Specification Test

Embed Size (px)

Citation preview

  • 8/3/2019 Specification Test

    1/18

    Specification test

    Vid Adrison

  • 8/3/2019 Specification Test

    2/18

    Outline

    Redundant Variable

    Omitted Variable

    Functional Specification

    Selection Criteria

  • 8/3/2019 Specification Test

    3/18

    Redundant Variable Consequences

    On the unbiasedness: remain unbiased Review the concept of unbiased estimator

    On the variance: increases variance Proof:

    Create a simulated demand function Simulation is useful as we know the true value of the parameter

    Steps in conducting simulation; Assume that Qx is only a function of Px and Income Generate 200 data of Px, Py, INC, and Error via random draw

    In excel the syntax is =rand() Generate log(Qx)= 0.5-0.5*log(Px)+0.5*log(INC)+Error Run log(Qx)=f[log(Px), log(INC)]

    The parameter will be closer to the assigned values, as thenumber of draws increase

    Repeating the above procedure for N times and get the averagevalues of the parameter Monte Carlo Simulation

    As the comparison, run log(Qx)=f[log(Px), log(Py), log(INC)], seehow the parameter changes

  • 8/3/2019 Specification Test

    4/18

    Redundant Variable

    Test procedure in EVIEWS:

    View | Coefficient Test | Omitted Variables | (WriteVariables | OK

    H0: Variables do not belong to the model

    H1: Variables belong to the model

    This procedure is the same as omitted variabletest, thus, the hypotheses remain the same

    Basically, omitted variable/redundant variable testare performed by comparing the likelihood ratiobetween restricted and unrestricted model

  • 8/3/2019 Specification Test

    5/18

    Correct Specification RegressionDependent Variable: LOG(QX)Method: Least SquaresDate: 02/23/10 Time: 17:44Sample: 1 60Included observations: 60

    Variable Coefficient Std. Error t-Statistic Prob.

    LOG(PX) -0.525034 0.035679 -14.71562 0.0000LOG(INC) 0.514221 0.045908 11.20119 0.0000

    C 0.970042 0.095809 10.12477 0.0000

    R-squared 0.828189 Mean dependent var 1.237024Adjusted R-squared 0.822161 S.D. dependent var 0.723513S.E. of regression 0.305112 Akaike info criterion 0.512434Sum squared resid 5.306335 Schwarz criterion 0.617151Log likelihood -12.37302 F-statistic 137.3802Durbin-Watson stat 2.276588 Prob(F-statistic) 0.000000

    Redundant Variable caseDependent Variable: LOG(QX)Method: Least SquaresDate: 02/23/10 Time: 17:44Sample: 1 60Included observations: 60

    Variable Coefficient Std. Error t-Statistic Prob.

    LOG(PX) -0.521201 0.035292 -14.76838 0.0000LOG(INC) 0.528201 0.046149 11.44567 0.0000LOG(PY) 0.070505 0.044328 1.590528 0.1173

    C 0.890289 0.107022 8.318742 0.0000

    R-squared 0.835615 Mean dependent var 1.237024Adjusted R-squared 0.826809 S.D. dependent var 0.723513S.E. of regression 0.301099 Akaike info criterion 0.501583Sum squared resid 5.076984 Schwarz criterion 0.641206Log likelihood -11.04750 F-statistic 94.88810Durbin-Watson stat 2.360587 Prob(F-statistic) 0.000000

  • 8/3/2019 Specification Test

    6/18

    Omitted Variable Consequences

    On the unbiasedness: more serious than redundantvariable case Omitted variable may be due to ignorance or data

    unavailability

    Example:

    Dropping INC from the previous regression Excluding ability in wage offer function

    For two variable-model, the sign of bias depends on thecorrelation between excluded variable and includedvariable

    The direction of bias can be more complicated if we havethree or more regressors

    See Wooldridge Chapter 3 for detail derivation

    Corr (X1, X2) > 0 Corr(X1, X2) 0 Positive Bias Negative Bias

    B2 < 0 Negative Bias Positive Bias

  • 8/3/2019 Specification Test

    7/18

    Omitted Variable case

    Dependent Variable: LOG(QX)Method: Least SquaresDate: 02/23/10 Time: 17:45Sample: 1 60Included observations: 60

    Variable Coefficient Std. Error t-Statistic Prob.

