 -0.50 0.00

Page 20: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Specifications GAL22V10

20 1996 Data Book

Notes

Page 21: Specifications GAL22V10 - Michigan State University€¦ · Specifications GAL22V10 3 1996 Data Book OUTPUT LOGIC MACROCELL (OLMC) OUTPUT LOGIC MACROCELL CONFIGURATIONS GAL22V10 OUTPUT

Copyright © 1996 Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice SemiconductorCorporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned aretrademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and internationalpatents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does notrepresent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errorscontained herein or to advise any user of this document of any correction if such be made. LSC recommends its customersobtain the latest version of the relevant information to establish, before ordering, that the information being relied upon iscurrent.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standardwarranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing ofall parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements ofpatents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in suchapplications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION5555 Northeast Moore CourtHillsboro, Oregon 97124 U.S.A.Tel.: (503) 681-0118FAX: (503) 681-3037http://www.latticesemi.com November 1996