    LOG(PX) -0.420876 0.061096 -6.888789 0.0000C 1.800707 0.107595 16.73598 0.0000

    R-squared 0.450005 Mean dependent var 1.237024Adjusted R-squared 0.440522 S.D. dependent var 0.723513S.E. of regression 0.541175 Akaike info criterion 1.642617Sum squared resid 16.98648 Schwarz criterion 1.712429Log likelihood -47.27851 F-statistic 47.45541Durbin-Watson stat 1.828653 Prob(F-statistic) 0.000000

    Omitted Variable Test

    Omitted Variables: LOG(INC)

    F-statistic 125.4667 Probability 0.000000Log likelihood ratio 69.81100 Probability 0.000000

    Test Equation:Dependent Variable: LOG(QX)Method: Least SquaresDate: 02/23/10 Time: 23:52

    Sample: 1 60Included observations: 60

    Variable Coefficient Std. Error t-Statistic Prob.

    C 0.970042 0.095809 10.12477 0.0000LOG(PX) -0.525034 0.035679 -14.71562 0.0000LOG(INC) 0.514221 0.045908 11.20119 0.0000

    R-squared 0.828189 Mean dependent var 1.237024Adjusted R-squared 0.822161 S.D. dependent var 0.723513S.E. of regression 0.305112 Akaike info criterion 0.512434Sum squared resid 5.306335 Schwarz criterion 0.617151

    Log likelihood -12.37302 F-statistic 137.3802Durbin-Watson stat 2.276588 Prob(F-statistic) 0.000000

  • 8/3/2019 Specification Test

    8/18

    Regression through Origin

    Recall the interpretation of intercept

    For Keynesian consumption function, it reflectsautonomous consumption; the amount of consumptionone will have if his/her income is zero

    Some have no (logical) economic interpretation: I.e., production function (K=0, L=0 will definitely lead to

    Y=0, demand function (price should be in the positivedomain)

    In the absence of economic interpretation, one is

    tempted to drop intercept It is essentially dropping vector of ONE in the matrix

    notation

    Is it the correct treatment ???

  • 8/3/2019 Specification Test

    9/18

    Regression through Origin Note that an intercept does not have to have economic

    interpretation One of several role of an intercept is to ensure zero conditional

    mean on error Example of violation;

    True Consumption = B0 + B1*Income + error If consumption is measured incorrectly, such as, understatement;

    such that Observed consumption = True consumption understatement The regression would be;

    Observed Consumption = B0 + B1*Income + error understatement

    If we dont include B0, then E (error understatement) is differentfrom zero Bias in B1

    If we include B0, B1 is not biased

    Cost of using intercept if B0 is truly zero None Cost of deleting intercept if B0 is not zero Biased in slope

    parameter

  • 8/3/2019 Specification Test

    10/18

    Dependent Variable: LOG(QX)Method: Least SquaresDate: 02/23/10 Time: 18:18

    Sample: 1 60Included observations: 60

    Variable Coefficient Std. Error t-Statistic Prob.

    LOG(PX) -0.429977 0.057083 -7.532469 0.0000LOG(INC) 0.873992 0.048203 18.13144 0.0000

    R-squared 0.519198 Mean dependent var 1.237024Adjusted R-squared 0.510909 S.D. dependent var 0.723513S.E. of regression 0.505989 Akaike info criterion 1.508162Sum squared resid 14.84945 Schwarz criterion 1.577973Log likelihood -43.24485 Durbin-Watson stat 1.730641

  • 8/3/2019 Specification Test

    11/18

    Functional Specification What to choose:

    A: ln(Qx)=f(Px, INC), B: ln(Qx)=f(Px, Py, INC), C: ln(Qx)=f(ln(Px),ln(INC)) D: ln(Qx)=f(ln(Px),ln(Py), ln(INC))??

    Nested Model: A Vs B, or C Vs D Ramsey RESET

    Basically add the polynomial of expected value as theregressor, as the proxy for unaccounted variable

    If adding this proxy variable leads to significant increase inadjusted R square, the regression contains misspecification

    Steps in Eviews: View | Stability Test | Ramsey RESETtest | (Include number of polynomial variable) | OK

    H0: No misspecification error H1: Model contains specification error

  • 8/3/2019 Specification Test

    12/18

    Ramsey RESET Test:

    F-statistic 0.784074 Probability 0.379684Log likelihood ratio 0.834253 Probability 0.361046

    Test Equation:Dependent Variable: LOG(QX)Method: Least SquaresDate: 02/24/10 Time: 00:33Sample: 1 60

    Included observations: 60Variable Coefficient Std. Error t-Statistic Prob.

    C 1.088893 0.165015 6.598762 0.0000LOG(PX) -0.601195 0.093144 -6.454500 0.0000LOG(INC) 0.550684 0.061735 8.920113 0.0000FITTED^2 -0.043772 0.049433 -0.885480 0.3797

    R-squared 0.830562 Mean dependent var 1.237024Adjusted R-squared 0.821485 S.D. dependent var 0.723513S.E. of regression 0.305692 Akaike info criterion 0.531863Sum squared resid 5.233065 Schwarz criterion 0.671486Log likelihood -11.95589 F-statistic 91.50122

    Durbin-Watson stat 2.255349 Prob(F-statistic) 0.000000

    Ramsey RESET Test:

    F-statistic 4.159492 Probability 0.046131Log likelihood ratio 4.298853 Probability 0.038138

    Test Equation:Dependent Variable: LOG(QX)Method: Least SquaresDate: 02/24/10 Time: 00:34Sample: 1 60

    Included observations: 60Variable Coefficient Std. Error t-Statistic Prob.

    C 0.502144 0.492582 1.019413 0.3124PX 0.005691 0.080800 0.070429 0.9441INC -0.004399 0.042664 -0.103115 0.9182

    FITTED^2 0.413044 0.202524 2.039483 0.0461

    R-squared 0.543989 Mean dependent var 1.237024Adjusted R-squared 0.519560 S.D. dependent var 0.723513S.E. of regression 0.501494 Akaike info criterion 1.521890Sum squared resid 14.08379 Schwarz criterion 1.661513Log likelihood -41.65671 F-statistic 22.26804Durbin-Watson stat 2.432008 Prob(F-statistic) 0.000000

  • 8/3/2019 Specification Test

    13/18

    Functional Specification

    Non Nested Model: A Vs C (In theprevious slides)

    Mizon and Richard (1986)

    Ln(Qx) =B0 + B1*Px +B2*INC+B3*ln(Px)+B4*ln(INC)+e

    Test using Wald

    B1=B2=0 if null is rejected, then specification A ispreferred

    B3=B4=0 if null is rejected, then specification C ispreferred

  • 8/3/2019 Specification Test

    14/18

    Dependent Variable: LOG(QX)Method: Least SquaresDate: 02/24/10 Time: 00:55Sample: 1 60Included observations: 60

    Variable Coefficient Std. Error t-Statistic Prob.C 1.047136 0.119279 8.778901 0.0000

    LOG(PX) -0.490712 0.064609 -7.595069 0.0000LOG(INC) 0.604477 0.083606 7.230085 0.0000

    PX -0.017596 0.025031 -0.702977 0.4850INC -0.024155 0.018644 -1.295620 0.2005

    R-squared 0.834092 Mean dependent var 1.237024Adjusted R-squared 0.822026 S.D. dependent var 0.723513S.E. of regression 0.305228 Akaike info criterion 0.544139Sum squared resid 5.124023 Schwarz criterion 0.718668

    Log likelihood -11.32417 F-statistic 69.12739Durbin-Watson stat 2.314130 Prob(F-statistic) 0.000000

    Wald Test:Equation: Untitled

    Null Hypothesis: C(4)=0C(5)=0

    F-statistic 0.978447 Probability 0.382341Chi-square 1.956895 Probability 0.375894

    Wald Test:Equation: Untitled

    Null Hypothesis: C(2)=0C(3)=0

    F-statistic 53.70023 Probability 0.000000Chi-square 107.4005 Probability 0.000000

  • 8/3/2019 Specification Test

    15/18

    Functional Specification

    Davidson-MacKinnon (1981) Use the similar principle as Ramsey, but different

    predicted values

    Recall Spec A: ln(Qx)=f(Px, INC)

    Spec C: ln(Qx)=f(ln(Px), ln(INC))

    Steps: to test if Spec A is correct: Run Spec C, get predicted value, say Z1

    Run Spec A by adding Z1 into the equation

    If Z1 is insignificant, then A is correctly specified

    We can also perform the test in the other direction; Run Spec A, get predicted value, say Z2

    Run Spec C by adding Z2 into the equation

    If Z2 is insignificant, then C is correctly specified

  • 8/3/2019 Specification Test

    16/18

    Dependent Variable: LOG(QX)Method: Least SquaresDate: 02/24/10 Time: 00:59Sample: 1 60Included observations: 60

    Variable Coefficient Std. Error t-Statistic Prob.

    C 0.038918 0.176320 0.220726 0.8261PX 0.000279 0.020148 0.013860 0.9890INC -0.008157 0.013027 -0.626168 0.5337Z1 1.021596 0.099618 10.25511 0.0000

    R-squared 0.829783 Mean dependent var 1.237024Adjusted R-squared 0.820665 S.D. dependent var 0.723513S.E. of regression 0.306393 Akaike info criterion 0.536446Sum squared resid 5.257103 Schwarz criterion 0.676069Log likelihood -12.09338 F-statistic 90.99747Durbin-Watson stat 2.239382 Prob(F-statistic) 0.000000

    Dependent Variable: LOG(QX)Method: Least SquaresDate: 02/24/10 Time: 01:01Sample: 1 60Included observations: 60

    Variable Coefficient Std. Error t-Statistic Prob.

    C 1.001958 0.176638 5.672389 0.0000LOG(PX) -0.534508 0.056757 -9.417454 0.0000

    LOG(INC) 0.522164 0.059141 8.829176 0.0000Z2 -0.027657 0.128139 -0.215839 0.8299

    R-squared 0.828332 Mean dependent var 1.237024Adjusted R-squared 0.819136 S.D. dependent var 0.723513S.E. of regression 0.307697 Akaike info criterion 0.544936Sum squared resid 5.301924 Schwarz criterion 0.684559Log likelihood -12.34807 F-statistic 90.07041Durbin-Watson stat 2.265905 Prob(F-statistic) 0.000000

  • 8/3/2019 Specification Test

    17/18

    Selection Criteria

    According to Hendry and Richard (1983), a modelchosen for empirical analysis should satisfy thefollowing criteria: Admissible (prediction made from the model must be

    logically possible)

    Consistent with theory: Make economic good sense Have weakly exogenous explanatory variables:

    Regressors are uncorrelated with the error terms Constancy: The values of the parameters should be

    stable. In other word, the parameter values obtainedusing within sample observation should not deviate

    significantly from outside sample observation. Coherency: Residuals estimated from the model must be

    purely random Encompassing: No other model explains better

  • 8/3/2019 Specification Test

    18/18

    Selection Criteria

    Evaluation of Competing Models

    Three statistics for model evaluation criteriaavailable in most econometric software are; Adjusted R-Squared Choose model that generates

    the highest Adjusted R squared

    Akaike Information Criterion Choose model that

    generates the smallest AIC

    Schwarz Information Criterion Choose model that

    generates the smallest SIC